Publicación: Métodos analíticos aplicados en la cuantificación de la biodegradación de hidrocarburos totales de petróleo
dc.contributor.advisor | Noriega Cabria, Dora Helena | |
dc.contributor.author | Pizarro Restrepo, Christian | |
dc.date.accessioned | 2021-10-11T17:28:16Z | |
dc.date.available | 2021-10-11T17:28:16Z | |
dc.date.issued | 2021-10-08 | |
dc.description.abstract | La presente monografía tiene como objetivo realizar una recopilación de los diferentes métodos analíticos aplicados en la cuantificación de la biodegradación de hidrocarburos totales de petróleo mediante búsqueda exhaustiva de información para desarrollar una fuente bibliográfica de consulta. Si bien Numerosos artículos de revisión científica han cubierto diversos factores que influyen en la velocidad de biodegradación del petróleo (Hassanshahian et al., 2020; Hazen et al., 2016; Prince et al., 2017) también es cierto que, la efectividad de la biodegradación se mide por cuantificación de las cantidades de HTPs en matrices sometidas al efecto de microorganismos. Uno de los procedimientos para cuantificación de los HTPs en suelo consiste en extraer los hidrocarburos con Soxhlet utilizando tricloroetano como solvente de extracción, y luego determinar la cantidad de HTPs gravimétricamente, tal como ha sido implementado por Acuña, Pucci, y otros investigadores. Otro método altamente eficaz para análisis de HTPs es la cromatografía de gases acoplada a detector de ionización por llama (GC-FID, por sus siglas en inglés). La técnica GC-FID se prefiere para aplicaciones de laboratorio porque proporciona buena selectividad y sensibilidad, y está reconocido por la Environmental Protection Agency (EPA), la British Standard Institution (BSI) y la International Organization for Standardization (ISO). GC-FID se utiliza para aplicaciones cuantitativas y cualitativas, incluido el cribado de muestras ambientales, desentrañando el tipo y la identidad del aceite fresco a ligeramente degradado en muestras ambientales para el reconocimiento de patrones de hidrocarburos de petróleo y caracterizar y resolver el perfil de mezclas complejas no resueltas en sedimentos contaminados con petróleo. Otra de las herramientas analíticas utilizadas para la cuantificación de la biodegradación de hidrocarburos totales de petróleo es la espectroscopia infrarroja (IR, por sus siglas en inglés). Este método aprovecha los espectros de las vibraciones de estiramiento y flexión asociadas con una molécula cuando absorbe energía en la región IR del espectro electromagnético para la elucidación de propiedades. se implemento este método para cuantificar HTPs en procesos de biodegradación de hidrocarburos de petróleo en sedimentos marinos, en particular, mediante espectroscopia infrarroja con transformada de Fourier (FT-IR). Si bien ha sido reportado que mediante espectroscopia Raman (RS) es posible detectar y cuantificar algunos de los hidrocarburos presentes en el petróleo, al momento de realizar el presente manuscrito no se han encontrado aún estudios asociados con procesos de biorremediación donde se utilicen técnicas basadas RS, sin embargo, todavía se continua en etapa de búsqueda bibliográfica. Existen pocas fuentes bibliográficas que compilen la diversidad de métodos analíticos aplicados en la cuantificación de la biodegradación de hidrocarburos. Ya que es un área importante que aún sigue en crecimiento, investigadores y científicos podrían facilitar su trabajo contando con un documento de apoyo que contenga información sobre las técnicas analíticas para los propósitos mencionados, por ende, en este documento se propone el desarrollo de una monografía que proporcione información actualizada sobre las técnicas analíticas para la cuantificación de la biodegradación de los contaminantes de hidrocarburos de petróleo hacia la mejor comprensión de los desafíos de biorremediación. El presente trabajo se llevará a cabo mediante una ardua búsqueda bibliográfica de artículos de revisión y de investigación que aporten información importante referente a los métodos analíticos de cuantificación de la biodegradación de hidrocarburos, el cual servirá para que equipos de trabajos se fundamenten y empleen estos métodos de acorde a las características que se presenten. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico(a) | spa |
dc.description.modality | Monografía | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN…………………………………………………………………………………………….7 | spa |
dc.description.tableofcontents | 2. LAS MATRICES SUELO Y AGUA…………………………………………………………………….9 | spa |
dc.description.tableofcontents | 2.1. EL SUELO………………………………………………………………………………………………………9 | spa |
dc.description.tableofcontents | 2.2. EL AGUA…………………………………………………………………………………………………..12 | spa |
dc.description.tableofcontents | 2.2.1. Contaminación de agua por petróleo ……………………………………………………………….13 | spa |
dc.description.tableofcontents | 3. EL PETRÓLEO…………………………………………………………………………………………..16 | spa |
dc.description.tableofcontents | 3.1. COMPOSICIÓN GENERAL DEL PETRÓLEO CRUDO……………………………………17 | spa |
dc.description.tableofcontents | 3.1.1. Grupos de hidrocarburos……………………………………………………………………………17 | spa |
dc.description.tableofcontents | 3.1.1.1. Las parafinas……………………………………………………………………………………………..17 | spa |
dc.description.tableofcontents | 3.1.1.2. Naftenos ……………………………………………………………………………………………19 | spa |
dc.description.tableofcontents | 3.1.1.3. Aromáticos………………………………………………………………………………………………20 | spa |
dc.description.tableofcontents | 3.1.2. Hidrocarburos complejos…………………………………………………………………………..22 | spa |
dc.description.tableofcontents | 3.1.3. Compuestos heteroatómicos o no hidrocarburos………………………………………………23 | spa |
dc.description.tableofcontents | 4. CONTAMINACIÓN DEL AMBIENTE POR PETRÓLEO………………………………….26 | spa |
dc.description.tableofcontents | 5. BIODEGRADACIÓN DE PETRÓLEO…………………………………………………………..29 | spa |
dc.description.tableofcontents | 5.1. FACTORES QUE AFECTAN LA BIODEGRADACIÓN…………………………………….32 | spa |
dc.description.tableofcontents | 5.1.1. La presencia de oxígeno……………………………………………………………………………32 | spa |
dc.description.tableofcontents | 5.1.2. Concentración de nutrientes …………………………………………………………………………33 | spa |
dc.description.tableofcontents | 5.1.3. Diversidad microbiana…………………………………………………………………………………..34 | spa |
dc.description.tableofcontents | 5.1.4. Temperatura……………………………………………………………………………………………..34 | spa |
dc.description.tableofcontents | 6. TÉCNICAS ANALÍTICAS PARA LA CUANTIFICACIÓN DE LA BIORREMEDIACIÓN DE HIDROCARBUROS DE PETRÓLEO…………………………………..35 | spa |
dc.description.tableofcontents | 6.1. MÉTODOS CROMATOGRÁFICOS………………………………………………………………38 | spa |
dc.description.tableofcontents | 6.1.1. Cromatografía de gases………………………………………………………………………………..40 | spa |
dc.description.tableofcontents | 6.1.1.1. Principios de la cromatografía de gases……………………………………………………………41 | spa |
dc.description.tableofcontents | 1.1.1.1. Volumen de retención………..…………………………………………………………………….41 | spa |
dc.description.tableofcontents | 1.1.1.2. Cromatogramas…………………………………………………………………………………………….43 | spa |
dc.description.tableofcontents | 1.1.2. Cromatógrafos de gases……………………………………………………………………………..44 | spa |
dc.description.tableofcontents | 1.1.2.1. Gas portador………………………………………………………………………………………………..45 | spa |
dc.description.tableofcontents | 1.1.2.2. Sistema de inyección …………………………………………………………………………………….46 | spa |
dc.description.tableofcontents | 1.1.2.3. Configuración de la columna …………………………………………………………………………46 | spa |
dc.description.tableofcontents | 1.1.3. Sistemas de detección………………………………………………………………………………47 | spa |
dc.description.tableofcontents | 1.1.3.1. Detector de ionización de llama……………………………………………………………………47 | spa |
dc.description.tableofcontents | 1.1.3.2. Cromatografía de gases/espectrómetro de masas ………………………………………….48 | spa |
dc.description.tableofcontents | 1.1.4. Cromatografía de gases multidimensional ……………………………………………………50 | spa |
dc.description.tableofcontents | 1.2. CROMATOGRAFÍA DE LÍQUIDOS DE ALTA EFICACIA ………………………………52 | spa |
dc.description.tableofcontents | 1.2.1. Principios generales de la cromatografía en fase líquida.......………………………………53 | spa |
dc.description.tableofcontents | 1.2.1.1. Adsorción………………………………………………………………………………………………….54 | spa |
dc.description.tableofcontents | 1.2.1.2. Partición………………………………………………………………………………………………….54 | spa |
dc.description.tableofcontents | 1.2.1.3. Intercambio iónico……………………………………………………………………………………...55 | spa |
dc.description.tableofcontents | 1.2.1.4. Exclusión por tamaño……………………………………………………………………………….56 | spa |
dc.description.tableofcontents | 1.2.1.5. Afinidad…………………………………………………………………………………………………..56 | spa |
dc.description.tableofcontents | 1.2.2. Fase estacionaria y fase móvil……………………………………………………………………..57 | spa |
dc.description.tableofcontents | 1.2.3. Componentes de un sistema HPLC ……………………………………………………………….59 | spa |
dc.description.tableofcontents | 1.3. CUANTIFICACIÓN DE TPH’s POR CROMATOGRAFÍA………………………………..60 | spa |
dc.description.tableofcontents | 1.3.1. GC-FID…………………………………………………………………………………………………….60 | spa |
dc.description.tableofcontents | 1.3.1.1. Degradación microbiana de hidrocarburos de petróleo en una corriente tropical contaminada …………………………………………………………………………………………………….63 | spa |
dc.description.tableofcontents | 1.3.1.2. Biodegradación del hidrocarburo total de petróleo por bacterias heterótrofas aerobias aisladas de las aguas salobres contaminadas con petróleo crudo de Bodo Creek …………………….63 | spa |
dc.description.tableofcontents | 1.3.2. GC-MS……………………………………………………………………………………………………64 | spa |
dc.description.tableofcontents | 1.3.2.1. Biodegradación de un petróleo crudo por tres consorcios microbianos de diferentes orígenes y capacidades metabólicas. ……………………………………………………………………….65 | spa |
dc.description.tableofcontents | 1.3.2.2. Efectos de la bioacumulación y bioestimulación microbianas locales en la biorremediación de hidrocarburos totales de petróleo (TPH) en suelos contaminados con petróleo crudo en base a observaciones de laboratorio y de campo……………………….66 | spa |
dc.description.tableofcontents | 1.3.3. GC multidimensional …………………………………………………………………………………67 | spa |
dc.description.tableofcontents | 1.3.3.1. Caracterización de las capacidades de biodegradación de microfloras ambientales para gasóleo mediante cromatografía de gases bidimensional integral………………………….69 | spa |
dc.description.tableofcontents | 2. MÉTODOS ESPECTROSCÓPICOS………………………………………………………………70 | spa |
dc.description.tableofcontents | 2.1. BASES GENERALES DEL ANÁLISIS CUANTITATIVO MEDIANTE ESPECTROSCOPÍA DE ABSORCIÓN……………………………………………………………………73 | spa |
dc.description.tableofcontents | 2.1.1. Curvas de calibración …………………………………………………………………………………….77 | spa |
dc.description.tableofcontents | 2.2. ESPECTROSCOPÍA ULTRAVIOLETA, VISIBLE Y DE FLUORESCENCIA…………80 | spa |
dc.description.tableofcontents | 2.2.1. Espectroscopía UV-Vis: Principios……………………………………………………………..80 | spa |
dc.description.tableofcontents | 2.2.2. Espectroscopía UV-Vis: Instrumentación……………………………………………………81 | spa |
dc.description.tableofcontents | 2.2.2.1. Fuente de radiación…………………………………………………………………………………..82 | spa |
dc.description.tableofcontents | 2.2.2.2. Monocromador……..………………………………………………………………………………83 | spa |
dc.description.tableofcontents | 2.2.2.3. Detector……………………………………………………………………………………………….84 | spa |
dc.description.tableofcontents | 2.2.2.4. Dispositivo de lectura de datos………………………………………………………………..85 | spa |
dc.description.tableofcontents | 2.2.3. Espectroscopía de fluorescencia………………………………………………………………..86 | spa |
dc.description.tableofcontents | 2.3. ESPECTROSCOPÍA INFRARROJA……………………………………………………………..90 | spa |
dc.description.tableofcontents | 2.3.1. Principios de la espectroscopía IR……………………………………………………………..91 | spa |
dc.description.tableofcontents | 2.3.2. Instrumentación………………………………………………………………………………………..94 | spa |
dc.description.tableofcontents | 2.3.3. Espectroscopía IR – cromatografía ……………………………………………………………….95 | spa |
dc.description.tableofcontents | 2.3.4. Aplicaciones cualitativas……………………………………………………………………………..97 | spa |
dc.description.tableofcontents | 2.3.5. Aplicaciones cuantitativas……………………………………………………………………………98 | spa |
dc.description.tableofcontents | 2.4. ESPECTROSCOPÍA VIS/NIR……………………………………………………………………….100 | spa |
dc.description.tableofcontents | 2.5. CUANTIFICACIÓN DE LA BIODEGRADACIÓN DE TPH’s POR ESPECTROSCOPÍA…………………………………………………………………………………………………101 | spa |
dc.description.tableofcontents | 2.5.1. Espectroscopia infrarroja……………………………………………………………………………101 | spa |
dc.description.tableofcontents | 2.5.1.1. Biorremediación de suelos contaminados con combustibles por inyección múltiple secuencial de microorganismos nativos: procesos a escala de campo en Polonia …………101 | spa |
dc.description.tableofcontents | 2.5.1.2. Inoculantes y biodegradación del petróleo crudo que flota en los sedimentos de pantano…………………………………………………………………………………………………………….102 | spa |
dc.description.tableofcontents | 2.5.2. Espectroscopia VIS/NIR…………………………………………………………………………..104 | spa |
dc.description.tableofcontents | 2.5.2.1. Evaluación de una remediación de bioslurry de sedimentos contaminados con hidrocarburos de petróleo mediante análisis químicos, matemáticos y microscópicos…..104 | spa |
dc.description.tableofcontents | 3. MÉTODOS GRAVIMÉTRICOS……………………………………………………………………105 | spa |
dc.description.tableofcontents | 3.1. PRINCIPIOS DEL ANÁLISIS GRAVIMÉTRICO……………………………………………105 | spa |
dc.description.tableofcontents | 3.1.1. Métodos físicos de separación y cálculos………………………………………………………..106 | spa |
dc.description.tableofcontents | 3.1.2. Alteración química y separación del analito …………………………………………………..107 | spa |
dc.description.tableofcontents | 3.2. INSTRUMENTACIÓN………………………………………………………………………………..108 | spa |
dc.description.tableofcontents | 3.3. ANÁLISIS GRAVIMÉTRICO DE TPH’s…………………………………………………………111 | spa |
dc.description.tableofcontents | 3.4. CUANTIFICACIÓN DE LA BIODEGRADACIÓN DE TPH’s POR ANÁLISIS GRAVIMÉTRICO…………………………………………………………………………………………………112 | spa |
dc.description.tableofcontents | 3.4.1. Degradación bacteriana del petróleo crudo por gravimétrico………………………….113 | spa |
dc.description.tableofcontents | 3.4.2. Potencial de biorremediación in situ de un consorcio bacteriano de degradación de lodos aceitosos……………………………………………………………………………………………………114 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES………………………………………………….….…………………………………….116 | spa |
dc.description.tableofcontents | 8. REFERENCIAS BIBLIOGRAFICAS……………………………….…………………………………..119 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4636 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Química | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Quantification | eng |
dc.subject.keywords | Biodegradation | eng |
dc.subject.keywords | Hydrocarbons | eng |
dc.subject.keywords | Analytical Methods | eng |
dc.subject.keywords | Chromatography | eng |
dc.subject.keywords | Gravimetry | eng |
dc.subject.proposal | Cuantificación | spa |
dc.subject.proposal | Biodegradación | spa |
dc.subject.proposal | Hidrocarburos | spa |
dc.subject.proposal | Métodos analíticos | spa |
dc.subject.proposal | Cromatografía | spa |
dc.subject.proposal | Gravimetría | spa |
dc.title | Métodos analíticos aplicados en la cuantificación de la biodegradación de hidrocarburos totales de petróleo | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abed, R. M., Al-Kindi, S., & Al-Kharusi, S. (2015). Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microbial ecology, 69(1), 95-105. | spa |
dcterms.references | Adebusoye, S. A., Ilori, M. O., Amund, O. O., Teniola, O. D., & Olatope, S. O. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World journal of Microbiology and Biotechnology, 23(8), 1149-1159. | spa |
dcterms.references | Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2017a). Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review. Journal of Chemistry, 2017. | spa |
dcterms.references | Agency (USEPA), U. S. E. P. (1978). Test Method for Evaluating Total Recoverable Petroleum Hydrocarbon, Method 418.1 (Spectrophotometric, Infrared). Government Printing Office Washington, DC, USA. | spa |
dcterms.references | Ahmed, R., Sinnathambi, C. M., & Eldmerdash, U. (2015). N-hexane, methyl ethyl ketone and chloroform solvents for oil recovery from refinery waste. Applied Mechanics and Materials, 699, 666-671. | spa |
dcterms.references | Almeida, R., Mucha, A. P., Teixeira, C., Bordalo, A. A., & Almeida, C. M. R. (2013). Biodegradation of petroleum hydrocarbons in estuarine sediments: Metal influence. Biodegradation, 24(1), 111-123 | spa |
dcterms.references | Alvaro, C. E. S., Arocena, L. A., Martínez, M. Á., & Nudelman, N. E. S. (2017). Biodegradación aerobia de fracciones de hidrocarburos provenientes de la actividad petrolera en un suelo de la región Patagonia Norte, Argentina. Revista internacional de contaminación ambiental, 33(2), 247-257. | spa |
dcterms.references | Andreolli, M., Lampis, S., Brignoli, P., & Vallini, G. (2015). Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study. Journal of environmental management, 153, 121-131. | spa |
dcterms.references | Aparicio-Ruiz, R., García-González, D. L., Morales, M. T., Lobo-Prieto, A., & Romero, I. (2018). Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS. Talanta, 187, 133-141. | spa |
dcterms.references | Chakraborty, S., Weindorf, D. C., Li, B., Aldabaa, A. A. A., Ghosh, R. K., Paul, S., & Ali, M. N. (2015). Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils. Science of the Total Environment, 514, 399-408. | spa |
dcterms.references | Chaudhuri, U. R. (2016). Fundamentals of petroleum and petrochemical engineering. Crc Press. | spa |
dcterms.references | Chen, F., Li, X., Zhu, Q., Ma, J., Hou, H., & Zhang, S. (2019). Bioremediation of petroleum-contaminated soil enhanced by aged refuse. Chemosphere, 222, 98-105. | spa |
dcterms.references | Chikere, C. B., Mordi, I. J., Chikere, B. O., Selvarajan, R., Ashafa, T. O., & Obieze, C. C. (2019). Comparative metagenomics and functional profiling of crude oil-polluted soils in Bodo West Community, Ogoni, with other sites of varying pollution history. Annals of Microbiology, 69(5), 495-513. | spa |
dcterms.references | Chikere, C. B., Okpokwasili, G. C., & Ichiakor, O. (2009). Characterization of hydrocarbon utilizing bacteria in tropical marine sediments. African Journal of Biotechnology, 8(11). | spa |
dcterms.references | Chithra, S., & Shenpagam, H. N. (2014). Biodegradation of crude oil by gravimetric analysis. Int J Adv Tech in Eng Science, 2(11), 372-376. | spa |
dcterms.references | Coleman, D. C., Callaham, M. A., & Crossley Jr, D. A. (2017). Fundamentals of soil ecology. Academic press. | spa |
dcterms.references | Colwell, R. R., Walker, J. D., & Cooney, J. J. (1977). Ecological Aspects of Microbial Degradation of Petroleum in the Marine Environment. CRC Critical Reviews in Microbiology, 5(4), 423-445. https://doi.org/10.3109/10408417709102813 | spa |
dcterms.references | Contaminación del agua por petróleo. (s. f.). Agua.org.mx. Recuperado 10 de agosto de 2019, de https://agua.org.mx/biblioteca/contaminacion-del-agua-por-petroleo/ | spa |
dcterms.references | Coulon, F., McKew, B. A., Osborn, A. M., McGenity, T. J., & Timmis, K. N. (2007). Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environmental Microbiology, 9(1), 177-186. | spa |
dcterms.references | Daling, P. S., Faksness, L.-G., Hansen, A. B., & Stout, S. A. (2002). Improved and standardized methodology for oil spill fingerprinting. Environmental Forensics, 3(3-4), 263-278. | spa |
dcterms.references | Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource technology, 98(7), 1339-1345. | spa |
dcterms.references | Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology research international, 2011. | spa |
dcterms.references | Douglas, G. S., McCarthy, K. J., Dahlen, D. T., Seavey, J. A., Steinhauer, W. G., Prince, R. C., & Elmendorf, D. L. (1992). The use of hydrocarbon analyses for environmental assessment and remediation. Soil and Sediment Contamination, 1(3), 197-216. | spa |
dcterms.references | Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M., & Coulon, F. (2018). Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Science of the Total Environment, 616, 147-155. | spa |
dcterms.references | EPA. (1996a). Method 4030. Soil screening for petroleum hydrocarbons by Immunoassay. Government Printing Office Washington, DC. | spa |
dcterms.references | EPA, U. (1996b). Method 8015B: Nonhalogenated Organics Using GC/FID. United States Environmental Protection Agency, Research Triangle Park, North Carolina http://www. caslab. com/EPA-Methods/PDF/8015b. pdf. | spa |
dcterms.references | EPA, U. (1999). Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. Environmental Protection Agency Washington. | spa |
dcterms.references | Essington, M. E. (2004). Soil Salinity and Sodicity. Soil and Water Chemistry An Integrative Approach. CRC Press, Boca Raton, FL, 499-521. | spa |
dcterms.references | Eyvazi, M. J., & Zytner, R. G. (2009). A correlation to estimate the bioventing degradation rate constant. Bioremediation Journal, 13(3), 141-153. | spa |
dcterms.references | Festa, S., Coppotelli, B. M., & Morelli, I. S. (2016). Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: Impact on the bacterial community and biodegradation. Applied Soil Ecology, 98, 8-19. | spa |
dcterms.references | Frysinger, G. S., Gaines, R. B., Xu, L., & Reddy, C. M. (2003). Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environmental science & technology, 37(8), 1653-1662. | spa |
dcterms.references | Gkorezis, P., Daghio, M., Franzetti, A., Van Hamme, J. D., Sillen, W., & Vangronsveld, J. (2016). The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective. Frontiers in microbiology, 7, 1836. | spa |
dcterms.references | Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197. | spa |
dcterms.references | Grishchenkov, V. G., Townsend, R. T., McDonald, T. J., Autenrieth, R. L., Bonner, J. S., & Boronin, A. M. (2000). Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochemistry, 35(9), 889-896. | spa |
dcterms.references | Harvey, D. (2000). Modern analytical chemistry. McGraw-Hill. | spa |
dcterms.references | Hassanshahian, M., Amirinejad, N., & Behzadi, M. A. (2020). Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. Journal of Environmental Health Science and Engineering, 18(2), 1415-1435. | spa |
dcterms.references | Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., & Silver, P. A. (2015). Better together: Engineering and application of microbial symbioses. Current opinion in biotechnology, 36, 40-49. | spa |
dcterms.references | Hazen, T. C., Prince, R. C., & Mahmoudi, N. (2016). Marine oil biodegradation. ACS Publications. | spa |
dcterms.references | Hillel, D. (2013). Fundamentals of soil physics. Academic press. | spa |
dcterms.references | Holliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W., Schwarzenbach, R. P., & Vazquez, F. (1997). Contaminated environments in the subsurface and bioremediation: Organic contaminants. FEMS Microbiology Reviews, 20(3-4), 517-523. | spa |
dcterms.references | Ichor, T., Okerentugba, P. O., & Okpokwasili, G. C. (2014). Biodegradation of total petroleum hydrocarbon by aerobic heterotrophic bacteria isolated from crude oil contaminated brackish waters of bodo creek. Journal of Bioremediation & Biodegredation, 5(5), 1. | spa |
dcterms.references | Iskander, M. F. (2013). Electromagnetic fields and waves. Waveland Press. | spa |
dcterms.references | ISO/TC 190/SC 3. (2007a). ISO 15009:2002, Soil quality—Gas chromatographic determination of the content of volatile aromatic hydrocarbons, naphthalene and volatile ... Purge-and-trap method with thermal desorption. Multiple. Distributed through American National Standards Institute. | spa |
dcterms.references | ISO/TC 190/SC 3. (2007b). ISO 16703:2004, Soil quality—Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography. Multiple. Distributed through American National Standards Institute. | spa |
dcterms.references | Iwamoto, T., & Nasu, M. (2001). Current bioremediation practice and perspective. Journal of bioscience and bioengineering, 92(1), 1-8. | spa |
dcterms.references | Kenkel, J. (2013). Analytical chemistry for technicians. CRC Press. | spa |
dcterms.references | Khudur, L. S., Shahsavari, E., Aburto-Medina, A., & Ball, A. S. (2018). A review on the bioremediation of petroleum hydrocarbons: Current state of the art. En Microbial Action on Hydrocarbons (pp. 643-667). Springer. | spa |
dcterms.references | Kuppusamy, S., Maddela, N. R., Megharaj, M., & Venkateswarlu, K. (2020). Methodologies for analysis and identification of total petroleum hydrocarbons. En Total Petroleum Hydrocarbons (pp. 29-55). Springer. | spa |
dcterms.references | Kvenvolden, K. A., & Cooper, C. K. (2003). Natural seepage of crude oil into the marine environment. Geo-Marine Letters, 23(3-4), 140-146. | spa |
dcterms.references | Latha, R., & Kalaivani, R. (2012). Bacterial degradation of crude oil by gravimetric analysis. Advances in Applied Science Research, 3(5), 2789-2795. | spa |
dcterms.references | Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 54(3), 305-315. | spa |
dcterms.references | \Lebkowska, M., Zborowska, E., Karwowska, E., Miaśkiewicz-Pęska, E., Muszyński, A., Tabernacka, A., Naumczyk, J., & Jęczalik, M. (2011). Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: Field-scale processes in Poland. Ecological Engineering, 37(11), 1895-1900. | spa |
dcterms.references | Marriott, P. J., Massil, T., & Hügel, H. (2004). Molecular structure retention relationships in comprehensive two-dimensional gas chromatography. Journal of Separation Science, 27(15-16), 1273-1284. https://doi.org/10.1002/jssc.200401917 | spa |
dcterms.references | Marriott, P., & Shellie, R. (2002). Principles and applications of comprehensive two-dimensional gas chromatography. TrAC Trends in Analytical Chemistry, 21(9), 573-583. https://doi.org/10.1016/S0165-9936(02)00814-2 | spa |
dcterms.references | Masucci, J. A., & Caldwell, G. W. (2004). Techniques for gas chromatography/mass spectrometry. Modern practice of gas chromatography, 4. | spa |
dcterms.references | McNair, H. M., Miller, J. M., & Snow, N. H. (2019). Basic gas chromatography. John Wiley & Sons. | spa |
dcterms.references | Medina-Bellver, J. I., Marín, P., Delgado, A., Rodríguez-Sánchez, A., Reyes, E., Ramos, J. L., & Marqués, S. (2005). Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environmental microbiology, 7(6), 773-779. | spa |
dcterms.references | Method 625.1: Base/Neutrals and Acids by GC/MS (2016). (2016). 60. | spa |
dcterms.references | Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). In Situ Bioremediation Potential of an Oily Sludge-Degrading Bacterial Consortium. Current Microbiology, 43(5), 328-335. https://doi.org/10.1007/s002840010311 | spa |
dcterms.references | MOHAMMED, Q. Y. (s. f.). Estimation of sediments in crude oil and lubricating oils by extraction method. | spa |
dcterms.references | Mondello, L., Lewis, A. C., & Bartle, K. D. (2002). Multidimensional chromatography. John Wiley & Sons. | spa |
dcterms.references | Mousa, I. E. (2016). Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water. Marine pollution bulletin, 109(1), 356-360. | spa |
dcterms.references | Nielsen, S. S. (2010). Food analysis. Springer. | spa |
dcterms.references | Ojewumi, M. E., Okeniyi, J. O., Ikotun, J. O., Okeniyi, E. T., Ejemen, V. A., & Popoola, A. P. I. (2018). Bioremediation: Data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data in brief, 19, 101-113 | spa |
dcterms.references | Okparanma, R. N., & Mouazen, A. M. (2013a). Determination of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) in soils: A review of spectroscopic and nonspectroscopic techniques. Applied Spectroscopy Reviews, 48(6), 458-486 | spa |
dcterms.references | Penet, S., Vendeuvre, C., Bertoncini, F., Marchal, R., & Monot, F. (2006). Characterisation of biodegradation capacities of environmental microflorae for diesel oil by comprehensive two-dimensional gas chromatography. Biodegradation, 17(6), 577-585. | spa |
dcterms.references | Peterson, G. S., Axler, R. P., Lodge, K. B., Schuldt, J. A., & Crane, J. L. (2002). Evaluation of a fluorometric screening method for predicting total PAH concentrations in contaminated sediments. Environmental monitoring and assessment, 78(2), 111-129. | spa |
dcterms.references | Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., & Nandagopal, S. (2004). Water resources: Agricultural and environmental issues. BioScience, 54(10), 909-918. | spa |
dcterms.references | Pohorille, A., & Pratt, L. R. (2012). Is water the universal solvent for life? Origins of Life and Evolution of Biospheres, 42(5), 405-409. | spa |
dcterms.references | Poster, D. L., Schantz, M. M., Sander, L. C., & Wise, S. A. (2006). Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Analytical and bioanalytical chemistry, 386(4), 859-881. | spa |
dcterms.references | Prince, R. C., Butler, J. D., & Redman, A. D. (2017). The rate of crude oil biodegradation in the sea. Environmental science & technology, 51(3), 1278-1284. | spa |
dcterms.references | Rehbein, H., & Oehlenschlager, J. (2009). Fishery products: Quality, safety and authenticity. John Wiley & Sons. | spa |
dcterms.references | Reuhs, B. L., & Rounds, M. A. (2010). High-performance liquid chromatography. En Food analysis (pp. 499-512). Springer. | spa |
dcterms.references | Rhodes, I. A. L., Olvera, R. Z., & Leon, J. A. (1990). Determination of gasoline range total petroleum hydrocarbon and approximate boiling point distribution in soil by gas chromatography. Lewis Publishers, MI, USA. | spa |
dcterms.references | Risdon, G. C., Pollard, S. J., Brassington, K. J., McEwan, J. N., Paton, G. I., Semple, K. T., & Coulon, F. (2008). Development of an analytical procedure for weathered hydrocarbon contaminated soils within a UK risk-based framework. Analytical chemistry, 80(18), 7090-7096. | spa |
dcterms.references | Saari, E., Perämäki, P., & Jalonen, J. (2007). Effect of sample matrix on the determination of total petroleum hydrocarbons (TPH) in soil by gas chromatography–flame ionization detection. Microchemical journal, 87(2), 113-118. | spa |
dcterms.references | Sabra, W., Dietz, D., Tjahjasari, D., & Zeng, A.-P. (2010). Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Engineering in Life Sciences, 10(5), 407-421. | spa |
dcterms.references | Shahsavari, E., Adetutu, E. M., Anderson, P. A., & Ball, A. S. (2013). Tolerance of selected plant species to petrogenic hydrocarbons and effect of plant rhizosphere on the microbial removal of hydrocarbons in contaminated soil. Water, Air, & Soil Pollution, 224(4), 1495 | spa |
dcterms.references | Shahsavari, E., Adetutu, E. M., Taha, M., & Ball, A. S. (2015). Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. Journal of environmental management, 155, 171-176. | spa |
dcterms.references | Sharma, J. (2019). Advantages and limitations of in situ methods of bioremediation. Recent Adv Biol Med, 5(2019), 10941. | spa |
dcterms.references | Sherma, J. (1972). Principles and techniques. CRC Handbook of Chromatography: General Data and Principles, 2, 1-101. | spa |
dcterms.references | Singh, K. K., Gautam, K., & Vaishya, R. C. (2016). Bioremediation of Petroleum Hydrocarbons from Crude Oil contaminated site by Gravimetric Analysis. International Journal of Scientific Progress & Research, 22(2), 75-78. | spa |
dcterms.references | Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. Cengage learning. | spa |
dcterms.references | Smith, B. C. (2011). Fundamentals of Fourier transform infrared spectroscopy. CRC press. | spa |
dcterms.references | Snape, I., Harvey, P. M., Ferguson, S. H., Rayner, J. L., & Revill, A. T. (2005). Investigation of evaporation and biodegradation of fuel spills in Antarctica I. A chemical approach using GC–FID. Chemosphere, 61(10), 1485-1494 | spa |
dcterms.references | Straube, W. L., Nestler, C. C., Hansen, L. D., Ringleberg, D., Pritchard, P. H., & Jones-Meehan, J. (2003). Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnologica, 23(2-3), 179-196. | spa |
dcterms.references | Strawn, D. G., Bohn, H. L., & O’Connor, G. A. (2019). Soil chemistry. John Wiley & Sons. | spa |
dcterms.references | Stuart, B. (2000). Infrared spectroscopy. Kirk-Othmer Encyclopedia of Chemical Technology, 1-18. | spa |
dcterms.references | Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A., & Hamzah, A. (2014a). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90, 115-122. | spa |
dcterms.references | Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A., & Hamzah, A. (2014b). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90, 115-122. | spa |
dcterms.references | Thapa, B., Kc, A. K., & Ghimire, A. (2012). A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu university journal of science, engineering and technology, 8(1), 164-170. | spa |
dcterms.references | Tranchida, P. Q., Franchina, F. A., Dugo, P., & Mondello, L. (2016). Comprehensive two-dimensional gas chromatography-mass spectrometry: Recent evolution and current trends. Mass spectrometry reviews, 35(4), 524-534. | spa |
dcterms.references | Ulrici, W. (2000). Contaminated soil areas, different countries and contaminants, monitoring of contaminants. Biotechnology: Environmental Processes II, 11, 5-41 | spa |
dcterms.references | UV, I. (s. f.). Properties of water. | spa |
dcterms.references | Vallejo, B., Izquierdo, A., Blasco, R., del Campo, P. P., & de Castro, M. D. L. (2001). Bioremediation of an area contaminated by a fuel spill. Journal of Environmental Monitoring, 3(3), 274-280. | spa |
dcterms.references | Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource technology, 223, 277-286. | spa |
dcterms.references | Villalobos, M., Avila-Forcada, A. P., & Gutierrez-Ruiz, M. E. (2008). An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils. Water, air, and soil pollution, 194(1-4), 151-161. | spa |
dcterms.references | Vinas, M., Grifoll, M., Sabate, J., & Solanas, A. M. (2002). Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. Journal of Industrial Microbiology and Biotechnology, 28(5), 252-260. | spa |
dcterms.references | Wang, Z., & Fingas, M. (1995). Differentiation of the source of spilled oil and monitoring of the oil weathering process using gas chromatography-mass spectrometry. Journal of Chromatography A, 712(2), 321-343. | spa |
dcterms.references | Wang, Z., & Fingas, M. F. (2003). Development of oil hydrocarbon fingerprinting and identification techniques. Marine pollution bulletin, 47(9-12), 423-452. | spa |
dcterms.references | Wei, O., Xu, X., Zhang, Y., Yang, B., Ye, Q., & Yang, Z. (2018). Multidimensional Gas Chromatography–Mass Spectrometry Method for Fingerprinting Polycyclic Aromatic Hydrocarbons and Their Alkyl-Homologs in Crude Oil. Analytical Letters, 51(4), 483-495. | spa |
dcterms.references | Weingärtner, H., Teermann, I., Borchers, U., Balsaa, P., Lutze, H. V., Schmidt, T. C., Franck, E. U., Wiegand, G., Dahmen, N., & Schwedt, G. (2000). Water, 1. Properties, Analysis, and Hydrological Cycle. Ullmann’s Encyclopedia of Industrial Chemistry, 1-40. | spa |
dcterms.references | Weisman, W. (1998). Analysis of petroleum hydrocarbons in environmental media (Vol. 1). Amherst Scientific Publishers | spa |
dcterms.references | Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Applied microbiology and biotechnology, 76(6), 1209-1221. | spa |
dcterms.references | White, D. M., & Irvine, R. L. (2017). Analysis of bioremediation in organic soils. En Fundamentals and Applications of Bioremediation (pp. 185-220). Routledge. | spa |
dcterms.references | Whittaker, M., Pollard, S. J., & Fallick, T. E. (1995). Characterisation of refractory wastes at heavy oil-contaminated sites: A review of conventional and novel analytical methods. Environmental Technology, 16(11), 1009-1033. | spa |
dcterms.references | Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., & Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration & Biodegradation, 107, 158-164. | spa |
dcterms.references | Yan, S., Wang, Q., Qu, L., & Li, C. (2013). Characterization of oil-degrading bacteria from oil-contaminated soil and activity of their enzymes. Biotechnology & Biotechnological Equipment, 27(4), 3932-3938. | spa |
dcterms.references | Yeung, P. Y., Johnson, R. L., & Xu, J. G. (1997). Biodegradation of Petroleum Hydrocarbons in Soil as Affected by Heating and Forced Aeration. Journal of Environmental Quality, 26(6), 1511-1516. https://doi.org/10.2134/jeq1997.00472425002600060009x | spa |
dcterms.references | Yeung, P. Y. P., Johnson, R. L., & Acharya, S. N. (1994). An Improved Procedure for Determining Oil Content in Wet Soil Samples. Analysis of Soils Contaminated with Petroleum Constituents. https://doi.org/10.1520/STP12651S | spa |
dcterms.references | Yu, K. S. H., Wong, A. H. Y., Yau, K. W. Y., Wong, Y. S., & Tam, N. F. Y. (2005). Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Marine pollution bulletin, 51(8-12), 1071-1077. | spa |
dcterms.references | Zobell, C. E. (1946). Action of microörganisms on hydrocarbons. Bacteriological reviews, 10(1-2), 1. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: