FacebookTwitterYoutubeInstagramTiktok
División de Bibliotecas
  • Español
  • English
  • Iniciar sesión
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioRepositorio
institucional
  • Inicio
  • Comunidades
  • Navegar
    Directrices del Repositorio
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Número de Frobenius"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Un acercamiento al problema de Frobenius en semigurpos numéricos generados por la sucesión x_n=ca^n-d
    (2023-02-20) Burgos Martínez, Jesús Alberto; Borja Soto, Jerson Manuel
    En el presente trabajo tratamos acerca de submonoides de los naturales, semigrupos numéricos y particularmente definimos submonoides y semigrupos numéricos asocia- dos a colas de sucesiones de la forma x_n=ca^n − d, n ≥ 1, donde a, c y d son enteros, a ≥ 2 y c ≥ 1. Para tales semigrupos, caracterizamos la dimensión de embebimiento, el conjunto de Apéry, y usamos estos resultados para calcular el número de Frobenius de S_n bajo la condición d > 0 y estudiamos la dimensión de embebimiento de Sn cuando dicha condición no se cumplen.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Comportamiento asintótico del número de Frobenius para semigrupos numéricos asociados a sucesiones de la forma x_n = n^k
    (Universidad de Córdoba, 2024-08-22) Terán Meléndez, Jaider Enrique; Borja Soto, Jerson Manuel; Arias, Fabian; García Gutiérrez, Ismael; Pinedo Tapia, Héctor
    En este trabajo estudiamos las familias de semigrupos numéricos S_{n,k} = {x_{n+j} = (n + j)^k | j ∈ N }= ⟨n^k, (n + 1)^k, (n + 2)^k, . . .⟩ definidos para todo entero n ≥ 1, donde k ≥ 2 es un entero fijo. Probamos que la dimensión de embebimiento, e(Sn,2), tiene comportamiento asintótico lineal; generalizamos el trabajo hecho por Alessio Moscariello (para k = 2) en [3] y también probamos que el número de Frobenius para S_{n,k} tiene comportamiento asintótico como O(n^(k+ϵ)). Además, planteamos conjeturas para el comportamiento asintótico de e(S_{n,k}) para k ≥ 3 y sobre la posibilidad de eliminar el ϵ en O(n^(k+ϵ)).
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Semigrupos numéricos generados por sucesiones que satisfacen una recurrencia lineal homogénea
    (Universidad de Córdoba, 2024-09-15) Mieles Rivero, Deisy Del Carmen; Borja Soto, Jerson Manuel; Benitez Babilonia, Luis Enrique; Pineda Tapia, Héctor
    En el presente trabajo se estudian semigrupos numéricos asociados a sucesiones que satisfacen una relación de recurrencia lineal, se determinan los conjuntos generadores minimales, dimensión de embebimiento y número de Frobenius, bajo algunas condiciones especiales sobre la recurrencia o los valores iniciales de la sucesión. En especial trabajamos con recurrencias de orden 2 y algunas de orden 3.
Carrera 6 No. 77- 305 Montería - Córdoba, Colombia  |  Código Postal: 230002   | | Nit: 891080031-3  |   contacto@correo.unicordoba.edu.co
La Universidad de Córdoba, es una Institución de educación superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.
Mapa de sitio, Ley de protección de datos, Política de privacidad, Transparencia y acceso a la información , PQRSyD contacto@correo.unicordoba.edu.co - notificacionesjudiciales@correo.unicordoba.edu.co.
Sistema DSPACE 7 - Metabiblioteca | logo