Publicación: Efecto de biofertilizantes sobre el rendimiento del cultivo de maíz (Zea mays L.) en suelos del Valle Medio del Sinú, Córdoba
dc.audience | ||
dc.contributor.advisor | Pardo Plaza, Yuri Janio | |
dc.contributor.advisor | Cantero Guevara, Miriam Elena | |
dc.contributor.author | Cantero Espitia, Mauricio Manuel | |
dc.contributor.jury | Mercado Vergara, Antonio José | |
dc.contributor.jury | Diaz Pongutá, Basilio | |
dc.date.accessioned | 2025-07-28T21:58:02Z | |
dc.date.available | 2025-07-28T21:58:02Z | |
dc.date.issued | 2025-07-25 | |
dc.description.abstract | Los fertilizantes químicos han sido ampliamente utilizados en la agricultura para aumentar la productividad y saciar la creciente demanda de alimentos. Sin embargo, su uso excesivo ha generado impactos negativos sobre el ambiente y la salud del suelo. Los biofertilizantes en los últimos años han venido ganando relevancia y presentándose como una alternativa sostenible, al promover el crecimiento vegetal mediante la acción de microorganismos benéficos. Este estudio se desarrolló con el propósito de evaluar el efecto de biofertilizantes a partir de bacterias solubilizadoras de fosforo, bacterias fijadoras de nitrógeno de vida libre nativas y consorcios de microorganismos eficientes sobre el crecimiento del maíz amarillo variedad ICA V-109 en suelos del Valle del Medio Sinú, Córdoba. Se establecieron seis tratamientos (control absoluto, biofertilizante con BSF y BFNVL, biofertilizante con consorcios de microorganismos eficientes, fertilizante orgánico, fertilizante orgánico NPK y fertilizante químico) bajo un diseño en bloque completo al azar y se evaluaron variables de crecimiento y rendimiento (Altura, diámetro del tallo, área foliar, numero de hojas, peso fresco y peso seco), aplicando análisis no paramétricos y multivariados. La cepa S105E, identificada como Enterobacter cloacae, destacó por su solubilización de fósforo, mientras que la cepa 19 sobresalió por su producción de ácido indolacético in vitro. Los resultados mostraron que el biofertilizante con BSF y BFNVL promovió un crecimiento significativo y comparable al del fertilizante químico, mientras que otros tratamientos, si bien presentaron buen rendimiento en algunas variables, no evidenciaron mejoras consistentes en comparación con el control absoluto. A pesar de no haberse obtenido datos de rendimiento en grano, los indicadores analizados permiten proyectar un buen rendimiento y destacar al biofertilizante como una alternativa viable y sostenible para el manejo del cultivo. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Químico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN.................................................12 | spa |
dc.description.tableofcontents | 1 INTRODUCCION..........................................14 | spa |
dc.description.tableofcontents | 2 ANTECEDENTES............................................16 | spa |
dc.description.tableofcontents | 3 OBJETIVOS..............................................................19 | spa |
dc.description.tableofcontents | 3.1 Objetivo general...........................................................19 | spa |
dc.description.tableofcontents | 3.2 Objetivos específicos..................................................19 | spa |
dc.description.tableofcontents | 4 HIPOTESIS............................................................20 | spa |
dc.description.tableofcontents | 5 PLANTEAMIENTO DEL PROBLEMA...........................20 | spa |
dc.description.tableofcontents | 6 JUSTIFICACIÓN.................................................................22 | spa |
dc.description.tableofcontents | 7 MARCO TEÓRICO.............................................25 | spa |
dc.description.tableofcontents | 7.1 Generalidades del cultivo de maíz (Zea mays L.)....................25 | spa |
dc.description.tableofcontents | 7.2 Descripción y clasificación botánica............................................26 | spa |
dc.description.tableofcontents | 7.3 Morfología..............................................................................27 | spa |
dc.description.tableofcontents | 7.3.1 Sistema radical..................................................27 | spa |
dc.description.tableofcontents | 7.3.2 Tallo............................................................................28 | spa |
dc.description.tableofcontents | 7.3.3 Macollos...............................................................28 | spa |
dc.description.tableofcontents | 7.3.4 Hojas........................................................28 | spa |
dc.description.tableofcontents | 7.3.5 Inflorescencia.........................................................29 | spa |
dc.description.tableofcontents | 7.3.6 Antesis, polinización y fecundación.........................................................30 | spa |
dc.description.tableofcontents | 7.4 Tipos de biofertilizantes y modo de acción....................................................31 | spa |
dc.description.tableofcontents | 7.4.1 Fijadoras de nitrógeno............................................................31 | spa |
dc.description.tableofcontents | 7.4.1.1 Azotobacter.....................................................................31 | spa |
dc.description.tableofcontents | 7.4.1.2 Azospirillum.............................................31 | spa |
dc.description.tableofcontents | 7.4.1.3 Rhizobia..................................................................32 | spa |
dc.description.tableofcontents | 7.4.2 Solubilizadoras de fósforo........................................32 | spa |
dc.description.tableofcontents | 7.4.3 Consorcio de microorganismos.................................33 | spa |
dc.description.tableofcontents | 7.5 Acidificación del suelo..........................................33 | spa |
dc.description.tableofcontents | 7.6 Eutrofización...................................................34 | spa |
dc.description.tableofcontents | 8 METODOLOGIA........................................................................................35 | spa |
dc.description.tableofcontents | 8.1 Tipo de estudio.............................................................................................35 | spa |
dc.description.tableofcontents | 8.2 Localización de la zona de trabajo...................................................................35 | spa |
dc.description.tableofcontents | 8.3 Diseño experimental........................................................................35 | spa |
dc.description.tableofcontents | 8.4 Tratamientos evaluados.....................................................................36 | spa |
dc.description.tableofcontents | 8.5 Identificación de bacterias nativas solubilizadoras de fósforo (BSF) y productoras de ácido indol (AIA).................36 | spa |
dc.description.tableofcontents | 8.5.1 Muestreo de suelo.................................................36 | spa |
dc.description.tableofcontents | 8.5.2 Aislamiento primario...................................................37 | spa |
dc.description.tableofcontents | 8.5.3 Aislamiento secundario....................................................................37 | spa |
dc.description.tableofcontents | 8.5.4 Caracterización macroscópica y microscópica de las colonias.........................38 | spa |
dc.description.tableofcontents | 8.5.5 Evaluación in vitro de la capacidad solubilizadora de fosfato.....................................38 | spa |
dc.description.tableofcontents | 8.5.6 Cuantificación in vitro de la producción de AIA..........................39 | spa |
dc.description.tableofcontents | 8.6 Identificación Molecular de BSF y Productoras de AIA...............................................40 | spa |
dc.description.tableofcontents | 8.6.1 Extracción de ADN Genómico.....................................40 | spa |
dc.description.tableofcontents | 8.6.2 Amplificación de ADN Mediante Reacción en Cadena de la Polimerasa (PCR)........................40 | spa |
dc.description.tableofcontents | 8.6.3 Secuenciación de Productos de PCR y Análisis de Secuencia..............41 | spa |
dc.description.tableofcontents | 8.7 Preparación del medio de cultivo..................................................................41 | spa |
dc.description.tableofcontents | 8.8 Inoculación del medio de cultivo.....................................................42 | spa |
dc.description.tableofcontents | 8.9 Preparación del caldo biofertilizante a partir de consorcios microorganismos eficientes (ME)...................42 | spa |
dc.description.tableofcontents | 8.10 Aplicación de los caldos biofertilizantes.......................................43 | spa |
dc.description.tableofcontents | 8.11 Evaluación de los índices fisiotéctnicos de la planta.................................43 | spa |
dc.description.tableofcontents | 8.12 Análisis estadístico.............................................................44 | spa |
dc.description.tableofcontents | 9 RESULTADOS................................................................45 | spa |
dc.description.tableofcontents | 9.1 Caracterización macroscópica y microscópica de las colonias..............................45 | spa |
dc.description.tableofcontents | 9.1 Caracterización macroscópica y microscópica de las colonias...................................45 | spa |
dc.description.tableofcontents | 9.2 Evaluación in vitro de la capacidad solubilizadora de fosfato.............................................46 | spa |
dc.description.tableofcontents | 9.3 Cuantificación in vitro de la producción de AIA............................................47 | spa |
dc.description.tableofcontents | 9.4 Identificación Molecular de BSF............................................................49 | spa |
dc.description.tableofcontents | 9.5 Impacto de los biofertilizantes en el rendimiento del cultivo y en los parámetros de crecimiento vegetal............50 | spa |
dc.description.tableofcontents | 9.5.1 Altura....................................................................50 | spa |
dc.description.tableofcontents | 9.5.2 Diámetro del tallo...........................................................51 | spa |
dc.description.tableofcontents | 9.5.3 Área foliar.....................................................................52 | spa |
dc.description.tableofcontents | 9.5.4 Numero de hojas.........................................................................53 | spa |
dc.description.tableofcontents | 9.5.5 Peso fresco...................................................................................55 | spa |
dc.description.tableofcontents | 9.6 Analisis de componentes principales (ACP).......................................................58 | spa |
dc.description.tableofcontents | 9.7 Proyección de las variables de crecimiento en el rendimiento del grano.............................62 | spa |
dc.description.tableofcontents | 10 DISCUSIÓN..............................................................64 | spa |
dc.description.tableofcontents | 10.1 Evaluación in vitro de la capacidad solubilizadora de fosfato........................64 | spa |
dc.description.tableofcontents | 10.2 Cuantificación in vitro de la producción de AIA.....................................64 | spa |
dc.description.tableofcontents | 10.3 Efecto de los tratamientos sobre las variables fisiológicas.......................65 | spa |
dc.description.tableofcontents | 10.3.1 Altura.......................................................65 | spa |
dc.description.tableofcontents | 10.3.2 Diámetro del tallo.................................................66 | spa |
dc.description.tableofcontents | 10.3.3 Área foliar....................................................................66 | spa |
dc.description.tableofcontents | 10.3.4 Numero de hojas..............................................................67 | spa |
dc.description.tableofcontents | 10.3.5 Peso fresco y seco...................................................67 | spa |
dc.description.tableofcontents | 11 CONCLUSIONES.................................................................................69 | spa |
dc.description.tableofcontents | 12 RECOMENDACIONES..................................................................69 | spa |
dc.description.tableofcontents | 13 REFERENCIAS BIBLIOGRAFICAS...........................................................70 | spa |
dc.description.tableofcontents | 14 ANEXOS......................................................82 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9496 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Química | |
dc.relation.references | Asad, M., & Ahmed, S. Y. (2024). Utilizing Biofertilizer for Achieving Sustainable Agriculture and Rural Development Strategy towards Vision 2040, Oman. Sustainability, 16(10), 4015. https://doi.org/10.3390/su16104015 | |
dc.relation.references | Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473 | |
dc.relation.references | Barquero, M., Cazador, C., Ortiz-Liébana, N., Zotti, M., Brañas, J., & González-Andrés, F. (2024). Fertilising Maize with Bio-Based Mineral Fertilisers Gives Similar Growth to Conventional Fertilisers and Does Not Alter Soil Microbiome. Agronomy, 14(5), 916. https://doi.org/10.3390/agronomy14050916 | |
dc.relation.references | Bavec, F., & Bavec, M. (2002). Effects of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars (FAO 100–400). European Journal of Agronomy, 16(2), 151-159. https://doi.org/10.1016/S1161-0301(01)00126-5 | |
dc.relation.references | Beltran-Medina, I., Romero-Perdomo, F., Molano-Chavez, Lady, Gutiérrez, A. Y., Silva, A. M. M., & Estrada-Bonilla, G. (2023). Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems, 126(1), 21-34. https://doi.org/10.1007/s10705-023-10268-y | |
dc.relation.references | Beltrán-Pineda, M. E., & Bernal-Figueroa, A. A. (2022). Biofertilizantes: Alternativa biotecnológica para los agroecosistemas. Revista Mutis, 12(1). https://doi.org/10.21789/22561498.1771 | |
dc.relation.references | Berza, B., Sekar, J., Vaiyapuri, P., Pagano, M. C., & Assefa, F. (2022). Evaluation of inorganic phosphate solubilizing efficiency and multiple plant growth promoting properties of endophytic bacteria isolated from root nodules Erythrina brucei. BMC Microbiology, 22(1), 276. https://doi.org/10.1186/s12866-022-02688-7 | |
dc.relation.references | Bleam, W. F. (2012). Acid-Base Chemistry. En Soil and Environmental Chemistry (pp. 257-319). Elsevier. https://doi.org/10.1016/B978-0-12-415797-2.00007-8 | |
dc.relation.references | Bradáčová, K., Florea, A. S., Bar-Tal, A., Minz, D., Yermiyahu, U., Shawahna, R., Kraut-Cohen, J., Zolti, A., Erel, R., Dietel, K., Weinmann, M., Zimmermann, B., Berger, N., Ludewig, U., Neumann, G., & Poşta, G. (2019). Microbial Consortia versus Single-Strain Inoculants: An Advantage in PGPM-Assisted Tomato Production? Agronomy, 9(2), 105. https://doi.org/10.3390/agronomy9020105 | |
dc.relation.references | Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: A new frontier in synthetic biology. Trends in Biotechnology, 26(9), 483-489. https://doi.org/10.1016/j.tibtech.2008.05.004 | |
dc.relation.references | Burgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., & Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin, 120(1–2), 379–386. https://doi.org/10.1016/j.marpolbul.2017.05.016 | |
dc.relation.references | Cadena-Torres, J., Novoa Yánez, R. S., Grandett Martinez, L. M., Contreras Santos, J. L., & Agamez Saibis, A. (2021). Caracterización fisicoquímica de los suelos dedicados al cultivo de maíz en el Valle del Sinú, Colombia. Temas Agrarios, 26(1), 2021. | |
dc.relation.references | Chen, X., Yang, C., Palta, J. A., Li, Y., & Fan, X. (2022). An Enterobacter cloacae strain NG-33 that can solubilize phosphate and promote maize growth. Frontiers in Microbiology, 13, 1047313. https://doi.org/10.3389/fmicb.2022.1047313 | |
dc.relation.references | Cisneros, R. C. A., Sánchez de Prager, M., & Menjivar Flores, J. C. (2017). Identificación de bacterias solubilizadoras de fosfatos en un Andisol de la región cafetera colombiana. Revista Colombiana de Biotecnología, 19(1), 21–28. https://doi.org/10.15446/rev.colomb.biote.v19n1.65966 | |
dc.relation.references | Cóndor Golec, A. F., González Pérez, P., & Lokare, C. (2007). Effective Microorganisms: Myth or reality?. Revista Peruana de Biología, 14(2), 315-319. | |
dc.relation.references | Din, I., Khan, H., Ahmad Khan, N., & Khil, A. (2021). Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. Journal of the Saudi Society of Agricultural Sciences, 20(7), 459–466. https://doi.org/10.1016/j.jssas.2021.05.008 | |
dc.relation.references | Dong, X., Ren, Y., Shi, L., Bao, S., Chai, X., Li, Q., & Liao, L. (2024). Relationship between dry matter accumulation and maize yield in Southwest China. Food and Energy Security, 13(4), e566. https://doi.org/10.1002/fes3.566 | |
dc.relation.references | Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: Trends and R&D implications. Food Security, 14(5), 1295-1319. https://doi.org/10.1007/s12571-022-01288-7 | |
dc.relation.references | FAO, 2024.ResourceSTAT-Fertilizer. Food and Agriculture Organization of the United Nations. https://www.fao.org/publications/fao-flagship-publications/the-state-of-food-and-agriculture/en | |
dc.relation.references | FENALCE. (2023). Historia de área, producción y rendimiento de cereales y leguminosas. Recuperado de base de datos FENALCE.https://app.powerbi.com/view?r=eyJrIjo iM2FiYzM5ZTAtNjFmNi00MGQyLWFiYzYtNGI0YTJiZTcwZWQwIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9 | |
dc.relation.references | FENALCE. (2025). En Colombia faltan garantías para sembrar maíz: Fenalce. Recuperado de https://fenalce.co/lanzamiento-oficial-de-las-organizaciones-de-cadena-del-maiz-y-de-la-soya/# | |
dc.relation.references | Freedman, B. (1995). ACIDIFICATION. En Environmental Ecology (pp. 94-143). Elsevier. https://doi.org/10.1016/B978-0-08-050577-0.50009-1 | |
dc.relation.references | Gao, C., Zhang, M., Song, K., Wei, Y., & Zhang, S. (2020). Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. Science of The Total Environment, 721, 137588. https://doi.org/10.1016/j.scitotenv.2020.137588 | |
dc.relation.references | Grassle, J. F. (2001). Marine Ecosystems. En Encyclopedia of Biodiversity (pp. 13-25). Elsevier. https://doi.org/10.1016/B0-12-226865-2/00186-3 | |
dc.relation.references | Hussain, A., Zahir, Z. A., Ditta, A., Tahir, M. U., Ahmad, M., Mumtaz, M. Z., Hayat, K., & Hussain, S. (2019). Production and Implication of Bio-Activated Organic Fertilizer Enriched with Zinc-Solubilizing Bacteria to Boost up Maize (Zea mays L.) Production and Biofortification under Two Cropping Seasons. Agronomy, 10(1), 39. https://doi.org/10.3390/agronomy10010039 | |
dc.relation.references | Jnawal, A.D., Ojha, R.B. and Marahatta, S. (2015) Role of Azotobacter in Soil Fertility and Sustainability—A Review. Advances in Plants & Agriculture Research, 2, 250-253. | |
dc.relation.references | Kato Yamakake, T. Á. (2009). Origen y diversificación del maíz: Una revisión analítica (1. ed). Universidad Nacional Autónoma de México, Instituto de Biología. | |
dc.relation.references | Kelly, J., Crain, J. L., & Raun, W. R. (2015). By-Plant Prediction of Corn ( Zea mays L.) Grain Yield using Height and Stalk Diameter. Communications in Soil Science and Plant Analysis, 46(5), 564-575. https://doi.org/10.1080/00103624.2014.998340 | |
dc.relation.references | Khan, M. S., Zaidi, A., & Wani, P. A. (2009). Role of Phosphate Solubilizing Microorganisms in Sustainable Agriculture - Review. En E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable Agriculture (pp. 551-570). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_34 | |
dc.relation.references | Lara, C., Oviedo, L., (2008). Bacterias diazótrofas con potencial biofertilizante para una agricultura limpia y productiva. Montería, Córdoba: Editorial Ltda. | |
dc.relation.references | Li, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates. International Journal of Molecular Sciences, 18(7), 1253. https://doi.org/10.3390/ijms18071253 | |
dc.relation.references | Lucero, C. T., Lorda, G. S., Anzuay, M. S., Ludueña, L. M., & Taurian, T. (2021). Peanut Endophytic Phosphate Solubilizing Bacteria Increase Growth and P Content of Soybean and Maize Plants. Current Microbiology, 78(5), 1961-1972. https://doi.org/10.1007/s00284-021-02469-x | |
dc.relation.references | Ludueña, L. M., Valdés, P. F., Anzuay, M. S., Dalmasso, R., Angelini, J. G., Tejerizo, G. T., & Taurian, T. (2023). Impact of phosphorus deficiency on the interaction between the biofertilizer strain Serratia sp. S119 with peanut (Arachis hypogaeae L.) and maize (Zea mays L.) plants. Plant and Soil, 487(1-2), 639-653. https://doi.org/10.1007/s11104-023-05963-2 | |
dc.relation.references | Luo, D., Shi, J., Li, M., Chen, J., Wang, T., Zhang, Q., Yang, L., Zhu, N., & Wang, Y. (2024). Consortium of Phosphorus-Solubilizing Bacteria Promotes Maize Growth and Changes the Microbial Community Composition of Rhizosphere Soil. Agronomy, 14(7), 1535. https://doi.org/10.3390/agronomy14071535 | |
dc.relation.references | Luziatelli, F., Melini, F., Bonini, P., Melini, V., Cirino, V., & Ruzzi, M. (2021). Production of Indole Auxins by Enterobacter sp. Strain P-36 under Submerged Conditions. Fermentation, 7(3), 138. https://doi.org/10.3390/fermentation7030138 | |
dc.relation.references | Mayer, J., Scheid, S., Widmer, F., Fließbach, A., & Oberholzer, H.-R. (2010). How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Applied Soil Ecology, 46(2), 230-239. https://doi.org/10.1016/j.apsoil.2010.08.007 | |
dc.relation.references | Mohammadi, K. and Sohrabi, Y. (2012) Bacterial Biofertilizers for Sustainable Crop Production: A Review. Journal of Agricultural and Biological Science, 7, 307-316. | |
dc.relation.references | Nezarat, S., & Gholami, A. (2008). Screening Plant Growth Promoting Rhizobacteria for Improving Seed Germination, Seedling Growth and Yield of Maize. Pakistan Journal of Biological Sciences, 12(1), 26-32. https://doi.org/10.3923/pjbs.2009.26.32 | |
dc.relation.references | Ntawuguranayo, S., Zilberberg, M., Nashef, K., Bonfil, D. J., Bainsla, N. K., Piñera-Chavez, F. J., Reynolds, M. P., Peleg, Z., & Ben-David, R. (2024). Stem traits promote wheat climate-resilience. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1388881 | |
dc.relation.references | Nutaratat, P., Monprasit, A., & Srisuk, N. (2017). High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0937-9 | |
dc.relation.references | Odelola, H. A., & Koza, J. (1975). Characterization of Nigerian strains of West Nile virus by plaque formation. Acta Virologica, 19(6), 489-492. | |
dc.relation.references | Onyia, C. O., Okoh, A. M., & Irene, O. (2020). Production of Plant Growth-Promoting Bacteria Biofertilizer from Organic Waste Material and Evaluation of Its Performance on the Growth of Corn (Zea mays). American Journal of Plant Sciences, 11(02), 189-200. https://doi.org/10.4236/ajps.2020.112015 | |
dc.relation.references | Ortigoza Guerreño, J., López Talavera, C. A., & González Villalba, J. D. (2019). Guía técnica cultivo de maíz. Facultad de Ciencias Agrarias, Universidad Nacional de Asunción. ISBN 978-99967-940-5-6. | |
dc.relation.references | Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829-836. https://doi.org/10.1016/j.jhazmat.2010.09.095 | |
dc.relation.references | Peoples, M. B., & Craswell, E. T. (1992). Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant and Soil, 141(1-2), 13-39. https://doi.org/10.1007/BF00011308 | |
dc.relation.references | Pérez Flórez, L y Oviedo Zumaque, L. (2019). Caracterización de bacterias nativas con potencial biofertilizante aisladas de suelos del departamento de sucre. Corporación Universitaria del Caribe - CECAR. Disponible en: https://repositorio.cecar.edu.co/handle/cecar/2686 | |
dc.relation.references | Pineda-Rodriguez, Y. Y., Pompelli, M. F., Jarma-Orozco, A., Rodríguez, N. V., & Rodriguez-Paez, L. A. (2023). A New and Profitable Protocol to DNA Extraction in Limnospira maxima. Methods and Protocols, 6(4), Article 4. https://doi.org/10.3390/mps6040062 | |
dc.relation.references | Poole, P., Ramachandran, V., & Terpolilli, J. (2018). Rhizobia: From saprophytes to endosymbionts. Nature Reviews Microbiology, 16(5), 291-303. https://doi.org/10.1038/nrmicro.2017.171 | |
dc.relation.references | Puri, A., Padda, K. P., & Chanway, C. P. (2016). Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis, 69(2), 123-129. https://doi.org/10.1007/s13199-016-0385-z | |
dc.relation.references | Ríos-Ruiz, W. F., Tarrillo-Chujutalli, R. E., Rojas-García, J. C., Tuanama-Reátegui, C., Pompa-Vásquez, D. F., & Zumaeta-Arévalo, C. A. (2024). The Biotechnological Potential of Plant Growth-Promoting Rhizobacteria Isolated from Maize (Zea mays L.) Cultivations in the San Martin Region, Peru. Plants, 13(15), 2075. https://doi.org/10.3390/plants13152075 | |
dc.relation.references | Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441-448. https://doi.org/10.1016/0022-2836(75)90213-2 | |
dc.relation.references | Sangoquiza Caiza, C. A., Yanez Guzmán, C. F., & Borges García, M. (2019). Respuesta de la absorción de nitrógeno y fósforo de una variedad de maíz al inocular Azospirillum sp. Y Pseudomonas fluorescens. ACI Avances en Ciencias e Ingenierías, 11(1). https://doi.org/10.18272/aci.v11i1.943 | |
dc.relation.references | Sano, H., Wakui, A., Kawachi, M., Washio, J., Abiko, Y., Mayanagi, G., Yamaki, K., Tanaka, K., Takahashi, N., & Sato, T. (2021). Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. Journal of Oral Biosciences, 63(3), 292-297. https://doi.org/10.1016/j.job.2021.05.003 | |
dc.relation.references | Santhosh Kumar, M., Chandramohan Reddy, G., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915–1921. | |
dc.relation.references | Schenck Zu Schweinsberg‐Mickan, M., & Müller, T. (2009). Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic‐matter decomposition, and plant growth. Journal of Plant Nutrition and Soil Science, 172(5), 704-712. https://doi.org/10.1002/jpln.200800021 | |
dc.relation.references | Schmauder, F., Schütz, D., Creydt, M., Riedl, J., & Fischer, M. (2024). Food authentication goes green: Determination of the geographical origin of grain maize (Zea mays L.) using direct analysis in real time mass spectrometry (DART-MS). Food Control, 163, 110489. https://doi.org/10.1016/j.foodcont.2024.110489 | |
dc.relation.references | Shameem M, R., Sonali J, M. I., Kumar, P. S., Rangasamy, G., Gayathri, K. V., & Parthasarathy, V. (2023). Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environmental Research, 220, 115200. https://doi.org/10.1016/j.envres.2022.115200 | |
dc.relation.references | Shome, S., Barman, A., & Solaiman, Z. M. (2022). Rhizobium and Phosphate Solubilizing Bacteria Influence the Soil Nutrient Availability, Growth, Yield, and Quality of Soybean. Agriculture, 12(8), 1136. https://doi.org/10.3390/agriculture12081136 | |
dc.relation.references | Simón, M. R., & Golik, S. I. (Eds.). (2018). Cereales de verano. Editorial de la Universidad Nacional de La Plata (EDULP). https://doi.org/10.35537/10915/68613 | |
dc.relation.references | Skorupka, M.; Nosalewicz, A. Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture 2021, 11, 822. https://doi.org/10.3390/agriculture1109082 | |
dc.relation.references | Smil, V. (2000). Phosphorus in the environment: Natural Flows and Human Interferences. Annual Review of Energy and the Environment, 25(1), 53-88. https://doi.org/10.1146/annurev.energy.25.1.53 | |
dc.relation.references | Smith, V. H. (2009). Eutrophication. En Encyclopedia of Inland Waters (pp. 61-73). Elsevier. https://doi.org/10.1016/B978-012370626-3.00234-9 | |
dc.relation.references | Song, Y., Chen, Q., Hua, J., Zhang, S., & Luo, S. (2025). The IAA-Producing Rhizobacterium Bacillus sp. SYM-4 Promotes Maize Growth and Yield. Plants, 14(11), 1587. https://doi.org/10.3390/plants14111587 | |
dc.relation.references | Sparks, E. E. (2023). Maize plants and the brace roots that support them. New Phytologist, 237(1), 48-52. https://doi.org/10.1111/nph.18489 | |
dc.relation.references | Symnaczik, S., Mäder, P., & Romano, I. (2023). Biofertilisants. https://doi.org/10.5281/ZENODO.7428682 | |
dc.relation.references | Tejera Hernández, B., Heydrich Pérez, M., & Rojas Badía, M. M. (2013). Aislamiento de bacterias del género Bacillus solubilizadoras de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357–364. | |
dc.relation.references | Van Dommelen, A., & Vanderleyden, J. (2007). Associative Nitrogen Fixation. En Biology of the Nitrogen Cycle (pp. 179-192). Elsevier. https://doi.org/10.1016/B978-044452857-5.50013-8 | |
dc.relation.references | Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571-586. https://doi.org/10.1023/A:1026037216893 | |
dc.relation.references | Viscardi, S., Ventorino, V., Duran, P., Maggio, A., De Pascale, S., Mora, M. L., & Pepe, O. (2016). Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. Journal of Soil Science and Plant Nutrition, ahead, 0-0. https://doi.org/10.4067/S0718-95162016005000060 | |
dc.relation.references | Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1), 174. https://doi.org/10.1186/1471-2180-9-174 | |
dc.relation.references | Wang, Q., Xue, J., Chen, J., Fan, Y., Zhang, G., Xie, R., Ming, B., Hou, P., Wang, K., & Li, S. (2020). Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. Journal of Integrative Agriculture, 19(10), 2419-2428. https://doi.org/10.1016/s2095-3119(20)63259-2 | |
dc.relation.references | Wang, T., Xu, J., Chen, J., Liu, P., Hou, X., Yang, L., & Zhang, L. (2024). Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. Plants, 13(3), 346. https://doi.org/10.3390/plants13030346 | |
dc.relation.references | Woo, S. L., & Pepe, O. (2018). Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 9, 1801. https://doi.org/10.3389/fpls.2018.01801 | |
dc.relation.references | Zuluaga, M. Y. A., De Oliveira, A. L. M., Valentinuzzi, F., Jayme, N. S., Monterisi, S., Fattorini, R., Cesco, S., & Pii, Y. (2023). An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: In situ study on cucumber. BMC Microbiology, 23(1). https://doi.org/10.1186/s12866-023-02918-6 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Biofertilizers | |
dc.subject.keywords | Phosphorus solubilizing bacteria | |
dc.subject.keywords | Nitrogen fixing bacteria | |
dc.subject.keywords | Colombia | |
dc.subject.proposal | Biofertilizantes | |
dc.subject.proposal | Bacterias solubilizadoras de fósforo | |
dc.subject.proposal | Bacterias fijadoras de nitrógeno | |
dc.subject.proposal | Colombia | |
dc.subject.proposal | Córdoba | |
dc.title | Efecto de biofertilizantes sobre el rendimiento del cultivo de maíz (Zea mays L.) en suelos del Valle Medio del Sinú, Córdoba | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: