Publicación: Lignanos biológicamente activos
dc.contributor.advisor | Angulo Ortíz, Alberto | |
dc.contributor.author | Reyes Ortiz, Diany Vanessa | |
dc.date.accessioned | 2021-01-20T17:34:10Z | |
dc.date.available | 2021-01-20T17:34:10Z | |
dc.date.issued | 2021-01-18 | |
dc.description.abstract | Desde tiempos antiguos las plantas han sido utilizadas de manera continua para tratar o prevenir diversas enfermedades y padecimientos, esto debido a la cultura tradicional y creencias populares. Lo cual ha dado pie a múltiples investigaciones en base a la extracción de fitoquímicos bioactivos. Entre los constituyentes químicos de las plantas con actividades biológicas útiles se incluyen los lignanos, que son una familia estructuralmente diversa de metabolitos segundarios de las plantas, pertenecientes al grupo de compuestos difenólicos. Se han identificados varios cientos de lignanos por lo cual han sido diversos los estudios que involucran diferentes géneros y plantas. Siendo hoy en día las semillas de linaza y sésamo las fuentes más rica conocida de estos compuestos, a los cuales se les reconoce un gran potencial como líderes estructurales explotables, ya que han mostrado tener muchas propiedades beneficiosas para la salud humana. Con la realización de este trabajo se busca dar a conocer el perfil de composición de los lignanos en diferentes plantas y sus actividades biológicas, lo cual proyectaría aún más estos metabolitos como candidatos prometedores para tratar o prevenir diversas enfermedades. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | 1. RESUMEN ................................................................................................................. 8 | spa |
dc.description.tableofcontents | 2. PLANTEAMIENTO DEL PROBLEMA .................................................................... 9 | spa |
dc.description.tableofcontents | 3. JUSTIFICACION DEL PROBLEMA ....................................................................... 10 | spa |
dc.description.tableofcontents | 4. OBJETIVOS ............................................................................................................. 11 | spa |
dc.description.tableofcontents | 4.1 OBJETIVO GENERAL .......................................................................................... 11 | spa |
dc.description.tableofcontents | 4.2 OBJETIVOS ESPECIFICOS .................................................................................. 11 | spa |
dc.description.tableofcontents | 5. METODOLOGÍA ..................................................................................................... 12 | spa |
dc.description.tableofcontents | 6. CAPITULO I: GENERALIDADES DE LOS LIGNANOS ....................................... 12 | spa |
dc.description.tableofcontents | 6.1 INTRODUCCIÓN DEL TERMINO LIGNANOS .................................................. 12 | spa |
dc.description.tableofcontents | 6.2 BIOSINTESIS DE LOS LIGNANOS ..................................................................... 13 | spa |
dc.description.tableofcontents | 6.3 TIPOS ESQUELÉTICOS ELEMENTALES DE LOS LIGNANOS ........................ 17 | spa |
dc.description.tableofcontents | 6.4 DISTRIBUCIÓN DE LIGNANOS EN LAS PLANTAS ......................................... 19 | spa |
dc.description.tableofcontents | 6.5 PRINCIPALES FUENTES DE LIGNANOS .......................................................... 22 | spa |
dc.description.tableofcontents | 6.6 CONTENIDO DE LIGNANOS EN LINAZA COMPARADO CON OTROS ALIMENTOS. 23 | spa |
dc.description.tableofcontents | 6.7 FUNCIONES FISIOLÓGICAS DE LOS LIGNANOS EN PLANTAS Y HUMANOS 23 | spa |
dc.description.tableofcontents | 6.7.1 FUNCIONES FISIOLOGICAS EN DEFENSA DE LA PLANTA. 23 | spa |
dc.description.tableofcontents | 6.7.2 FUNCIONES DE LOS LIGNANOS PARA OFRECER BENEFICIOS EN LA SALUD HUMANA. 24 | spa |
dc.description.tableofcontents | 6.8 LIGNANOS CON MAYOR ACTIVIDAD BIOLOGICA EXHIBIDA 25 | spa |
dc.description.tableofcontents | 7. CAPITULO II: ESTRUCTURA, ORIGEN Y BIACTIVIDAD DE ALGUNOS LIGNANOS 28 | spa |
dc.description.tableofcontents | 7.1 ACTIVIDAD ANTIBACTERIAL 28 | spa |
dc.description.tableofcontents | 7.2 ACTIVIDAD ANTIFÚNGICA 30 | spa |
dc.description.tableofcontents | 7.3 ACTIVIDAD ANTIVIRAL 32 | spa |
dc.description.tableofcontents | 7.4 ACTIVIDAD ESTROGÉNICA Y ANTIESTROGÉNICA 36 | spa |
dc.description.tableofcontents | 7.5 ACTIVIDAD ANTIOXIDANTE 42 | spa |
dc.description.tableofcontents | 7.6 ACTIVIDAD CITOTOXICA 46 | spa |
dc.description.tableofcontents | 7.7 ACTIVIDAD ANTIINFLAMATORIA 59 | spa |
dc.description.tableofcontents | 7.8 ACTIVIDAD ANTIPARASITARIA 60 | spa |
dc.description.tableofcontents | 7.9 ACTIVIDAD HEPAPROTECTORA 64 | spa |
dc.description.tableofcontents | 8. CONCLUSIONES 66 | spa |
dc.description.tableofcontents | 9. BIBLIOGRAFIA 68 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3889 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Lignans | eng |
dc.subject.keywords | Phytoestrogens | eng |
dc.subject.keywords | Linseed | eng |
dc.subject.keywords | Podophyllotoxin | eng |
dc.subject.keywords | Secoisolariciresinol | eng |
dc.subject.proposal | Lignanos | spa |
dc.subject.proposal | Fitoestrógenos | spa |
dc.subject.proposal | Linaza | spa |
dc.subject.proposal | Podofilotoxina | spa |
dc.subject.proposal | Secoisolariciresinol | spa |
dc.title | Lignanos biológicamente activos | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Adfa, M., Rahmad, R., Ninomiya, M., Yudha S., S., Tanaka, K., & Koketsu, M. (2016). Antileukemic activity of lignans and phenylpropanoids of Cinnamomum parthenoxylon. Bioorganic & Medicinal Chemistry Letters, 761-764. | spa |
dcterms.references | Agarwal, G., Carcache, P. J., Addo, E. M., & Kinghorn, A. D. (2020). Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnology Advances, 107337. | spa |
dcterms.references | AhmadDar, A., Kumar, N., & Arumugam, N. (2015). An updated method for isolation, purification and characterization of clinically important antioxidant lignans – Sesamin and sesamolin, from sesame oil. Industrial Crops and Products, 201-208. | spa |
dcterms.references | Al-Sayeda, E., Ke, T.-Y., Hwang, T.-L., Chen, S.-R., Korinek, M., Chen, S.-L., y otros. (2020). Cytotoxic and anti-inflammatory effects of lignans and diterpenes from Cupressus macrocarpa. Bioorganic & Medicinal Chemistry Letters, 127127. | spa |
dcterms.references | Anantachoke, N., Lovacharaporn, D., Reutrakul, V., Michel, S., Gaslonde, T., Piyachaturawat, P., y otros. (2020). Cytotoxic compounds from the leaves and stems of the endemic Thai plant Mitrephora sirikitiae. Pharmaceutical Biology, 490-497. | spa |
dcterms.references | Asai, T., Matsukawa, T., Ishihara, A., & Kajiyama, S. (2016). Isolation and characterization of wound-induced compounds from the leaves of Citrus hassaku. Revista de biociencia y bioingeniería, 208-212. | spa |
dcterms.references | Bai, M., Wu, L.-J., Cai, Y., Wu, S.-Y., Song, X.-P., Chen, G.-Y., y otros. (2016). One new lignan derivative from the Combretum alfredii Hance. Natural Product Research, 1022-1027. | spa |
dcterms.references | Bashyal, B., Li, L., Bains, T., Debnath, A., & LaBarbera, D. V. (2017). Larrea tridentata: A novel source for antiparasitic agents active against Entamoeba. PLoS enfermedades tropicales desatendidas, 11 (8), e0005832. | spa |
dcterms.references | Basu, P., & Maier, C. (2018). Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomedicine & Pharmacotherapy, 1648-1666. | spa |
dcterms.references | Boluda, C. J., Duque, B., & Aragón, Z. (2005). Lignanos (1): estructura y funciones en las plantas. Revista de Filoterapia, 55- 68. | spa |
dcterms.references | Boluda, C. J., Duque, B., Gulyas, G., Aragón, Z., Duque, A., & Diez, F. (2005). Lignanos(2): Actividad Farmacólogica. Revista de Filoterapia, 135-148. | spa |
dcterms.references | Boluda, C., Duque, B., Gulyas, G., Aragón, Z., Duque, A., & Diez, F. (2006). Lignanos (3): Enterolignanos y actividad estrogénica . Revista de Filoterapia, 45-57. | spa |
dcterms.references | Chhillar, H., Chopra, P., & Ashfaq, M. A. (2020). Lignans from linseed (Linum usitatissimum L.)and its allied species: Retrospect, introspect and prospect. Critical Reviews in Food Science and Nutrition, 1-23. | spa |
dcterms.references | Cho, J. Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., y otros. (2007). Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Management Scienc, 935–940. | spa |
dcterms.references | Chun-Yu, C., Shu-Ying, L., Yan, Y., YIN, L., DI, P., LIU, H.-M., y otros. (2020). Candidate genes involved in the biosynthesis of lignan in Schisandra chinensis fruit based on transcriptome and metabolomes analysis. Chinese Journal of Natural Medicines, 1-12. | spa |
dcterms.references | Claramunt, R., Farrán, A., Lopez, C., Torralba, M., & Santa Maria, D. (2013). Química Bioinorgánica . Madrid: UNED. | spa |
dcterms.references | Conrado, G., Grazzia, N., da Silva, A., Franco, C. H., Borsoi, C., Ramos, F., y otros. (2020). Prospecting and Identifying Phyllanthus amarus Lignans with Antileishmanial and Antitrypanosomal Activity. Planta Medica, 782-789. | spa |
dcterms.references | Costa, R. S., Souza, O. P., Dias J, O. C., Silva, J. J., Hyaric, M. L., Santos, M. A., y otros. (2018). In vitro antileishmanial and antitrypanosomal activity of compounds isolated from the roots of Zanthoxylum tingoassuiba. . Revista Brasileira de Farmacognosia, 551-558. | spa |
dcterms.references | Cui, Q., Du, R., Liu, M., & Rong, L. (2020). Lignans and Their Derivatives from Plants as Antivirals. Molecules, 25 (1), 183. | spa |
dcterms.references | Dai, X., Yin, C., Guo, G., Zhang, Y., Zhao, C., Qian, J., y otros. (2018). Schisandrin B exhibits potent anticancer activity in triple negative breast cancer by inhibiting STAT3. Toxicology and applied pharmacology, 110-119. | spa |
dcterms.references | Dalibalta, S., Majdalawieh, A. F., & Manjikian, H. (2020). Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharmaceutical Journal. | spa |
dcterms.references | Davin, L. B., Wang, H.-B., Crowell, A. L., Bedgar, D., Martin, D. M., Sarkanen, S., y otros. (1997). Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science, 362-367. | spa |
dcterms.references | de Souza, J. J., Pereira, A., Jandú, J., da Paz, J., Crovella, S., dos Santos, M. T., y otros. (2017). Commiphora leptophloeos Phytochemical and Antimicrobial Characterization. Frontiers in Microbiology, 8 , 52. | spa |
dcterms.references | Feng, T., Cao, W., Shen, W., Zhang, W., Gu, X. G., Tsa, H.-i., y otros. (2017). Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget, 329–344. | spa |
dcterms.references | García-Huertas, P., Olmo, F., Sánchez-Moreno, M., Domínguez, J., Chahboun, R., & Triana-Chávez, O. (2018). Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from Piper jericoense. Experimental Parasitology, 34-42. | spa |
dcterms.references | Hameed, A. S., Rawat, P. S., & Meng, X. (2020). Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnology Advances, 107576. | spa |
dcterms.references | Hano, C., Corbin, C., Drouet, S., Quéro, A., Rombaut, N., Savoire, R., y otros. (2017). The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of. European Journal of Lipid Science and Technology, 1600219. | spa |
dcterms.references | Hathway, D. E. (1962). The Lignans. In Wood Extractives and their Significance to the Pulp and Paper Industries, 159-190. | spa |
dcterms.references | Hensel, A., Bauer, R., Heinrich, M., Spiegler, V., Kayser, O., Hempel, G., y otros. (2020). Challenges at the Time of COVID-19: Opportunities and Innovations. Planta medica, 86(10), 659. | spa |
dcterms.references | Izquierdo, E., & Zarain, A. (2017). Mecanismos moleculares de los fitoestrogénos y su relación con el Cancér . Revista de Educación Bioquímica, 101-110. | spa |
dcterms.references | Kaur, V., Kumar, M., Kumar, A., Kaur, K., Dhillon, V. S., & Kaur, S. ( 2018). Potencial farmacoterapéutico de los fitoquímicos: implicaciones en la quimioprevención del cáncer y perspectivas futuras. Biomedicine & Pharmacotherapy, 564-586. | spa |
dcterms.references | Kezimana, P., Dmitriev, A. A., Kudryavtseva, A. V., Romanova, E. V., & Melnikova, N. V. (2018). Secoisolariciresinol diglucósido de linaza y sus metabolitos: biosíntesis y potencial de nutracéuticos. Frontiers in genetics, 9, 641. Kiyama, R. (2016). Biological effects induced by estrogenic activity of lignans. Tendencias en ciencia y tecnología de los alimentos, 186-196. | spa |
dcterms.references | Kumar, G., Silva, B., Bharathi, K., Devi, A., Kumar, P., K, A., y otros. (2020). Synthesis and biological evaluation of Schizandrin derivatives as tubulin polymerization inhibitors. Bioorganic & Medicinal Chemistry Letters, 127354. | spa |
dcterms.references | Lee, H., Ji, J. R., Ryoo, Z. Y., Choi, M.-S., Woo, E.-R., & Lee, D. G. (2015). Antibacterial Mechanism of (−)-Nortrachelogenin in Escherichia coli O157. Microbiología actual, 48-54. | spa |
dcterms.references | Luo, Y.-Q., Liu, M., Wen, J., Wang, W.-G. H.-N., Du, X., Pu, J.-X., y otros. (2017). Dibenzocyclooctadiene lignans from Kadsura heteroclita. Fitoterapia, 150-157. | spa |
dcterms.references | Macrae, W. D., & Towers, G. H. (1984). Biological activities of lignans. Phytochemutry, 1207-1220. | spa |
dcterms.references | MOSS, G. P. (2000). Nomenclature of Lignans and neolignans . International union of pure and applied Chemistry, 1493–1523. | spa |
dcterms.references | Mou, L.-Y., Wu, H.-Y., Hu, L.-J., Wei, M., Li, J.-L., & Li, G.-P. (2020). Two new lignans from Anemone vitifolia Buch.-Ham. and their anti-inflammatory activity. Phytochemistry Letters, 133-135. | spa |
dcterms.references | Moura, A., LiMA, K., Sousa, T., Marinha-Filho, J., Pessoa, C., y otros. (2018). In vitro antitumor effect of a lignan isolated from Combretum fruticosum, trachelogenin, in HCT-116 human colon cancer cells. Toxicology in Vitro, 129-136. | spa |
dcterms.references | Muhit, M. A., Umehara, K., & Noguchi, H. (2016). Five furofuranone lignan glucosides from Terminalia citrina inhibit in vitro E2-enhanced breast cancer cell proliferation. Fitoterapia, 74-79. | spa |
dcterms.references | Nantarata, N., Muellerb, M., Lin, W.-C., Luec, S.-C., Viernsteinb, H., Chansakaowa, S., y otros. (2020). Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Bioscience, 100628. | spa |
dcterms.references | Nguyen, K. D., Dang, P. H., Nguyen, H. X., Nguyen, M. T., Awale, S., & Nguyen, N. T. (2017). Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorganic & Medicinal Chemistry Letters, 2902-2906. | spa |
dcterms.references | Nguyen, L. H., Vu, Nam, V., Thi, D. P., Litaudon, M., Roussi, F., y otros. (2020). Cytotoxic lignans from fruits of Cleistanthus tonkinensis. Fitoterapia, 104432. | spa |
dcterms.references | OPS/OMS. (2019). Informe de Leishmaniasis Nº 7 - Marzo, 2019. | spa |
dcterms.references | Ospanov, M., Leó, F., Janar, J., Khan, I. A., & Ibrahim, M. A. (2020). Challenges and future directions of potential natural products leads against 2019-nCoV outbreak. Biología vegetal actual, 100180. | spa |
dcterms.references | Prasad1, K., & Jadhav, A. (2016). Prevention and Treatment of Atherosclerosis with Flaxseed-Derived Compound. Current pharmaceutical design, 214-220. | spa |
dcterms.references | Rajalekshmi, D. S., Kabeer, F. A., Madhusoodhanan, A. R., Bahulayan, A. K., Prathapan, R., Prakasan, N., y otros. (2016). Anticancer activity studies of cubebin isolated from Piper cubeba and its synthetic derivatives. Bioorganic & Medicinal Chemistry Letters, 1767-1771. | spa |
dcterms.references | Ren, J.-l., Zhang, A.-H., & Wang, X.-J. (2020). Traditional Chinese medicine for COVID-19 treatment. Pharmacological research,, 104743. | spa |
dcterms.references | Sánchez-Elordi, E., Sterling, R. M., Santiago, R., de Armas, R., Vicente, C., & Legaz, M. E. (2020). Increase in cytotoxic lignans production after smut infection in sugar cane plants. Revista de fisiología vegetal, 244-153087. | spa |
dcterms.references | Socrier, L., Quéro, A., Verdu, M., Song, Y., Molinié, R., Mathiron, D., y otros. (2019). Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chemistry, 651-658. | spa |
dcterms.references | Soleyman, S., Habtemariam, S., Rahim, R., & Nabavi, S. M. (2020). The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends in Food Science & Technology , 382-390. | spa |
dcterms.references | Thompson, L. U., Boucher, B. A., Liu, Z., Cotterchio, M., & Kreiger, N. (2006). Phytoestrogen Content of Foods Consumed in Canada,including Isoflavones, Lignans, and Coumestan . Nutrition and Cancer, 54(2) 184-201,. | spa |
dcterms.references | Valencia-Cuéllar, A., Marulanda-Sánchez, A.-P. L., Arango, L., & Calvache, J. A. (2020). Características de pacientes adultos con cáncer y su atención en el Hospital Universitario San José de Popayán, Colombia. Revista Colombiana de Cancerología, 80-87. | spa |
dcterms.references | Wang, L.-N., Qin, L.-L., He, J.-L., Li, X.-H., Cao, Z.-X., Gu, Y.-C., y otros. (2018). Aryl-tetralin-type lignan isolated from Sanguisorba officinalis. Journal of Asian natural products research, 999-1004. | spa |
dcterms.references | Wang, L.-Q. (2002). Mammalian phytoestrogens: enterodiol and enterolactone. Journal of Chromatography B, 289-309. | spa |
dcterms.references | Wang, Q.-h., Wang, X.-l., Bao, B.-y., Han, J.-j., & Ao, W.-l.-j. (2018). Four Lignans from Syringa pinnatifolia and Their Antioxidant Activity. Chemistry of Natural Compounds, 18 - 21 | spa |
dcterms.references | Wukirsari, T., Nishiwaki, H., Nishi, K., Sugahara, T., Kishira, T., Yamauchi, y otros. (2016). Effect of the structure of dietary epoxylignan on its cytotoxic activity: relationship between the structure and the activity of 7,7′-epoxylignan and the introduction of apoptosis by caspase 3/7. Bioscience, Biotechnology, and Biochemistry, 669-675. | spa |
dcterms.references | Xin-Ya, X., Dong-Ying, W., Chuen-Fai, K., Yang, Z., Han, C., Kang-Lun, L., y otros. (2019). Anti-HIV lignans from Justicia procumbens. Revista china de medicinas naturales, 945-952. | spa |
dcterms.references | Xu, Y. X., Li, L.-Z., Cong, Q., Wang, W., Qi, X.-L., Peng, Y., y otros. (2017). Bioactive lignans and flavones with in vitro antioxidant and neuroprotective properties from Rubus idaeus rhizome. Revista de alimentos funcionales, 160-169. | spa |
dcterms.references | Xu, Y., Li, L.-Z., Cong, Q., Wang, W., Qi, X.-L., Peng, Y., y otros. (2017). Bioactive lignans and flavones with in vitro antioxidant and neuroprotective properties from Rubus idaeus rhizome. Journal of Functional Foods, 160-169. | spa |
dcterms.references | Yang, R., Liu, H., Bai, C., Wang, Y., Zhang, X., Gu, R., y otros. (2020). Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacological research, 104820. | spa |
dcterms.references | Yong, Y., Shin, P. j., Le, J. H., & Lim, Y. (2009). Antitumor activity of deoxypodophyllotoxin isolated from Anthriscus sylvestris: Induction of G2/M cell cycle arrest and caspase-dependent apoptosis. Bioorganic & Medicinal Chemistry Letters, 4367-4371. | spa |
dcterms.references | Yong, Y., Shin, S. Y., Lee, Y. H., & Lim, Y. (2016). Estudios de actividad anticancerígena de cubebina aislada de Piper cubeba y sus derivados sintéticos. Bioorganic & Medicinal Chemistry Letters, 1767-1771. | spa |
dcterms.references | Zálešák, F., Bon, D. J., & Pospíšil, J. (2019). Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological Research, 146, 104284. | spa |
dcterms.references | Zater, H., Huet, J., Fontaine, V., Benayache, S., Stevigny, C., Duez, y otros. (2016). Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire. Asian Pacific Journal of Tropical Medicine, 554-561. | spa |
dcterms.references | Zhang, H.-J., Rumschlag, E., Guan, Y.-F., Liu, K.-L., Wang, D.-Y., Li, W.-F., y otros. (2017). Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry, 94-100. | spa |
dcterms.references | Zhang, H.-J., Rumschlag-Booms, E., Guan, Y.-F., Wang, D.-Y., Liu, K.-L., Li, W.-F., y otros. (2017). Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. Journal of Natural Products, 1798–1807. | spa |
dcterms.references | Zhang, X.-R., Zhu, H.-T., Wang, D., Yang, Z., Yang, C.-R., & Zhang, Y.-J. (2020). Termitomenins A–E: Five new lignans from Terminalia chebula var. tomentella (Kurz) C. B. Clarke. Fitoterapia, 104571. | spa |
dcterms.references | Zhu, L., Shen, X.-B., Yuan, P.-C., Shao, T.-L., Wang, G.-D., & Liu, X.-P. (2020). Arctigenin inhibits proliferation of ER-positive breast cancer cells through cell cycle arrest mediated by GSK3-dependent cyclin D1 degradation. Life Sciences, 117983. | spa |
dcterms.references | Zhu, P., Li, J., Fu, X., & Yu, Z. (2019). Schisandra fruits for the management of drug-induced liver injury in China: A review. Phytomedicine, 152760. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: