Publicación:
Efecto de ácidos grasos poliinsaturados en el metabolismo de tilapia nilótica (Oreochromis niloticus) alimentados con dietas suplementadas con diferentes fuentes de aceite vegetal

dc.contributor.advisorPrieto Guevara, Martha Janethspa
dc.contributor.advisorYepes Blandón, Jonny Andrésspa
dc.contributor.authorMéndez Páez, Ana Paola
dc.date.accessioned2022-06-14T20:08:10Z
dc.date.available2023-05-08
dc.date.available2022-06-14T20:08:10Z
dc.date.issued2022-05-23
dc.description.abstractEl cultivo de peces es una economía creciente que requiere grandes cantidades de harina y aceite de pescado, incrementado la extracción de peces pelágico, impactando negativamente los ecosistemas marinos, haciendo insustentable ambiental y económicamente la producción piscícola. Es necesaria la búsqueda de nuevas dietas que disminuyan la contaminación y el uso de peces como alimento en sistemas piscícolas. El objetivo de esta investigación fue evaluar los efectos de diferentes fuentes vegetales de ácidos grasos (AG) en la dieta, sobre el metabolismo de reproductores de tilapia cultivados en sistema de recirculación de agua (RAS). Se usaron 32 unidades experimentales de 250 L, con 20 peces cada una, distribuidos en 16 taques para macho, 16 para hembras; 4 tratamientos suplementados con 4 fuentes de AG (aceite de palma (AP), aceite de maíz (AM), aceite de sacha (AS) y aceite de sacha-maíz (AMS)), cada tratamiento contó con cuatro replicas. Se analizaron los efectos de fuentes AG, en perfiles de AG en hígado, músculo y gónada; composición proximal del filete, parámetros de desempeño en los peces (Peso inicial (PI), Peso final (PF), Talla final (TF), Ganancia en peso (GP), Ganancia en longitud (GL), Factor de crecimiento específico (TCE %), Porcentaje de sobrevivencia (% S) y Tasa de conversión alimentaria (FCA)) y parámetros metabólicos.spa
dc.description.abstractFish farming is a growing economy that requires large quantities of fishmeal and fish oil, increasing the extraction of pelagic fish, negatively impacting marine ecosystems, making fish production environmentally and economically unsustainable. It is necessary to search for new diets that reduce pollution and the use of fish as food in fish farming systems. The objective of this research was to evaluate the effects of different vegetable sources of fatty acids (FA) in the diet on the metabolism of tilapia broodstock cultured in a recirculating water system (RAS). Thirty-two 250 L experimental units were used, with 20 fish each, distributed in 16 tanks for males, 16 for females; 4 treatments supplemented with 4 sources of FA (palm oil (PA), corn oil (MA), sacha oil (SA) and sacha-maize oil (SAM)), each treatment had four replicates. The effects of AG sources were analyzed in AG profiles in liver, muscle and gonad; fillet proximal composition, fish performance parameters (initial weight (IP), final weight (FP), final size (TF), weight gain (WG), length gain (GL), specific growth factor (SGR %), survival percentage (% S) and feed conversion ratio (FCR)) and metabolic parameters. In general, males presented greater increases in weight, length, and consumption; gonadosomatic and hepatosomatic indices were higher in females.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsINTRODUCCIÓN 17spa
dc.description.tableofcontents2. OBJETIVOS 21spa
dc.description.tableofcontents2.1. OBJETIVO GENERAL 21spa
dc.description.tableofcontents2.2. OBJETIVOS ESPECÍFICOS 21spa
dc.description.tableofcontents3. MARCO TEÓRICO Y ANTECEDENTES 22spa
dc.description.tableofcontents3.1. MARCO TEÓRICO 22spa
dc.description.tableofcontents3.1.1. Implicación ambiental y socioeconómica del uso de harina y aceite de pescado en la acuicultura. 22spa
dc.description.tableofcontents3.1.2. Impacto de la dieta tradicional sobre el ambiente, sustitución de la dieta en peces de cultivo. 25spa
dc.description.tableofcontents3.1.3. Calidad del agua, sistemas RAS y ambiente. 28spa
dc.description.tableofcontents3.1.4. Bioecología, morfología y cultivo de tilapia (Oreochromis niloticus). 30spa
dc.description.tableofcontents3.1.5. Composición de la dieta de tilapia en cultivo. 34spa
dc.description.tableofcontents3.1.6. Ácidos grasos, biosíntesis e importancia en la nutrición de tilapia y la seguridad alimentaria. 37spa
dc.description.tableofcontents3.1.7. Parámetros metabólicos y su importancia en la nutrición de peces. 42spa
dc.description.tableofcontents3.2. ANTECEDENTES 45spa
dc.description.tableofcontents4. METODOLOGÍA 55spa
dc.description.tableofcontents4.1. LOCALIZACIÓN 55spa
dc.description.tableofcontents4.2. DIETAS EXPERIMENTALES 56spa
dc.description.tableofcontents4.3. SISTEMA DE CULTIVO Y UNIDADES EXPERIMENTALES 58spa
dc.description.tableofcontents4.4. MATERIAL BIOLÓGICO 58spa
dc.description.tableofcontents4.5. COLECTA Y PRESERVACIÓN DE MUESTRAS 59spa
dc.description.tableofcontents4.6. PARÁMETROS DE DESEMPEÑO 60spa
dc.description.tableofcontents4.7. GLUCOSA, TRIGLICÉRIDOS Y PROTEÍNAS 61spa
dc.description.tableofcontents4.8. PERFIL DE ÁCIDOS GRASOS 62spa
dc.description.tableofcontents4.9. COMPOSICIÓN PROXIMAL 63spa
dc.description.tableofcontents4.10. DISEÑO EXPERIMENTAL Y ANÁLISIS ESTADÍSTICO 63spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓN 64spa
dc.description.tableofcontents5.1.1. Parámetros de desempeño de tilapia nilótica. 64spa
dc.description.tableofcontents5.1.2. Índice gonadosomático e índice hepatosomático. 65spa
dc.description.tableofcontents5.1.4. Parámetros metabólicos en hígado. 66spa
dc.description.tableofcontents5.1.5. Parámetros metabólicos en músculo. 67spa
dc.description.tableofcontents5.1.6. Perfil de ácidos grasos en hígado. 68spa
dc.description.tableofcontents5.1.7. Perfil de ácidos grasos en músculo. 70spa
dc.description.tableofcontents5.1.8. Perfiles lipídicos en gónada. 72spa
dc.description.tableofcontents5.1.9. Composición proximal del filete. 74spa
dc.description.tableofcontents5.2. ANÁLISIS Y DISCUSIÓN: 76spa
dc.description.tableofcontents5. CONCLUSIONES 85spa
dc.description.tableofcontents6. RECOMENDACIONES 86spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS 87spa
dc.description.tableofcontentsANEXOS 113spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/5208
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programBiologíaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsProductive performanceeng
dc.subject.keywordsFish nutritioneng
dc.subject.keywordsLipid metabolismeng
dc.subject.keywordsSustainabilityeng
dc.subject.proposalDesempeño productivospa
dc.subject.proposalMetabolismo de lípidosspa
dc.subject.proposalNutrición de pecesspa
dc.subject.proposalSostenibilidadspa
dc.titleEfecto de ácidos grasos poliinsaturados en el metabolismo de tilapia nilótica (Oreochromis niloticus) alimentados con dietas suplementadas con diferentes fuentes de aceite vegetalspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAguilar, F., Afanador, G., & Muñoz, A. (2010). Efecto del procesamiento de la dieta sobre el desempeño productivo de tilapia nilótica (Oreochromis niloticus Var. Chitralada) en un ciclo comercial de producción. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 57(II), 104-118.spa
dcterms.referencesAgronet. (2021). Estadisticas. Recuperado de: https://www.agronet.gov.co.spa
dcterms.referencesAlava, V. (1998). Effect of salinity, dietary lipid source and level on growth of milkfish (Chanos chanos) fry. Aquaculture, 167(3-4), 229-236.spa
dcterms.referencesAl‐Owafeir, M., & Belal, I. (1996). Replacing palm oil for soybean oil in tilapia, Oreochromis niloticus (L.), feed. Aquaculture Research, 27(4), 221-224.spa
dcterms.referencesÁlvarez, A., Esteban, H., Hernández, T., Torres, J., & Puzo, A. (2009). Fisiología animal aplicada. Universidad de Antioquia.spa
dcterms.referencesAmaral, A., Alvarado, N., Marigomez, I., Cunha, R., Hylland, K., & Soto, M. (2002). Autometallography and metallothionein immunohistochemistry in hepatocytes of turbot (Scophthalmus maximus L.) after exposure to cadmium and depuration treatment. Biomarkers, 7(6), 491-500.spa
dcterms.referencesApraku, A., Huang, X., Yusuf, A., Cornel, A., Ayisi, C. L., & Asiedu, B. (2019). Impact of dietary oil replacement on muscle and liver enzymes activity, histomorphology and growth-related genes on Nile tilapia. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 15-25.spa
dcterms.referencesApraku, A., Liu, L., Leng, X., Rupia, E., & Ayisi, C. (2017). Evaluation of blended virgin coconut oil and fish oil on growth performance and resistance to Streptococcus iniae challenge of Nile tilapia (Oreochromis niloticus). Egyptian journal of basic and applied sciences, 4(3), 175-184.spa
dcterms.referencesArenal, A., Martín, L., Castillo, N., de la Torre, D., Torres, U., & González, R. (2012). Aqueous extract of Ocimum tenuiflorum decreases levels of blood glucose in induced hyperglycemic tilapia (Oreochromis niloticus). Asian Pacific journal of tropical medicine, 5(8), 634-637spa
dcterms.referencesArslan, M., Rinchard, J., Dabrowski, K., & Portella, M. (2008). Effects of different dietary lipid sources on the survival, growth, and fatty acid composition of South American catfish, Pseudoplatystoma fasciatum, surubim, juveniles. Journal of the world aquaculture society, 39(1), 51-61.spa
dcterms.referencesAyadi, F., Rosentrater, K., & Muthukumarappan, K. (2012). Alternative protein sources for aquaculture feeds. Journal of Aquaculture Feed Science and Nutrition, 4(1), 1-26.spa
dcterms.referencesAyisi, C., Zhao, J., & Rupia, E. (2017). Growth performance, feed utilization, body and fatty acid composition of Nile tilapia (Oreochromis niloticus) fed diets containing elevated levels of palm oil. Aquaculture and Fisheries, 2(2), 67-77.spa
dcterms.referencesBahurmiz, O. M., & Ng, W. K. (2007). Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size. Aquaculture, 262(2-4), 382-392.spa
dcterms.referencesBandarra, N., Nunes, M., Andrade, A., Prates, J., Pereira, S., Monteiro, M., ... & Valente, L. (2006). Effect of dietary conjugated linoleic acid on muscle, liver and visceral lipid deposition in rainbow trout juveniles (Oncorhynchus mykiss). Aquaculture, 254(1-4), 496-505.spa
dcterms.referencesBarandica, C., & Tort, L. (2008). Neuroendocrinología e inmunología de la respuesta al estrés en peces. Rev. Acad. Colomb. Cienc, 32(123), 267-284.spa
dcterms.referencesBeheshti, M., Parrish, C., Wells, J., Taylor, R., Rise, M., & Shahidi, F. (2018). Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): effects on growth performance and muscle lipid and fatty acid composition. PloS one, 13(9), e0198538.spa
dcterms.referencesBell, J., & Waagbø, R. (2008). Safe and nutritious aquaculture produce: benefits and risks of alternative sustainable aquafeeds. In Aquaculture in the Ecosystem. Springer, Dordrecht. 185-225spa
dcterms.referencesBell, J., Henderson, R., Tocher, D., McGhee, F., Dick, J., Porter, A., ... & Sargent, J. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. The Journal of nutrition, 132(2), 222-230.spa
dcterms.referencesBell, J., McEvoy, J., Tocher, D., McGhee, F., Campbell, P., & Sargent, J. (2001). Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of nutrition, 131(5), 1535-1543.spa
dcterms.referencesBell, J., Pratoomyot, J., Strachan, F., Henderson, R., Fontanillas, R., Hebard, A., ... & Tocher, D. (2010). Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils. Aquaculture, 306(1-4), 225-232.spa
dcterms.referencesBermúdez, A., Muñoz, A., & Wills, G. (2012). Evaluación de un sistema de alimentación orgánico sobre el desempeño productivo de la tilapia nilótica (Oreochromis Niloticus) cultivada en estanques de tierra. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 59(III), 165-175.spa
dcterms.referencesBetancor, M., Li, K., Sprague, M., Bardal, T., Sayanova, O., Usher, S., ... & Olsen, R. (2017). An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry. PloS one, 12(4), e0175415.spa
dcterms.referencesBeveridge, M., & Baird, D. (2000). Diet, feeding and digestive physiology. In Tilapias: Biology and exploitation. Springer, Dordrecht, 59-87.spa
dcterms.referencesBhujel, R. (2002). Manejo Alimentario para Tilapia, ministerioo de Agricultura, Ganaderia y Pesca Argentina. Panorama Acuícola, 7 (4). Recuperado de: https://www.magyp.gob.ar/sitio/areas/acuicultura/cultivos/_archivos//000000_Especies/000008Tilapia/071201_Manejo%20Alimentario%20para%20Tilapia%20-%20Nutricion%20y%20bajo%20costo.phpspa
dcterms.referencesBlanchard, J., Watson, R., Fulton, E., Cottrell, R., Nash, K., Bryndum, A., ... & Jennings, S. (2017). Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology & Evolution, 1(9), 1240-1249.spa
dcterms.referencesBlomqvist, J., Pickova, J., Tilami, S., Sampels, S., Mikkelsen, N., Brandenburg, J., ... & Passoth, V. (2018). Oleaginous yeast as a component in fish feed. Scientific reports, 8(1), 1-8.spa
dcterms.referencesBolla, S., Nicolaisen, O., & Amin, A. (2011). Liver alterations induced by long term feeding on commercial diets in Atlantic halibut (Hippoglossus hippoglossus L.) females. Histological and biochemical aspects. Aquaculture, 312(1-4), 117-125.spa
dcterms.referencesBoonanuntanasarn, S., Nakharuthai, C., Schrama, D., Duangkaew, R., & Rodrigues, P. (2019). Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). Journal of proteomics, 192, 208-222.spa
dcterms.referencesBórquez, A., Hernández, A., Dantagnan, P., Saez, P., & Serrano, E. (2011). Incorporation of whole lupin, Lupinus albus, seed meal in commercial extruded diets for rainbow trout, Oncorhynchus mykiss: effect on growth performance, nutrient digestibility, and muscle fatty acid composition. Journal of the world aquaculture society, 42(2), 209-221.spa
dcterms.referencesBotello, A., Viana, M., Cisneros, M., Valdivié, M., Ariza, E., Girón, E., ... & Gómez, I. (2011). La harina de caña proteica como alimento local en la producción de tilapia roja-Oreochromis spp. REDVET. Revista electrónica de Veterinaria, 12(6), 1-10.spa
dcterms.referencesBouvier, J., & Brisset, A. (2006). Aquafeed Twin Screw Extrusion Processing. ASIAN AQUAFEEDS, 76- 94.spa
dcterms.referencesBrú, S., Pertúz, V., Ayazos J., Atencio, V., & Pardo, S. (2017). Bicultivo en biofloc de cachama blanca -Piaractus brachypomus-y tilapia nilótica -Oreochromis niloticus- alimentadas con dietas de origen vegetal. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 64(1), 44-60.spa
dcterms.referencesBuschmann, A., & Fortt, A. (2005). Efectos ambientales de la acuicultura intensiva y alternativas para un desarrollo sustentable. Revista Ambiente y Desarrollo, 21(3), 58-64.spa
dcterms.referencesByelashov, O., & Griffin, M. (2014). Fish in, fish out: perception of sustainability and contribution to public health. Fisheries, 39(11), 531-535.spa
dcterms.referencesCaballero, M., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., & Izquierdo, M. (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture, 214(1-4), 253-271.spa
dcterms.referencesCalder, P. (2004). n–3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clinical science, 107(1), 1-11.spa
dcterms.referencesCardoso, R., Campeche, D., & Paulino, R. (2010). Tilápia em reservatório de água para irrigação e avaliação da qualidade da água. Revista Brasileira de Ciências Agrárias, 5(1), 117-122.spa
dcterms.referencesChatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., & Mylonas, C. (2010). Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture, 307(1-2), 65-70.spa
dcterms.referencesChen, C., Guan, W., Xie, Q., Chen, G., He, X., Zhang, H., ... & Pan, Q. (2018). n-3 essential fatty acids in Nile tilapia, Oreochromis niloticus: bioconverting LNA to DHA is relatively efficient and the LC-PUFA biosynthetic pathway is substrate limited in juvenile fish. Aquaculture, 495, 513-522.spa
dcterms.referencesChen, J., Feng, J., Zhu, J., Luo, L., Lin, S., Wang, D., & Chen, Y. (2020). Starch to protein ratios in practical diets for genetically improved farmed Nile tilapia Oreochromis niloticus: Effects on growth, body composition, peripheral glucose metabolism and glucose tolerance. Aquaculture, 515, 734538.spa
dcterms.referencesCrouse, C., Kelley, R., Trushenski, J., & Lydy, M. (2013). Use of alternative lipids and finishing feeds to improve nutritional value and food safety of hybrid striped bass. Aquaculture, 408, 58-69.spa
dcterms.referencesCzorlich, Y., Aykanat, T., Erkinaro, J., Orell, P., & Primmer, C. R. (2021). Evolution in salmon life-history induced by direct and indirect effects of fishing. bioRxiv.spa
dcterms.referencesDawood, M., Ali, M., Amer, A., Gewaily, M., Mahmoud, M., Alkafafy, M., ... & Van Doan, H. (2021). The influence of coconut oil on the growth, immune, and antioxidative responses and the intestinal digestive enzymes and histomorphometry features of Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 1-12.spa
dcterms.referencesDe Souza, E., de Souza, R., Melo, J., da Costa, M., de Souza, A., & Copatti, C. (2019). Evaluation of the effects of Ocimum basilicum essential oil in Nile tilapia diet: Growth, biochemical, intestinal enzymes, haematology, lysozyme and antimicrobial challenges. Aquaculture, 504, 7-12.spa
dcterms.referencesDe Souza, N., Matsushita, M., de Oliveira, C., Franco, M., & Visentainer, J. (2007). Manipulation of fatty acid composition of Nile tilapia (Oreochromis niloticus) fillets with flaxseed oil. Journal of the Science of Food and Agriculture, 87(9), 1677-1681.spa
dcterms.referencesDe Vlaming, V. (1983). Oocyte Development Patterns and Hormonal Involvements among Teleost In Control Processes in Fish Physiology (Eds. Rankin, JC, Pitcher TJ, Duggan, RT) Croom Helm Ltd. Manuka Australia, 177-199.spa
dcterms.referencesDeLong, D., Losordo, T., & Rakocy, J.. (2009). Tank Culture of Tilapia, South Regional Aquaculture center. SRAC Publication, (282).spa
dcterms.referencesDos Santos, S., Schorer, M., Moura, G., Lanna, E., & Pedreira, M. (2019). Evaluation of growth and fatty acid profile of Nile tilapia (Oreochromis niloticus) fed with Schizochytrium sp. Aquaculture Research, 50(4), 1068-1074.spa
dcterms.referencesDu, R., Chen, J., Zhu, J., Feng, J., Luo, L., Lin, S., & Chen, Y. (2020). Glucose homeostasis and glucose tolerance were impaired with elevated lipid to starch ratios in practical diets for the omnivorous genetically improved farmed tilapia Oreochromis niloticus. Aquaculture, 523 (735221),1-8.spa
dcterms.referencesEkasari, J., Rivandi, D., Firdausi, A., Surawidjaja, E., Zairin, M., Bossier, P., & De Schryver, P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72-77.spa
dcterms.referencesEl‐Saidy, D., & Gaber, M. (2003). Replacement of fish meal with a mixture of different plant protein sources in juvenile Nile tilapia, Oreochromis niloticus (L.) diets. Aquaculture research, 34(13), 1119-1127.spa
dcterms.referencesEl-Sayed, A. (2015). Social and economic performance of Nile tilapia (Oreochromis niloticus) farming in Egypt: a case study. FAO Fisheries and Aquaculture Circular.spa
dcterms.referencesEl-Sayed, A. (2016). Tilapia Co-culture in Egypt. Tilapia in Intensive Co-culture, 1, 211.spa
dcterms.referencesEl-Sayed, A. (2019). Tilapia culture. Academic Press. London, 1- 348.spa
dcterms.referencesEnes, P., Panserat, S., Kaushik, S., & Teles, A. (2009). Nutritional regulation of hepatic glucose metabolism in fish. Fish physiology and biochemistry, 35(3), 519-539.spa
dcterms.referencesEscamilla, B. E., Ortiz, L., Molina, D. O., & Espinoza, A. (2021). Cultural importance of marine resources subject to fishing exploitation in coastal communities of Southwest Gulf of Mexico. Ocean & Coastal Management, 208, 105605.spa
dcterms.referencesFAO. (2009). Oreochromis niloticus (Linnaeus, 1758) [Cichlidae], recuperado de http://www.fao.org/tempref/FI/DOCUMENT/aquaculture/CulturedSpecies/file/es/es_niletilapia.htmspa
dcterms.referencesFAO. (2011). Manual Básico de Sanidad Piscícola: Capítulo 4. Métodos de intervención en caso de aparición de enfermedades.spa
dcterms.referencesFAO. (2016). El Estado mundial de la pesca y la acuicultura. Food & Agriculture Org.spa
dcterms.referencesFAO. (2018). El Estado mundial de la pesca y la acuicultura. Food & Agriculture Org.spa
dcterms.referencesFAO. (2020). El Estado mundial de la pesca y la acuicultura, 2020. Food & Agriculture Org.spa
dcterms.referencesFAO. (2021). Tilapia del Nilo-Oreochromis niloticus, recuperado de: http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/es.spa
dcterms.referencesFerreira, M., de Araujo, F., Costa, D., Rosa, P., Figueiredo, H., & Murgas, L. (2011). Influence of dietary oil sources on muscle composition and plasma lipoprotein concentrations in Nile Tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 42(1), 24-33.spa
dcterms.referencesFigueiredo, A., Rema, P., Bandarra, N., Nunes, M., & Valente, L. (2005). Effects of dietary conjugated linoleic acid on growth, nutrient utilization, body composition, and hepatic lipogenesis in rainbow trout juveniles (Oncorhynchus mykiss). Aquaculture, 248(1-4), 163-172.spa
dcterms.referencesFlores, F., & Malabarba, L. (2007). Alterações histopatológicas observadas no fígado do lambarí Astyanax jacuhiensis (cope, 1894) (Teleostei, Characidae) sob influência de efluentes petroquímicos. Biociências, 15(2), 166-172.spa
dcterms.referencesFolch, J., Lees, M., & Stanley, G. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry, 226 (1), 497-509.spa
dcterms.referencesFonseca, J., Karalazos, V., Campbell, P. J., Bell, J. G., & Tocher, D. R. (2005). Influence of dietary palm oil on growth, tissue fatty acid compositions, and fatty acid metabolism in liver and intestine in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 11(4), 241-250.spa
dcterms.referencesFry, J., Love, D., MacDonald, G., West, P., Engstrom, P., Nachman, K., & Lawrence, R. (2016). Environmental health impacts of feeding crops to farmed fish. Environment international, 91, 201-214.spa
dcterms.referencesGao, J., Koshio, S., Ishikawa, M., Yokoyama, S., Ren, T., Komilus, C., & Han, Y. (2012). Effects of dietary palm oil supplements with oxidized and non-oxidized fish oil on growth performances and fatty acid compositions of juvenile Japanese sea bass, Lateolabrax japonicus. Aquaculture, 324, 97-103.spa
dcterms.referencesGarcía, L., Miranda, A., Coelho, M., Huerta, J., & Osuna, P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 502, 26-31.spa
dcterms.referencesGbadamosi, O., & Lupatsch, I. (2018). Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus. Algal research, 33, 48-54.spa
dcterms.referencesGebremedhin, S., Bruneel, S., Getahun, A., Anteneh, W., & Goethals, P. (2021). Scientific Methods to Understand Fish Population Dynamics and Support Sustainable Fisheries Management. Water, 13(4), 574.spa
dcterms.referencesGlencross, B. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1(2), 71-124.spa
dcterms.referencesGodoy, A., Santos, O., Oxford, J., de Amorim, I., Rodrigues, R., Neu, D., ... & Boscolo, W. (2019). Soybean oil for Nile tilapia (Oreochromis niloticus) in finishing diets: Economic, zootechnical and nutritional meat improvements. Aquaculture, 512, 734324.spa
dcterms.referencesGonzález, J. E., Sánchez, J. A., Ochoa-De-Arco, E., & Sánchez, I. (2019). Sustainable fishing exploitation model as a productive bet: in Moñitos-Cordoba-Colombia. Saber, Ciencia y Libertad, 14 (1), 179-189.spa
dcterms.referencesGuillaume, J., Kaushik, S., Bergot, P., & Métailler, R. (2004). Nutrición y alimentación de peces y crustáceos. Mundi-Prensa, 1-478.spa
dcterms.referencesGutiérrez, M., Yossa, M., & Vásquez, W. (2011). Digestibilidad aparente de materia seca, proteína y energía de harina de vísceras de pollo, quinua y harina de pescado en tilapia nilótica, Oreochromis niloticus. Orinoquia, 15(2), 169-179.spa
dcterms.referencesHalliwell, B. (2001). Role of free radicals in the neurodegenerative diseases. Drugs & aging, 18(9), 685-716.spa
dcterms.referencesHardy, R. (2006). Worldwide fish meal production outlook and the use of alternative protein meals for aquaculture. Avances en Nutrición Acuicola, 410-419.spa
dcterms.referencesHardy, R. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770-776.spa
dcterms.referencesHenderson, R. (1996). Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Archives of Animal Nutrition, 49(1), 5-22.spa
dcterms.referencesHenderson, R., & Tocher, D. (1987). The lipid composition and biochemistry of freshwater fish. Progress in lipid research, 26(4), 281-347.spa
dcterms.referencesHerath, S., Haga, Y., & Satoh, S. (2016). Effects of long-term feeding of corn co-product-based diets on growth, fillet color, and fatty acid and amino acid composition of Nile tilapia, Oreochromis niloticus. Aquaculture, 464, 205-212.spa
dcterms.referencesHernández, C., Trejo, A., Loredo, J., & Gutiérrez, G. (2016). Evaluación de la eficiencia productiva de tres líneas de tilapia con reversión sexual en un sistema de recirculación (RAS). Latin american journal of aquatic research, 44(4), 869-874.spa
dcterms.referencesHernández, L., Londoño, J., Hernández, K., & Torres, L. (2019). The biofloc systems: an efficient strategy in the aquaculture production. CES Medicina Veterinaria y Zootecnia, 14(1), 70-99.spa
dcterms.referencesHinzpeter, I., Shene, C., & Masson, L. (2006). Alternativas biotecnológicas para la producción de ácidos grasos poliinsaturados omega-3. Repositorio académico Universidad de Chile, 57(3), 336-342.spa
dcterms.referencesHisano, H., Barbosa, P., Hayd, L., & Mattioli, C. (2019). Evaluation of Nile tilapia in monoculture and polyculture with giant freshwater prawn in biofloc technology system and in recirculation aquaculture system. International Aquatic Research, 11(4), 335-346.spa
dcterms.referencesHodar, A., Vasava, R., Mahavadiya, D., & Joshi, N. (2020). Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India, 23(1), 13-21.spa
dcterms.referencesHorwitz, W., & Latimer, G. (2005). AOAC-Association of official analytical chemists. Official Methods of Analysis of AOAC International 18th ed, Gaithersburg, Maryland, USA, 45, 75-76.spa
dcterms.referencesHsieh, S., Hu, C., Hsu, Y., & Hsieh, T. (2007). Influence of dietary lipids on the fatty acid composition and stearoyl-CoA desaturase expression in hybrid tilapia (Oreochromis niloticus x O. aureus) under cold shock. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147(3), 438-444.spa
dcterms.referencesHsien, S., & Quintanilla, M. (2008). Manual sobre reproducción y cultivo de tilapia. Centro de desarrollo de la pesca y la acuicultura (CENDEPESCA). El Salvador, 1- 68.spa
dcterms.referencesHua, K., Cobcroft, J., Cole, A., Condon, K., Jerry, D., Mangott, A., ... & Strugnell, J. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329.spa
dcterms.referencesHuerta, A. (2017). Selección y dimensionamiento de las unidades de tratamiento de agua para un sistema de recirculación en el liceo técnico profesional (Doctoral dissertation, Pontificia Universidad Catolica De Valparaiso).spa
dcterms.referencesHunter, J., & Macewicz, B. (2003). Improving the accuracy and precision of reproductive information used in fisheries. Modern approaches to assess maturity and fecundity of warm and cold water fish and squids, 57-68.spa
dcterms.referencesIFFO. (2017). Organizacion de ingredientes marinos IFFO. Ratios pescado requerido: pescado obtenido (FIFO) para la conversión de pescado silvestre a pescado de cultivo, incluyendo salmón. Recuperado de: https://www.iffo.com/es/node/81.spa
dcterms.referencesJackson, A. (2009). Fish in–fish out ratios explained. Aquaculture Europe, 34(3), 5-10.spa
dcterms.referencesJannathulla, R., Rajaram, V., Kalanjiam, R., Ambasankar, K., Muralidhar, M., & Dayal, J. S. (2019). Fishmeal availability in the scenarios of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquaculture Research, 50(12), 3493-3506.spa
dcterms.referencesJordal, A., Lie, Ø., & Torstensen, B. (2007). Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 13(2), 114-130.spa
dcterms.referencesKabeya, N., Yevzelman, S., Oboh, A., Tocher, D., & Monroig, O. (2018). Essential fatty acid metabolism and requirements of the cleaner fish, ballan wrasse Labrus bergylta: Defining pathways of long-chain polyunsaturated fatty acid biosynthesis. Aquaculture, 488, 199-206.spa
dcterms.referencesKarapanagiotidis, I., Bell, M., Little, D., & Yakupitiyage, A. (2007). Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega 3 content in tilapia flesh. Lipids, 42(6), 547-559.spa
dcterms.referencesKhalifa, N., Belal, I., El‐Tarabily, K., Tariq, S., & Kassab, A. (2018). Evaluation of replacing fish meal with corn protein concentrate in Nile tilapia Oreochromis niloticus fingerlings commercial diet. Aquaculture Nutrition, 24(1), 143-152.spa
dcterms.referencesKhallaf, E., Alne-na-ei, A., El-messady, F., & Hanafy, E. (2020). Effect of climate change on growth and reproduction of Nile tilapia (Oreochromis niloticus, L.) from Bahr Shebeen Canal, Delta of Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 24(5), 483-509.spa
dcterms.referencesKok, B., Malcorps, W., Tlusty, M., Eltholth, M., Auchterlonie, N., Little, D., ... & Davies, S. (2020). Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture, 528, 735474.spa
dcterms.referencesKonar, M., Qiu, S., Tougher, B., Vause, J., Tlusty, M., Fitzsimmons, K., ... & Cao, L. (2019). Illustrating the hidden economic, social and ecological values of global forage fish resources. Resources, Conservation and Recycling, 151, 104456.spa
dcterms.referencesKoolman, J., & Röhm, K. (2005). Bioquímica: texto y atlas. Ed. Médica Panamericana.spa
dcterms.referencesKris, P., Harris, W., & Appel, L. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106(21), 2747-2757.spa
dcterms.referencesKumkhong, S., Marandel, L., Plagnes-Juan, E., Veron, V., Panserat, S., & Boonanuntanasarn, S. (2021). Glucose injection into the yolk influences intermediary metabolism in adult Nile tilapia fed with high levels of carbohydrates. animal, 15(9), 100347.spa
dcterms.referencesLeaver, M., Villeneuve, L., Obach, A., Jensen, L., Bron, J., Tocher, D., & Taggart, J. (2008). Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). Bmc Genomics, 9(1), 299.spa
dcterms.referencesLewis, H., & Kohler, C. (2008). Minimizing fish oil and fish meal with plant‐based alternatives in sunshine bass diets without negatively impacting growth and muscle fatty acid profile. Journal of the World Aquaculture Society, 39(5), 573-585.spa
dcterms.referencesLiland, N., Rosenlund, G., Berntssen, M., Brattelid, T., Madsen, L., & Torstensen, B. (2013). Net production of Atlantic salmon (FIFO, Fish in Fish out< 1) with dietary plant proteins and vegetable oils. Aquaculture Nutrition, 19(3), 289-300.spa
dcterms.referencesLima, B., Takahashi, N., Tabata, Y., Hattori, R., da Silva, C., & Moreira, R. (2019). Balanced omega-3 and-6 vegetable oil of Amazonian sacha inchi act as LC-PUFA precursors in rainbow trout juveniles: Effects on growth and fatty acid biosynthesis. Aquaculture, 509, 236-245.spa
dcterms.referencesLiu, Y., Jiao, J., Gao, S., Ning, L., Limbu, S., Qiao, F., ... & Du, Z. (2019a). Dietary oils modify lipid molecules and nutritional value of fillet in Nile tilapia: A deep lipidomics analysis. Food chemistry, 277, 515-523.spa
dcterms.referencesLiu, Y., Wen, J., Ning, L., Jiao, J., Qiao, F., Chen, L., ... & Du, Z. (2019b). Comparison of effects of dietary‐specific fatty acids on growth and lipid metabolism in Nile tilapia. Aquaculture Nutrition, 25(4), 862-872.spa
dcterms.referencesLowe, R. (2000). The roles of tilapias in ecosystems. In Tilapias: biology and exploitation. Springer, Dordrecht, 129-162.spa
dcterms.referencesLuo, Z., Li, X., Bai, H., & Gong, S. (2008). Effects of dietary fatty acid composition on muscle composition and hepatic fatty acid profile in juvenile Synechogobius hasta. Journal of Applied Ichthyology, 24(1), 116-119.spa
dcterms.referencesMaddock, D., & Burton, M. (1998). Gross and histological observations of ovarian development and related condition changes in American plaice. Journal of Fish Biology, 53(5), 928-944.spa
dcterms.referencesMakori, A., Abuom, P., Kapiyo, R., Anyona, D., & Dida, G. (2017). Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fisheries and aquatic sciences, 20(1), 1-10.spa
dcterms.referencesMalcorps, W., Kok, B., van‘t Land, M., Fritz, M., van Doren, D., Servin, K., ... & Davies, S. (2019). The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability, 11(4), 1212.spa
dcterms.referencesMalpartida, J., Carvalho, J., de Espirito Santo, C., & Vinatea, L. (2018). Production of Nile tilapia Oreochromis niloticus grown in BFT using two aeration systems. Aquaculture Research, 49(1), 222-231.spa
dcterms.referencesMariño, U., & Alcalá, G. (2020). Pescadores en México y Cuba: Retos y oportunidades ante el cambio climático.spa
dcterms.referencesMarroquin, E. (2018). Efecto de la inclusión de ingredientes no tradicionales en la alimentación de la tilapia nilótica (Oreochromis niloticus) sobre parámetros hematológicos y bioquímica sanguínea (Doctoral dissertation, Universidad de San Carlos de Guatemala).spa
dcterms.referencesMelo, V., & Cuamatzi, O. (2020). Bioquímica de los procesos metabólicos. Reverte. Menoyo, D., Izquierdo, M., Robaina, L., Ginés, R., Lopez, C., & Bautista, J. (2004). Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. British Journal of Nutrition, 92(1), 41-52.spa
dcterms.referencesMerino, G., Barange, M., Mullon, C., & Rodwell, L. (2010). Impacts of global environmental change and aquaculture expansion on marine ecosystems. Global Environmental Change, 20(4), 586-596.spa
dcterms.referencesMessina, M., Piccolo, G., Tulli, F., Messina, C., Cardinaletti, G., & Tibaldi, E. (2013). Lipid composition and metabolism of European sea bass (Dicentrarchus labrax L.) fed diets containing wheat gluten and legume meals as substitutes for fish meal. Aquaculture, 376, 6-14.spa
dcterms.referencesMetwally, M. (2009). Effects of garlic (Allium sativum) on some antioxidant activities in tilapia nilotica (Oreochromis niloticus). World Journal of fish and marine sciences, 1(1), 56-64.spa
dcterms.referencesMeyer, D. (2004). Introducción a la Acuacultura. Escuela Agrícola Panamericana Zamorano. Honduras, 1-144.spa
dcterms.referencesMiranda, R., & Guerrero, C. (2015). Efecto de la torta de Sacha Inchi (Plukenetia volubilis) sobre el desempeño productivo de juveniles de tilapia roja (Oreochromis sp.). Respuestas, 20(2), 82-92.spa
dcterms.referencesMitra, A. (2020). Thought of Alternate Aquafeed: Conundrum in Aquaculture Sustainability? In Proceedings of the Zoological Society,1-18.spa
dcterms.referencesMjoun, K., Rosentrater, K., & Brown, M. (2010). Tilapia: environmental biology and nutritional requirements. Fact Sheets, 164, 2-8.spa
dcterms.referencesMohammadi, M., Imani, A., Farhangi, M., Gharaei, A., & Hafezieh, M. (2020). Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): Growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology. Aquaculture, 518, 734824.spa
dcterms.referencesMontoya, N., Marquez, E., Castillo, F., Cárdenas, J., López, J., Ruíz, S., ... & Ocaño, V. (2019). Advances in the use of alternative protein sources for tilapia feeding. Reviews in Aquaculture, 11(3), 515-526.spa
dcterms.referencesMontoya, N., Oloño, J., Ríos, E., Rodríguez, F., Torres, W., Yañez, F., ... & Higuera, V. (2018). Efecto de la sustitución de proteína animal por vegetal en el alimento sobre la fisiología de la tilapia del Nilo. Biotecnia, 20(2), 37-42.spa
dcterms.referencesMoreno, J. (2013). Cambios en el perfil de ácidos grasos de filete de tilapia nilótica Oreochromis niloticus en respuesta a diferentes fuentes lipídicas. Departamento de Ciencias para la Producción Animal, 1-134.spa
dcterms.referencesMoreno, J., Muñoz, A., & Wills, G. (2013). Efecto de la inclusión de diferentes fuentes de lípidos sobre parámetros productivos y omposición proximal del filete de tilapia nilótica–Oreochromis niloticus–cultivada en jaulas flotantes. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 60(II), 100-111.spa
dcterms.referencesMullon, C., Mittaine, J., Thébaud, O., Péron, G., Merino, G., & Barange, M. (2009). Modeling the global fishmeal and fish oil markets. Natural Resource Modeling, 22(4), 564-609.spa
dcterms.referencesMurray, D., Hager, H., Tocher, D., & Kainz, M. (2014). Effect of partial replacement of dietary fish meal and oil by pumpkin kernel cake and rapeseed oil on fatty acid composition and metabolism in Arctic charr (Salvelinus alpinus). Aquaculture, 431, 85-91.spa
dcterms.referencesMustapha, M., & Atolagbe, S. (2018). Tolerance level of different life stages of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) to low pH and acidified waters. The Journal of Basic and Applied Zoology, 79(1), 1-6.spa
dcterms.referencesNagel, F., von Danwitz, A., Tusche, K., Kroeckel, S., van Bussel, C., Schlachter, M., ... & Schulz, C. (2012). Nutritional evaluation of rapeseed protein isolate as fish meal substitute for juvenile turbot (Psetta maxima L.)—Impact on growth performance, body composition, nutrient digestibility and blood physiology. Aquaculture, 356, 357-364.spa
dcterms.referencesNaylor, R., Hardy, R., Bureau, D., Chiu, A., Elliott, M., Farrell, A., ... & Nichols, P. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, 106(36), 15103-15110.spa
dcterms.referencesNg, W., & Romano, N. (2013). A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture, 5(4), 220-254.spa
dcterms.referencesNg, W., & Wang, Y. (2011). Inclusion of crude palm oil in the broodstock diets of female Nile tilapia, Oreochromis niloticus, resulted in enhanced reproductive performance compared to broodfish fed diets with added fish oil or linseed oil. Aquaculture, 314(1-4), 122-131.spa
dcterms.referencesNg, W., Chong, C., Wang, Y., & Romano, N. (2013). Effects of dietary fish and vegetable oils on the growth, tissue fatty acid composition, oxidative stability and vitamin E content of red hybrid tilapia and efficacy of using fish oil finishing diets. Aquaculture, 372, 97-110.spa
dcterms.referencesNguyen, N., Ponzoni, R., Yee, H., Bakar, K., Hamzah, A., & Khaw, H. (2010). Quantitative genetic basis of fatty acid composition in the GIFT strain of Nile tilapia (Oreochromis niloticus) selected for high growth. Aquaculture, 309(1-4), 66-74.spa
dcterms.referencesNiño, H., & Aguilar, X. (2014). Crecimiento y conversión alimenticia de tilapia roja “Oreochromis sp” con diferentes frecuencias de alimentación. Innovando en la U, 6, 59-66.spa
dcterms.referencesNorambuena, F., Morais, S., Estévez, A., Bell, J., Tocher, D., Navarro, J., ... & Duncan, N. (2013). Dietary modulation of arachidonic acid metabolism in senegalese sole (Solea Senegalensis) broodstock reared in captivity. Aquaculture, 372, 80-88.spa
dcterms.referencesO’Neal, C., & Kohler, C. (2008). Effect of replacing menhaden oil with catfish oil on the fatty acid composition of juvenile channel catfish, Ictalurus punctatus. Journal of the World Aquaculture Society, 39(1), 62-71.spa
dcterms.referencesOboh, A., Betancor, M., Tocher, D., & Monroig, O. (2016). Biosynthesis of long-chain polyunsaturated fatty acids in the African catfish Clarias gariepinus: Molecular cloning and functional characterisation of fatty acyl desaturase (fads2) and elongase (elovl2) cDNAs7. Aquaculture, 462, 70-79.spa
dcterms.referencesOgello, E., Musa, S., Aura, C., Abwao, J., & Munguti, J. (2014). An appraisal of the feasibility of tilapia production in ponds using biofloc technology: A review. International Journal of Aquatic Science, 5(1), 21-39.spa
dcterms.referencesOkamura, H., & Semba, Y. (2009). A novel statistical method for validating the periodicity of vertebral growth band formation in elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences, 66(5), 771-780.spa
dcterms.referencesOrlando, T., Fontes, T., Paulino, R., Murgas, L., López, J., & Rosa, P. (2020). Effects of the dietary linoleic acid to linolenic acid ratio for Nile tilapia (Oreochromis niloticus) breeding females. Aquaculture, 516, 734625.spa
dcterms.referencesOrnelas, R., Aguilar, B., Hernández, A., Hinojosa, J., & Godínez, D. (2017). Un enfoque sustentable al cultivo de tilapia. Acta universitaria, 27(5), 19-25.spa
dcterms.referencesOwatari, M., Jesus, G., de Melo, M., Lapa, K., Martins, M., & Mouriño, J. (2018). Synthetic fibre as biological support in freshwater recirculating aquaculture systems (RAS). Aquacultural engineering, 82, 56-62.spa
dcterms.referencesPoot, G., Gasca, E., & Olvera, M. (2012). Producción de tilapia nilótica (Oreochromis niloticus L.) utilizando hojas de chaya (Cnidoscolus chayamansa McVaugh) como sustituto parcial del alimento balanceado. Latin american journal of aquatic research, 40(4), 835-846.spa
dcterms.referencesPrieto, M. (2014). Metabolismo energetico em híbrido de Pseudoplatystoma reticulatum x Leiarius marmoratus (Doctoral dissertation, Universidad federal de Lavras).spa
dcterms.referencesRadwan, I. (2010). Case study on developing financially viable Recirculation Aquaculture Systems (RAS) for tilapia production in Egypt: technology transfer from the Netherlands. Aquaculture Compendium, (118016).spa
dcterms.referencesRathore, S., Yusufzai, S., Chandravanshi, A., Chandravanshi, P., & Jaiswal, K. (2017). Review on tilapia: nutrition, feeds, and feed management. Editorial Board, 6(8), 115-136.spa
dcterms.referencesRebolé, A., Velasco, S., Rodríguez, M., Treviño, J., Alzueta, C., Tejedor, J., & Ortiz, L. (2015). Nutrient content in the muscle and skin of fillets from farmed rainbow trout (Oncorhynchus mykiss). Food chemistry, 174, 614-620.spa
dcterms.referencesRibeiro, P., Logato, P., Paula, D., Costa, A., Murgas, L., & Freitas, R. (2008). Efeito do uso de óleo na dieta sobre a lipogênese e o perfil lipídico de tilápias-do-nilo. Revista Brasileira de Zootecnia, 37(8), 1331-1337.spa
dcterms.referencesRichard, N., Kaushik, S., Larroquet, L., Panserat, S., & Corraze, G. (2006a). Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). British journal of Nutrition, 96(2), 299-309.spa
dcterms.referencesRiche, M., & Garling, D. (2003). Feeding tilapia in intensive recirculating systems. NCRAC Extension Fact Sheets. 6. http://lib.dr.iastate.edu/ncrac_factsheets/6spa
dcterms.referencesRocha, C., Pascuas, A., & Perez, A. P. (2018). Respuestas hematológicas, hepáticas y esplénicas al estrés de tilapias en jaulas y libres en el embalse de Betania, Colombia. Revista AquaTIC, (49), 8-20.spa
dcterms.referencesRoeger, J., Foale, S., & Sheaves, M. (2016). When ‘fishing down the food chain’results in improved food security: evidence from a small pelagic fishery in Solomon Islands. Fisheries Research, 174, 250-259.spa
dcterms.referencesRomana, M., Larona, M., & Catacutan, M. (2013). On-farm feed management practices for Nile tilapia (Oreochromis niloticus) in the Philippines. On-farm feeding and feed management in aquaculture. FAO Fisheries and Aquaculture, Rome, Technical Paper, 583, 131-158.spa
dcterms.referencesSaavedra, M. (2006). Texto de Asignatura Producción Agropecuaria y Acuícola. Carrera Ingeniería Industrial. Departamento de Tecnología y Arquitectura. Facultad de Ciencia, Tecnología y Ambiente. Universidad Centroamericana. Managua, Nicaragua.spa
dcterms.referencesSavonitto, G., Barkan, R., Harpaz, S., Neori, A., Chernova, H., Terlizzi, A., & Guttman, L. (2021). Fishmeal replacement by periphyton reduces the fish in fish out ratio and alimentation cost in gilthead sea bream Sparus aurata. Scientific Reports, 11(1), 1-10.spa
dcterms.referencesSchreck, C., & Moyle, P. (1990). Methods for fish biology, 1- 648.spa
dcterms.referencesSchulz, C., Knaus, U., Wirth, M., & Rennert, B. (2005). Effects of varying dietary fatty acid profile on growth performance, fatty acid, body and tissue composition of juvenile pike perch (Sander lucioperca). Aquaculture Nutrition, 11(6), 403-413.spa
dcterms.referencesSciberras, M., Hiddink, J., Jennings, S., Szostek, C., Hughes, K.., Kneafsey, B., ... & Kaiser, M. (2018). Response of benthic fauna to experimental bottom fishing: A global meta‐analysis. Fish and Fisheries, 19(4), 698-715.spa
dcterms.referencesShepherd, C., & Jackson, A. (2013). Global fishmeal and fish‐oil supply: inputs, outputs and marketsa. Journal of Fish Biology, 1-21.spa
dcterms.referencesShepherd, C., Monroig, O., & Tocher, D. (2017). Future availability of raw materials for salmon feeds and supply chain implications: The case of Scottish farmed salmon. Aquaculture, 467, 49-62.spa
dcterms.referencesShepherd, J., & Bachis, E. (2014). Changing supply and demand for fish oil. Aquaculture Economics & Management, 18(4), 395-416.spa
dcterms.referencesSoto, G. (2018). Sistema integral de automatización para sistemas de producción intensiva acuícola.spa
dcterms.referencesSprague, M., Dick, J., & Tocher, D. (2016). Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Scientific reports, 6(1), 1-9.spa
dcterms.referencesSteffens, W., Wirth, M., & Rennert, B. (1995). Effects of adding various oils to the diet on growth, feed conversion and chemical composition of carp (Cyprinus carpio). Archives of Animal Nutrition, 47(4), 381-389.spa
dcterms.referencesStickney, R. (2017). Tilapia feeding habits and environmental tolerances. Tilapia in intensive co-culture. John Wiley & Sons, New Jersey, 25-35.spa
dcterms.referencesTacon, A. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture, 28(1), 43-56.spa
dcterms.referencesTacon, A., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158.spa
dcterms.referencesTacon, A., Hasan, M., & Metian, M. (2011). Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture technical paper, 564, 71-87.spa
dcterms.referencesTeoh, C., & Ng, W. (2016). The implications of substituting dietary fish oil with vegetable oils on the growth performance, fillet fatty acid profile and modulation of the fatty acid elongase, desaturase and oxidation activities of red hybrid tilapia, Oreochromis sp. Aquaculture, 465, 311-322.spa
dcterms.referencesTeoh, C., Turchini, G., & Ng, W. (2011). Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend. Aquaculture, 312(1-4), 126-136.spa
dcterms.referencesThomas, A., Mangubhai, S., Fox, M., Meo, S., Miller, K., Naisilisili, W., ... & Waqairatu, S. (2021). Why they must be counted: Significant contributions of Fijian women fishers to food security and livelihoods. Ocean & Coastal Management, 205, 105571.spa
dcterms.referencesTocher, D. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in fisheries science, 11(2), 107-184.spa
dcterms.referencesTocher, D., Agaba, M., Hastings, N., Bell, J., Dick, J., & Teale, A. (2001). Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 24(4), 309-320.spa
dcterms.referencesTorrecillas, S., Robaina, L., Caballero, M. J., Montero, D., Calandra, G., Mompel, D., ... & Izquierdo, M. S. (2017a). Combined replacement of fishmeal and fish oil in European sea bass (Dicentrarchus labrax): Production performance, tissue composition and liver morphology. Aquaculture, 474, 101-112.spa
dcterms.referencesTorrecillas, S., Mompel, D., Caballero, M., Montero, D., Merrifield, D., Rodiles, A., ... & Izquierdo, M. (2017b). Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture, 468, 386-398.spa
dcterms.referencesTorres, H. (2019). Evaluación de la inclusión de fuentes proteicas vegetales a la harina de pescado y su efecto en parametros de crecimiento y eficiencia nutritiva de la tilapia roja (Oreochromis sp.) (Doctoral dissertation).spa
dcterms.referencesTorres, R., Gonzalez, P., & Pena, S. (2010). Anatomical, histological and ultraestructural description of the gills and liver of the Tilapia (Oreochromis niloticus). International Journal of Morphology, 28(3), 703-712.spa
dcterms.referencesTorstensen, B., Lie, Ø., & Frøyland, L. (2000). Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.) effects of capelin oil, palm oil, and oleic acid‐enriched sunflower oil as dietary lipid sources. Lipids, 35(6), 653-664.spa
dcterms.referencesToyes, E., Parrish, C., Viana, M., Carreón, L., Magallón, P., & Magallón, F. (2020). Replacement of fish oil with camelina (Camelina sativa) oil in diets for juvenile tilapia (var. GIFT Oreochromis niloticus) and its effect on growth, feed utilization and muscle lipid composition. Aquaculture, 735177.spa
dcterms.referencesTriana, P., Gutierrez, M., & Eslava, P. (2013). Rendimiento productivo e hígado graso en tilapia híbrida (Oreochromis spp): Influencia de dos fuentes de lípidos. Orinoquia, 17(2), 183-196.spa
dcterms.referencesTu, C., Chen, K., & Hsieh, C. (2018). Fishing and temperature effects on the size structure of exploited fish stocks. Scientific reports, 8(1), 1-10.spa
dcterms.referencesTurchini, G., Torstensen, B., & Ng, W. (2009). Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1(1), 10-57.spa
dcterms.referencesTurchini, G., Trushenski, J., & Glencross, B. (2019). Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North American Journal of Aquaculture, 81(1), 13-39.spa
dcterms.referencesValenzuela, R., Morales, J., Sanhueza, J., & Valenzuela, A. (2013). Ácido docosahexaenoico (DHA), un ácido graso esencial a nivel cerebral. Revista chilena de nutrición, 40(4), 383-390.spa
dcterms.referencesVázquez, I. (2020). A fine kettle of fish: the fishing industry and environmental impacts. Current Opinion in Environmental Science & Health, 13, 1-5.spa
dcterms.referencesVega, F., Del CortésLM, C., Zúñiga, L., Jaime, C., & Galindo, L. (2010). Small-scale culture of tilapia (Oreochromis niloticus), alimentary alternative for rural and peri-urban families in Mexico. REDVET-Rev Electrón Vet, 11, 1-15.spa
dcterms.referencesVicente, I., & Fonseca, C. (2013). Impact of introduced Nile tilapia (Oreochromis niloticus) on non-native aquatic ecosystems. Pakistan Journal of Biological Sciences, 16(3), 121-126.spa
dcterms.referencesVisentainer, J., de Souza, N., Makoto, M., Hayashi, C., & Franco, M. (2005). Influence of diets enriched with flaxseed oil on the α-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chemistry, 90(4), 557-560.spa
dcterms.referencesVoet, D., & Voet, J. (2004). Biochemistry. Hoboken. John Wiley & Sons, 1- 591.spa
dcterms.referencesWaitzberg, D., & Garla, P. (2014). Contribution of omega-3 fatty acids for memory and cognitive function. Nutricion hospitalaria,30 (3), 467-477spa
dcterms.referencesWang, M., & Lu, M. (2016). Tilapia polyculture: a global review. Aquaculture research, 47(8), 2363-2374.spa
dcterms.referencesWebster, C., & Lim, C. (2006). Tilapia: biology, culture, and nutrition. CRC Press.spa
dcterms.referencesWongbusarakum, S., Gorstein, M., Pomeroy, R., Anderson, C. L., & Mawyer, A. (2021). Mobilizing for change: Assessing Social adaptive capacity in Micronesian fishing communities. Marine Policy, 129, 104508.spa
dcterms.referencesWorm, B., & Branch, T. A. (2012). The future of fish. Trends in ecology & evolution, 27(11), 594-599.spa
dcterms.referencesWu, D., Zhou, L., Gao, M., Wang, M., Wang, B., He, J., ... & Pu, Q. (2018). Effects of stickwater hydrolysates on growth performance for yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 488, 161-173.spa
dcterms.referencesXie, S., Zheng, K., Chen, J., Zhang, Z., Zhu, X., & Yang, Y. (2011). Effect of water temperature on energy budget of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 17(3), e683-e690.spa
dcterms.referencesXu, H., Ai, Q., Mai, K., Xu, W., Wang, J., Ma, H., ... & Liufu, Z. (2010). Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture, 307(1-2), 75-82.spa
dcterms.referencesXu, H., Cao, L., Wei, Y., Zhang, Y., & Liang, M. (2018). Lipid contents in farmed fish are influenced by dietary DHA/EPA ratio: a study with the marine flatfish, tongue sole (Cynoglossus semilaevis). Aquaculture, 485, 183-190.spa
dcterms.referencesYupanqui, I. (2016). Nutrigenómica de la tilapia, ("Oreochromis niloticus") alimentada con diferentes fuentes de ácidos grasos (Doctoral dissertation, Universidad Complutense de Madrid).spa
dcterms.referencesZambrano, D. (2013). Evaluación de tres métodos de alimentación mediante la utilización de Azolla anabaena y alimento balanceado en el rendimiento del cultivo de tilapia Oreochromis niloticus en la fase de iniciación-levante como alternativa de producción en la granja integral demostrativa de la Secretaria de Agricultura de Linares. Informe final de Trabajo de Grado. Universidad de Nariño, Pasto, Colombia.spa
dcterms.referencesZhang, C., Chen, Y., Xu, B., Xue, Y., & Ren, Y. (2018). Evaluating fishing effects on the stability of fish communities using a size-spectrum model. Fisheries Research, 197, 123-130.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Méndez Páez Ana Paola.pdf
Tamaño:
1.72 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Autorización de Publicación.pdf
Tamaño:
981.07 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones