Publicación: Análisis cualitativo de algunos modelos en epidemiología matemática a partir del modelo de Kermack-McKendrick
dc.contributor.advisor | Avilez Ortíz, Sergio Miguel | spa |
dc.contributor.advisor | Arenas Tawil, Abraham José | spa |
dc.contributor.author | Cuello Rodríguez, Dina María | spa |
dc.date.accessioned | 2023-02-18T22:18:19Z | |
dc.date.available | 2023-02-18T22:18:19Z | |
dc.date.issued | 2023-02-17 | |
dc.description.abstract | It is known that we are currently going through a pandemic, which is why it is extremely important to model the behavior of disease transmission, in this paper we intend to analytically address some models based on the Kermack-McKendrick model, which is a system composed of three connected nonlinear ordinary differential equations, which is a well-planned system to be mathematically acceptable and serves to detect parameters that allow taking respective measures to control diseases. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Matemático(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | Es sabido que en la actualidad atravesamos por una pandemia, por lo cual es de suma importancia modelar el comportamiento de la transmisión de enfermedades. En este trabajo se pretende abordar de forma analítica algunos modelos basados en el modelo de Kermack-McKendrick, el cual es un sistema compuesto de tres ecuaciones diferenciales ordinarias no lineales conectadas, el cual es un sistema bien planteado para ser matemáticamente aceptable y sirva para detectar parámetros que permitan tomar medidas respectivas para controlar enfermedades. | spa |
dc.description.tableofcontents | Índice de figuras iv | spa |
dc.description.tableofcontents | Resumen vi | spa |
dc.description.tableofcontents | 1. Introducción 1 | spa |
dc.description.tableofcontents | 1.1. Epidemiología . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 | spa |
dc.description.tableofcontents | 1.2. Breve historia sobre enfermedades infecciosas y su modelado . . . . . 6 | spa |
dc.description.tableofcontents | 1.3. Modelado matemático . . . . . . . . . . . . . . . . . . . . . . . . . . 9 | spa |
dc.description.tableofcontents | 2. Modelado epidémico del sistema SIR 11 | spa |
dc.description.tableofcontents | 2.1. Modelo SIR de Kermack–McKendrick . . . . . . . . . . . . . . . . . . 11 | spa |
dc.description.tableofcontents | 2.1.1. Propiedades matemáticas del modelo SIR . . . . . . . . . . . . 15 | spa |
dc.description.tableofcontents | 2.2. Estimación de parámetros . . . . . . . . . . . . . . . . . . . . . . . . 19 | spa |
dc.description.tableofcontents | 2.3. Modelo epidémico SIS . . . . . . . . . . . . . . . . . . . . . . . . . . 20 | spa |
dc.description.tableofcontents | 3. El modelo SIR con demografía 29 | spa |
dc.description.tableofcontents | 3.1. El Modelo Malthusiano . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | spa |
dc.description.tableofcontents | 3.2. El Modelo SIR con demografía . . . . . . . . . . . . . . . . . . . . . . 31 | spa |
dc.description.tableofcontents | 3.3. Análisis de Sistemas Bidimensionales . . . . . . . . . . . . . . . . . . 33 | spa |
dc.description.tableofcontents | 3.4. Análisis del Modelo SIR adimensional . . . . . . . . . . . . . . . . . . 38 | spa |
dc.description.tableofcontents | 3.5. Estabilidad Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 | spa |
dc.description.tableofcontents | 3.6. Oscilaciones en Modelos Epidémicos . . . . . . . . . . . . . . . . . . . 46 | spa |
dc.description.tableofcontents | Bibliografía 53 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7143 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Matemática | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Mathematics | eng |
dc.subject.keywords | Model | eng |
dc.subject.keywords | Kermack | eng |
dc.subject.keywords | McKendrick | eng |
dc.subject.keywords | Epidemiology | eng |
dc.subject.keywords | Linearization | eng |
dc.subject.keywords | SIR model | eng |
dc.subject.keywords | Global stability | eng |
dc.subject.proposal | Matemáticas | spa |
dc.subject.proposal | Modelo | spa |
dc.subject.proposal | Kermack | spa |
dc.subject.proposal | McKendrick | spa |
dc.subject.proposal | Epidemiología | spa |
dc.subject.proposal | Linealidad | spa |
dc.subject.proposal | Modelo SIR | spa |
dc.subject.proposal | Estabilidad global | spa |
dc.title | Análisis cualitativo de algunos modelos en epidemiología matemática a partir del modelo de Kermack-McKendrick | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] F. Brauer, C. Castillo Chávez. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics. Springer Science+Business Media, New York, 2012. 40. | spa |
dcterms.references | [2] M. Braun. Differential Equations and Their Applications. An Introduction to Applied Mathematics. Springer-Verlag, New York, 1993. | spa |
dcterms.references | [3] K. Dietz y J. Hesterbeek. Daniel Bernoulli’s epidemiological model revisited. Mathematical Biosciences, 180 (2002), pp. 1–21. | spa |
dcterms.references | [4] A. Hardy y E. Magnello. Statistical methods in epidemiology: Karl Pearson, Ronald Ross, Major Greenwood and Austin Bradford Hill, 1900–1945. Soz.- Pr¨aventivmed, 47 (2002), pp. 80–89. | spa |
dcterms.references | [5] H. Hethcote. The Mathematics of Infectious Diseases. Journal Article SIAM Review. Society for Industrial and Applied Mathematics, 2000. 41 N° 4. pp 509-653. | spa |
dcterms.references | [6] W. Kermack, A. G. McKendrick. Contributions to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A 115, 1927, pp. 700-721. | spa |
dcterms.references | [7] M. Martcheva. An Introduction to Mathematical Epidemiology. Texts in Applied Mathematics. Springer Science+Business Media, New York, 2015. 61. | spa |
dcterms.references | [8] R. Pearl, L. J. Reed. 1920. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Nat. Acad. Sci. 6, 1920. pp. 275-288. | spa |
dcterms.references | [9] H. R. Thieme. Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. Journal of Mathematical Biology. Springer-Verlag (1992). | spa |
dcterms.references | [10] H. R. Thieme. Asymptocally autonomous differential equations in the plane. Rocky Mountain J. Math. 24 November (1994a), pp. 351-380. | spa |
dcterms.references | [11] H. R. Thieme. Mathematics in population biology. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton, NJ, (2003). | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: