Publicación: Evaluación in vitro de la actividad antifúngica del extracto de vismia baccifera (L.) frente al dermatofito Nannizzia gypsea
dc.contributor.advisor | Arias Ríos, Jorge Enrique | |
dc.contributor.advisor | Betin Ruiz , Andrés José | |
dc.contributor.author | Argumedo Montes, Carolina | |
dc.contributor.jury | Oviedo Zumaque, Luis Eliecer | |
dc.contributor.jury | Negrete Peñata, Jorge Luis | |
dc.contributor.referee | Oviedo Zumaque, Luis Eliecer | |
dc.contributor.referee | Negrete Peñata, Jorge Luis | |
dc.date.accessioned | 2025-07-25T20:17:57Z | |
dc.date.available | 2026-07-24 | |
dc.date.available | 2025-07-25T20:17:57Z | |
dc.date.issued | 2025-07-24 | |
dc.description.abstract | La dermatofitosis, conocida comúnmente como tiña, es una de las infecciones cutáneas más prevalentes y recurrentes a nivel mundial. Esta micosis superficial es causada por hongos queratinolíticos de los géneros Trichophyton, Microsporum, Epidermophyton, Arthroderma, Paraphyton, Lophophyton y Nannizzia, los cuales invaden tejidos ricos en queratina como piel, cabello y uñas. El objetivo de este estudio fue evaluar in vitro la actividad antifúngica del extracto etanólico de Vismia baccifera (L.) frente al dermatofito Nannizzia gypsea. La cepa fue caracterizada fenotípica y genotípicamente mediante análisis morfológicos, PCR de la región ITS y análisis filogenético con BLAST y MEGA11. El extracto vegetal se obtuvo por maceración con etanol al 96 % y se analizó por cromatografía de gases acoplada a espectrometría de masas (GC-MS). La actividad antifúngica se evaluó mediante los métodos de difusión en placa e inhibición por diluciones seriadas dobles, utilizando clotrimazol como control positivo. La secuenciación de la región ITS confirmó la identidad de la cepa como N. gypsea. Las zonas de inhibición registradas para las concentraciones de 250, 500 y 750 mg L⁻¹ del extracto oscilaron entre 12,63 ± 0,41 mm y 13,17 ± 0,38 mm. La concentración mínima inhibitoria (CMI) fue de 156,25 µg mL⁻¹. Los resultados indican que el extracto etanólico de Vismia baccifera presenta actividad antifúngica in vitro frente a N. gypsea, lo que sugiere su potencial como fuente de compuestos bioactivos con aplicación en el tratamiento de dermatofitosis. | |
dc.description.abstract | Dermatophytosis, commonly known as ringworm, is one of the most prevalent and recurrent skin infections worldwide. This superficial mycosis is caused by keratinolytic fungi from the genera Trichophyton, Microsporum, Epidermophyton, Arthroderma, Paraphyton, Lophophyton, and Nannizzia, which invade keratinized tissues such as skin, hair, and nails. The objective of this study was to evaluate the in vitro antifungal activity of the ethanolic extract of Vismia baccifera (L.) against the dermatophyte Nannizzia gypsea. The fungal strain was phenotypically and genotypically characterized through morphological analyses, PCR amplification of the ITS region, and phylogenetic analysis using BLAST and MEGA11. The plant extract was obtained by maceration in 96% ethanol and analyzed by gas chromatography-mass spectrometry (GC-MS). Antifungal activity was assessed using agar diffusion and broth microdilution methods, with clotrimazole as the positive control. Sequencing of the ITS region confirmed the identity of the strain as N. gypsea. Inhibition zones observed for concentrations of 250, 500 and 750 mg L⁻¹ of the extract ranged from 12.63 ± 0.41 mm to 13.17 ± 0.38 mm. The minimum inhibitory concentration (MIC) was 156.25 µg mL⁻¹. These results indicate that the ethanolic extract of Vismia baccifera exhibits in vitro antifungal activity against N. gypsea, suggesting its potential as a source of bioactive compounds for the treatment of dermatophytosis. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Biotecnología | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introducción | |
dc.description.tableofcontents | 1. Introducción 13 | |
dc.description.tableofcontents | 2. Objetivos 15 | |
dc.description.tableofcontents | 2.1. Objetivo General 15 | |
dc.description.tableofcontents | 2.2. Objetivos Específicos 15 | |
dc.description.tableofcontents | 3. Marco Teórico 16 | |
dc.description.tableofcontents | 3.1. Hongos Dermatofitos 16 | |
dc.description.tableofcontents | 3.2. Dermatofitosis 17 | |
dc.description.tableofcontents | 3.2.1. Patogenia y defensa del huésped 17 | |
dc.description.tableofcontents | 3.2.2. Tratamiento de la dermatofitosis 18 | |
dc.description.tableofcontents | 3.3. Vismia baccifera L. 20 | |
dc.description.tableofcontents | 3.3.1. Distribución geográfica del género Vismia 20 | |
dc.description.tableofcontents | 3.3.2. Extractos del género Vismia con actividad antimicrobiana 20 | |
dc.description.tableofcontents | 4. Metodología 23 | |
dc.description.tableofcontents | 4.1. Tipo de estudio 23 | |
dc.description.tableofcontents | 4.2. Área de estudio 23 | |
dc.description.tableofcontents | 4.3. Caracterización fenotípica y genotípica de una cepa de Nannizzia gypsea mediante análisis morfológicos y técnicas moleculares 23 | |
dc.description.tableofcontents | 4.3.1. Caracterización fenotípica 23 | |
dc.description.tableofcontents | 4.3.2. Caracterización genotípica 24 | |
dc.description.tableofcontents | 4.4. Evaluación de la composición fitoquímica del extracto de Vismia baccifera (L.) a través de cromatografía de gases acoplado a espectrometría de masas (GC-MS) 25 | |
dc.description.tableofcontents | 4.4.1. Recolección del material vegetal 25 | |
dc.description.tableofcontents | 4.4.2. Preparación del extracto por maceración con etanol 26 | |
dc.description.tableofcontents | 4.4.3. Análisis fitoquímico del extracto a través de cromatografía de gases-espectrometría de masas (GC-MS) 26 | |
dc.description.tableofcontents | 4.5. Determinación de la actividad antifúngica in vitro del extracto de Vismia baccifera (L.) por el método de difusión en placa y diluciones seriadas dobles 27 4.5.1. Actividad antifúngica in vitro mediante el método de difusión en placa 27 4.5.2. Concentración mínima inhibitoria (CMI) in vitro del extracto de Vismia baccifera (L.) por el método de diluciones seriadas dobles 28 | |
dc.description.tableofcontents | 4.6. Análisis estadístico 29 | |
dc.description.tableofcontents | 5. Resultados 30 | |
dc.description.tableofcontents | 5.1. Caracterización fenotípica y genotípica de una cepa de Nannizzia gypsea mediante análisis morfológicos y técnicas moleculares 30 | |
dc.description.tableofcontents | 5.1.1. Identificación molecular 31 | |
dc.description.tableofcontents | 5.2. Evaluación de la composición fitoquímica del extracto de Vismia baccifera (L.) a través de cromatografía de gases acoplado a espectrometría de masas (GC-MS) 31 | |
dc.description.tableofcontents | 5.3. Determinación de la actividad antifúngica in vitro del extracto de Vismia baccifera (L.) por el método de difusión en placa y diluciones seriadas dobles 34 | |
dc.description.tableofcontents | 5.3.1. Actividad antifúngica in vitro mediante el método de difusión en placa 34 | |
dc.description.tableofcontents | 5.3.2. Concentración mínima inhibitoria (CMI) in vitro del extracto de Vismia baccifera (L.) por el método de diluciones seriadas 37 | |
dc.description.tableofcontents | 6. Discusión 39 | |
dc.description.tableofcontents | 7. Conclusiones 44 | |
dc.description.tableofcontents | 8. Recomendaciones 45 | |
dc.description.tableofcontents | 9. Referencias Bibliográficas 46 | |
dc.description.tableofcontents | 10. ANEXOS 56 | |
dc.description.tableofcontents | Tabla 1. Identificación y cuantificación por GC-MS de los componentes del extracto de V. baccifera (componentes con ω > 0,04%, masa, n = 3, p = 0,95). 29 | |
dc.description.tableofcontents | Tabla 2. Actividad antifúngica del extracto de V. baccifera frente al dermatofito Nannizzia gypsea cuando se utiliza el método de difusión en placa. 32 | |
dc.description.tableofcontents | Figura 1. Características macromorfológicas (A) y micromorfológicas (B) de Nannizzia gypsea. 28 | |
dc.description.tableofcontents | Figura 2. Árbol filogenético construido mediante el test de máxima verisimilitud del aislamiento fúngico y secuencias homólogas disponibles en la base de datos GenBank obtenidos mediante el algoritmo NCBI BLAST. 29 | |
dc.description.tableofcontents | Figura 3. Aspecto del campo de la placa petri después de 168 h de inoculación de cultivos de Nannizzia gypsea cuando se expusieron al extracto de V. baccifera a diferentes concentraciones: (A) 250 mg L-1; (B) 500 mg L-1; (C) 750 mg L-1 y (D) control. 34 | |
dc.description.tableofcontents | Figura 4. Actividad antifúngica (CMI) del extracto etanolico de las hojas de V. baccifera contra Nannizzia gypsea. 35 | |
dc.description.tableofcontents | Figura 5. Actividad antifúngica de los controles: DMSO (A) y clotrimazol al 1% (B) contra Nannizzia gypsea. 36 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9489 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Biotecnología | |
dc.relation.references | Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90, 153626. https://doi.org/10.1016/j.phymed.2021.153626 | |
dc.relation.references | Arantes, B. B. A., Cabral, A. K. L. F., Dos Santos, K. S., Mendonça, M. B., Dos Santos, R. C., Bugalho, B. C. M., Fernandes, L. D. S., Martinez, L. R., Fusco-Almeida, A. M., & Mendes-Giannini, M. J. S. (2025). Characterization of Biofilm Formation by the Dermatophyte Nannizzia gypsea. Journal of Fungi, 11(6), 455. https://doi.org/10.3390/jof11060455 | |
dc.relation.references | Bao, Y., Wan, Z., & Li, R. (2013). In Vitro Antifungal Activity of Micafungin and Caspofungin Against Dermatophytes Isolated from China. Mycopathologia, 175(1–2), 141–145. https://doi.org/10.1007/s11046-012-9571-6 | |
dc.relation.references | Baumgardner, D. J. (2017). Fungal Infections From Human and Animal Contact. Journal of Patient-Centered Research and Reviews, 4(2), 78–89. https://doi.org/10.17294/2330-0698.1418 | |
dc.relation.references | Bontems, O., Fratti, M., Salamin, K., Guenova, E., & Monod, M. (2020). Epidemiology of Dermatophytoses in Switzerland According to a Survey of Dermatophytes Isolated in Lausanne between 2001 and 2018. Journal of Fungi, 6(2), 95. https://doi.org/10.3390/jof6020095 | |
dc.relation.references | Buitrago, A., Rojas, J., & Velasco, J. (2021). Análisis fitoquímico preliminar y evaluación de la actividad antibacteriana de fracciones de diferentes polaridades obtenidas de Vismia baccifera (L.) Triana & Planch y Vismia macrophylla Kunth. Revista de La Facultad de Farmacia, 62, 15–22. https://doi.org/10.53766/refa/2021.62.01.02 | |
dc.relation.references | Conceição, A. B. da S., Chueiri, M. C., Silva, L. de O., Schneider, L. de L., Gomes, J. de F., Oliveira, Á. A. de, Campos, S. G. de, Baroni, F. de A., & Bonci, M. M. (2024). Avaliação da presença de fungos dermatófitos e resistência antimicrobiana a partir de amostras ambientais de comunidades ribeirinhas da Região Amazônica: Uma questão de vigilância em saúde. Research, Society and Development, 13(4), Article 4. https://doi.org/10.33448/rsd-v13i4.45590 | |
dc.relation.references | Costa, M., Silva, A., Silva, A., Lima, V., Bezerra-Silva, P., Rocha, S., Navarro, D., Correia, M., Napoleão, T., Silva, M., & Paiva, P. (2017). Essential Oils from Leaves of Medicinal Plants of Brazilian Flora: Chemical Composition and Activity against Candida Species. Medicines, 4(2), 27. https://doi.org/10.3390/medicines4020027 | |
dc.relation.references | Cruz Ch., R., & Vielle O., P. (2024). Actualización en taxonomía, diagnóstico y tratamiento de las dermatofitosis. Revista Chilena de Infectología, 41(2), 218–224. https://doi.org/10.4067/s0716-10182024000200218 | |
dc.relation.references | Davydova, L., Menshova, A., Shumatbaev, G., Babaev, V., & Nikitin, E. (2024). Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity. Antibiotics, 13(8), 785. https://doi.org/10.3390/antibiotics13080785 | |
dc.relation.references | Diel, K. A. P., Santana Filho, P. C., Pitol Silveira, P., Ribeiro, R. L., Teixeira, P. C., Rodrigues Júnior, L. C., Marinho, L. C., Romão, P. R. T., & Von Poser, G. L. (2024). Antiprotozoal potential of Vismia species (Hypericaceae), medicinal plants used to fight cutaneous leishmaniasis. Journal of Ethnopharmacology, 328, 118028. https://doi.org/10.1016/j.jep.2024.118028 | |
dc.relation.references | Fitsev, I. M., Nikitin, E. N., Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Kazan, 420111 Russia, Rakhmaeva, A. M., Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Kazan, 420111 Russia, Terenzhev, D. A., Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Kazan, 420111 Russia, Sakhno, T. M., Nikitsky Botanical Garden – National Scientific Center of the Russian Academy of Sciences, Yalta, 298648 Russia, Nasybullina, Z. R., & Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia. (2022). Chemical Composition of Cupressus sempervirens L. and Thuja occidentalis L. Essential Oils and Their Activity against Phytopathogenic Fungi. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 164(3), 392–407. https://doi.org/10.26907/2542-064X.2022.3.392-407 | |
dc.relation.references | Fitsev, I. M., Rakhmetova, E. R., Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia, Mukhammetshina, A. G., Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia, Burkin, K. E., Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia, Shlyamina, O. V., & Federal Center for Toxicological, Radiation, and Biological Safety, Kazan, 420075 Russia. (2021). Gas Chromatography–Mass Spectrometry Determination of Deltamethrin in Food. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 163(4), 569–580. https://doi.org/10.26907/2542-064x.2021.4.569-580 | |
dc.relation.references | Gómez-Cansino, R., Espitia-Pinzón, C. I., Campos-Lara, M. G., Guzmán-Gutiérrez, S. L., Segura-Salinas, E., Echeverría-Valencia, G., Torras-Claveria, L., Cuevas-Figueroa, X. M., & Reyes-Chilpa, R. (2015). Antimycobacterial and HIV-1 Reverse Transcriptase Activity of Julianaceae and Clusiaceae Plant Species from Mexico. Evidence-Based Complementary and Alternative Medicine, 2015(1), 183036. https://doi.org/10.1155/2015/183036 | |
dc.relation.references | Gupta, A. K., Susmita, Nguyen, H. C., Liddy, A., Economopoulos, V., & Wang, T. (2025). Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review. Antibiotics, 14(5), 472. https://doi.org/10.3390/antibiotics14050472 | |
dc.relation.references | Hubka, V., Cmokova, A., Skorepova, M., Mikula, P., & Kolarik, M. (2014). Trichophyton onychocola sp. Nov. Isolated from human nail. Medical Mycology, 52(3), 285–292. https://doi.org/10.1093/mmy/myt010 | |
dc.relation.references | Joseph, R., Darrisaw, C., Lloyd, A., Hoel, D., & Keyhani, N. O. (2024). Isolation of a Novel Pythium Species, P. thermoculicivorax, and Trichoderma sp. From Natural Enzootic Mosquito Larval Infections. Journal of Fungi, 10(3), 199. https://doi.org/10.3390/jof10030199 | |
dc.relation.references | Kanagarajan, V., Ezhilarasi, M. R., & Gopalakrishnan, M. (2011). In vitro microbiological evaluation of 1,1’-(5,5’-(1,4-phenylene)bis(3-aryl-1H-pyrazole-5,1-(4H,5H)-diyl))diethanones, novel bis acetylated pyrazoles. Organic and Medicinal Chemistry Letters, 1(1), 8. https://doi.org/10.1186/2191-2858-1-8 | |
dc.relation.references | Kidd, S. E., Abdolrasouli, A., & Hagen, F. (2023). Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infectious Diseases, 10(1), ofac559. https://doi.org/10.1093/ofid/ofac559 | |
dc.relation.references | Lfitat, A., Zejli, H., Bousraf, F. Z., Bousselham, A., El Atki, Y., Gourch, A., Lyoussi, B., & Abdellaoui, A. (2021). Comparative assessment of total phenolics content and in vitro antioxidant capacity variations of macerated leaf extracts of Olea europaea L. and Argania spinosa (L.) Skeels. Materials Today: Proceedings, 45, 7271–7277. https://doi.org/10.1016/j.matpr.2020.12.990 | |
dc.relation.references | Lizcano, L. J., Viloria-Bernal, M., Vicente, F., Berrueta, L. A., Gallo, B., Martínez-Cañamero, M., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2012). Lipid Oxidation Inhibitory Effects and Phenolic Composition of Aqueous Extracts from Medicinal Plants of Colombian Amazonia. International Journal of Molecular Sciences, 13(5), 5454–5467. https://doi.org/10.3390/ijms13055454 | |
dc.relation.references | Martinez-Rossi, N. M., Peres, N. T. A., Bitencourt, T. A., Martins, M. P., & Rossi, A. (2021). State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. Journal of Fungi, 7(8), 629. https://doi.org/10.3390/jof7080629 | |
dc.relation.references | Metoui, R., Mighri, H., Bouajila, J., Znati, M., El-Jani, H., & Akrout, A. (2022). Artemisia campestris dried leaf extracts: Effects of different extraction methods and solvents on phenolic composition and biological activities. South African Journal of Botany, 151, 288–294. https://doi.org/10.1016/j.sajb.2022.10.002 | |
dc.relation.references | Moskaluk, A. E., & VandeWoude, S. (2022). Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens, 11(9), 957. https://doi.org/10.3390/pathogens11090957 | |
dc.relation.references | Motta, E. P., Farias, J. R., Costa, A. A. C. D., Silva, A. F. D., Oliveira Lopes, A. J., Cartágenes, M. D. S. S., Nicolete, R., Abreu, A. G., Fernandes, E. S., Nascimento, F. R. F., Rocha, C. Q. D., Monteiro, C. A., & Guerra, R. N. M. (2022). The Anti-Virulence Effect of Vismia guianensis against Candida albicans and Candida glabrata. Antibiotics, 11(12), 1834. https://doi.org/10.3390/antibiotics11121834 | |
dc.relation.references | Nikitin, E., Fitsev, I., Egorova, A., Logvinenko, L., Terenzhev, D., Bekmuratova, F., Rakhmaeva, A., Shumatbaev, G., Gatiyatullina, A., Shevchuk, O., & Kalinnikova, T. (2023). Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity. International Journal of Molecular Sciences, 24(18), 14372. https://doi.org/10.3390/ijms241814372 | |
dc.relation.references | Nyilasi, I., Kocsubé, S., Krizsán, K., Galgóczy, L., Papp, T., Pesti, M., Nagy, K., & Vágvölgyi, C. (2013). Susceptibility of clinically important dermatophytes against statins and different statin-antifungal combinations. Medical Mycology, 1–9. https://doi.org/10.3109/13693786.2013.828160 | |
dc.relation.references | Orozco-Yee, E. A., Rojas-Castañeda, R. G., Guevara-Gutiérrez, E., Mayorga-Rodríguez, J., & Tlacuilo-Parra, A. (2025). Dermatofitosis causadas por Nannizzia gypsea: informe de 155 casos en el oeste de México. Enfermedades Infecciosas y Microbiología Clínica, 43(4), 205–209. https://doi.org/10.1016/j.eimc.2024.08.011 | |
dc.relation.references | Pérez-Rodríguez, A., Duarte-Escalante, E., Frías-De-León, M. G., Acosta Altamirano, G., Meraz-Ríos, B., Martínez-Herrera, E., Arenas, R., & Reyes-Montes, M. D. R. (2023). Phenotypic and Genotypic Identification of Dermatophytes from Mexico and Central American Countries. Journal of Fungi, 9(4), 462. https://doi.org/10.3390/jof9040462 | |
dc.relation.references | Perricone, M., Arace, E., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2015). Bioactivity of essential oils: A review on their interaction with food components. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00076 | |
dc.relation.references | Petrucelli, M. F., Abreu, M. H. D., Cantelli, B. A. M., Segura, G. G., Nishimura, F. G., Bitencourt, T. A., Marins, M., & Fachin, A. L. (2020). Epidemiology and Diagnostic Perspectives of Dermatophytoses. Journal of Fungi, 6(4), 310. https://doi.org/10.3390/jof6040310 | |
dc.relation.references | Pompelli, M. F., Mendes, K. R., Ramos, M. V., Santos, J. N. B., Youssef, D. T. A., Pereira, J. D., Endres, L., Jarma-Orozco, A., Solano-Gomes, R., Jarma-Arroyo, B., Silva, A. L. J., Santos, M. A., & Antunes, W. C. (2019). Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. Journal of Arid Land, 11(6), 795–810. https://doi.org/10.1007/s40333-019-0016-7 | |
dc.relation.references | Reina, A. M. M., Zumaqué, L. T., Martinez, L. M. G., Pinto, M. del V. R., Cabadiaz, A. D., & Leal, H. A. B. (2024). Eficiencia técnica del cultivo de cacao (Theobroma cacao L) en el sur de Córdoba, Colombia. Ciencia y Tecnología, 17(2), Article 2. https://doi.org/10.18779/cyt.v17i2.712 | |
dc.relation.references | Rezaei-Matehkolaei, A., Mirhendi, H., Makimura, K., De Hoog, G. S., Satoh, K., Najafzadeh, M. J., & Shidfar, M. R. (2014). Nucleotide sequence analysis of beta tubulin gene in a wide range of dermatophytes. Medical Mycology, 52(7), 674–688. https://doi.org/10.1093/mmy/myu033 | |
dc.relation.references | Robert, R., & Pihet, M. (2008). Conventional Methods for the Diagnosis of Dermatophytosis. Mycopathologia, 166(5–6), 295–306. https://doi.org/10.1007/s11046-008-9106-3 | |
dc.relation.references | Rodriguez-Temporal, D., Adrados, D., Alastruey-Izquierdo, A., Alkorta, M., Candela, A., Canut, A., Castro, C., Cilla, C. G., De Dios Caballero, J., Ercibengoa, M., Fernández, M., Fradejas, I., Fraile, O., Goyanes, M. J., Gutiérrez, A., López, J. I., López, C., López-Calleja, A. I., López-Medrano, R., … Rodríguez-Sánchez, B. (2025). Current Performance of MALDI–TOF Mass Spectrometry Databases for the Identification of Dermatophyte Species. Journal of Fungi, 11(5), 356. https://doi.org/10.3390/jof11050356 | |
dc.relation.references | Sacheli, R., & Hayette, M.-P. (2021). Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies. Journal of Fungi, 7(11), 983. https://doi.org/10.3390/jof7110983 | |
dc.relation.references | Sachikonye, M., & Mukanganyama, S. (2016). Antifungal and Drug Efflux Inhibitory Activity of Selected Flavonoids AgainstCandida albicansandCandida krusei. Journal of Biologically Active Products from Nature, 6(3), 223–236. https://doi.org/10.1080/22311866.2016.1231078 | |
dc.relation.references | Sánchez Espinosa, K. C., Díaz Vázquez, L., Almaguer, M., & Fernández Andreu, C. M. (2022). Dermatofitosis: Un desafío creciente de salud internacional. Revista Salud y Desarrollo, 6(1), 149–177. https://doi.org/10.55717/jrzr1886 | |
dc.relation.references | Sasidharan, S., Nair, R. V. R., S, N. K., A, K. N., Gomathi, S., & J, H. N. (2024). Ultrasonication assisted percolation extraction, isolation, identification and in silico studies of secondary metabolites from Caesalpinia bonduc (L.) Roxb. Seeds with special reference to the target proteins involved in Benign Prostatic Hyperplasia. South African Journal of Botany, 168, 89–105. https://doi.org/10.1016/j.sajb.2024.03.008 | |
dc.relation.references | Segal, E., & Elad, D. (2021). Human and Zoonotic Dermatophytoses: Epidemiological Aspects. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.713532 | |
dc.relation.references | Sonego, B., Corio, A., Mazzoletti, V., Zerbato, V., Benini, A., Di Meo, N., Zalaudek, I., Stinco, G., Errichetti, E., & Zelin, E. (2024). Trichophyton indotineae, an Emerging Drug-Resistant Dermatophyte: A Review of the Treatment Options. Journal of Clinical Medicine, 13(12), 3558. https://doi.org/10.3390/jcm13123558 | |
dc.relation.references | Tang, C., Ahmed, S. A., Deng, S., Zhang, L., Zoll, J., Al-Hatmi, A. M. S., Meis, J. F., Thakur, R., Kang, Y., & de Hoog, G. S. (2022). Detection of emerging genotypes in Trichophyton mentagrophytes species complex: A proposal for handling biodiversity in dermatophytes. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.960190 | |
dc.relation.references | Reina, A. M. M., Zumaqué, L. T., Martinez, L. M. G., Pinto, M. del V. R., Cabadiaz, A. D., & Leal, H. A. B. (2024). Eficiencia técnica del cultivo de cacao (Theobroma cacao L) en el sur de Córdoba, Colombia. Ciencia y Tecnología, 17(2), Article 2. https://doi.org/10.18779/cyt.v17i2.712 | |
dc.relation.references | Rezaei-Matehkolaei, A., Mirhendi, H., Makimura, K., De Hoog, G. S., Satoh, K., Najafzadeh, M. J., & Shidfar, M. R. (2014). Nucleotide sequence analysis of beta tubulin gene in a wide range of dermatophytes. Medical Mycology, 52(7), 674–688. https://doi.org/10.1093/mmy/myu033 | |
dc.relation.references | Robert, R., & Pihet, M. (2008). Conventional Methods for the Diagnosis of Dermatophytosis. Mycopathologia, 166(5–6), 295–306. https://doi.org/10.1007/s11046-008-9106-3 | |
dc.relation.references | Rodriguez-Temporal, D., Adrados, D., Alastruey-Izquierdo, A., Alkorta, M., Candela, A., Canut, A., Castro, C., Cilla, C. G., De Dios Caballero, J., Ercibengoa, M., Fernández, M., Fradejas, I., Fraile, O., Goyanes, M. J., Gutiérrez, A., López, J. I., López, C., López-Calleja, A. I., López-Medrano, R., … Rodríguez-Sánchez, B. (2025). Current Performance of MALDI–TOF Mass Spectrometry Databases for the Identification of Dermatophyte Species. Journal of Fungi, 11(5), 356. https://doi.org/10.3390/jof11050356 | |
dc.relation.references | Sacheli, R., & Hayette, M.-P. (2021). Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies. Journal of Fungi, 7(11), 983. https://doi.org/10.3390/jof7110983 | |
dc.relation.references | Sachikonye, M., & Mukanganyama, S. (2016). Antifungal and Drug Efflux Inhibitory Activity of Selected Flavonoids AgainstCandida albicansandCandida krusei. Journal of Biologically Active Products from Nature, 6(3), 223–236. https://doi.org/10.1080/22311866.2016.1231078 | |
dc.relation.references | Sánchez Espinosa, K. C., Díaz Vázquez, L., Almaguer, M., & Fernández Andreu, C. M. (2022). Dermatofitosis: Un desafío creciente de salud internacional. Revista Salud y Desarrollo, 6(1), 149–177. https://doi.org/10.55717/jrzr1886 | |
dc.relation.references | Sasidharan, S., Nair, R. V. R., S, N. K., A, K. N., Gomathi, S., & J, H. N. (2024). Ultrasonication assisted percolation extraction, isolation, identification and in silico studies of secondary metabolites from Caesalpinia bonduc (L.) Roxb. Seeds with special reference to the target proteins involved in Benign Prostatic Hyperplasia. South African Journal of Botany, 168, 89–105. https://doi.org/10.1016/j.sajb.2024.03.008 | |
dc.relation.references | Segal, E., & Elad, D. (2021). Human and Zoonotic Dermatophytoses: Epidemiological Aspects. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.713532 | |
dc.relation.references | Sonego, B., Corio, A., Mazzoletti, V., Zerbato, V., Benini, A., Di Meo, N., Zalaudek, I., Stinco, G., Errichetti, E., & Zelin, E. (2024). Trichophyton indotineae, an Emerging Drug-Resistant Dermatophyte: A Review of the Treatment Options. Journal of Clinical Medicine, 13(12), 3558. https://doi.org/10.3390/jcm13123558 | |
dc.relation.references | Tang, C., Ahmed, S. A., Deng, S., Zhang, L., Zoll, J., Al-Hatmi, A. M. S., Meis, J. F., Thakur, R., Kang, Y., & de Hoog, G. S. (2022). Detection of emerging genotypes in Trichophyton mentagrophytes species complex: A proposal for handling biodiversity in dermatophytes. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.960190 | |
dc.relation.references | Trepiana, J., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2018). Unraveling the in vitro antitumor activity of Vismia baccifera against HepG2: Role of hydrogen peroxide. Heliyon, 4(6), e00675. https://doi.org/10.1016/j.heliyon.2018.e00675 | |
dc.relation.references | Trepiana, J., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2018). Unraveling the in vitro antitumor activity of Vismia baccifera against HepG2: Role of hydrogen peroxide. Heliyon, 4(6), e00675. https://doi.org/10.1016/j.heliyon.2018.e00675 | |
dc.relation.references | Vander Straten, M. R., Hossain, M. A., & Ghannoum, M. A. (2003). Cutaneous infections: Dermatophytosis, onychomycosis, and tinea versicolor. Infectious Disease Clinics of North America, 17(1), 87–112. https://doi.org/10.1016/S0891-5520(02)00065-X | |
dc.relation.references | Vizcaya, M., Pérez, C., Rojas, J., Rojas-Fermín, L., Plaza, C., Morales, A., & Pérez, P. (2014). Composición química y evaluación de la actividad antifúngica del aceite esencial de corteza de Vismia baccifera var. Dealbata. Revista de la Sociedad Venezolana de Microbiología, 34(2), 86–90. | |
dc.relation.references | Yadav, A., Paul, K. K., Soni, M., Dubey, N. K., Prasad, R., Tilak, R., & Dwivedy, A. K. (2025). Antifungal resistance in dermatophytes: Essential oil-based nanoformulations as new generation therapeutics against dermatophytes. Microbial Pathogenesis, 205, 107622. https://doi.org/10.1016/j.micpath.2025.107622 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Dermatophytosis | eng |
dc.subject.keywords | Minimuminhibitory concentration | eng |
dc.subject.keywords | Ringworm | eng |
dc.subject.proposal | Dermatofitosis | spa |
dc.subject.proposal | Concentración mínima inhibitoria | spa |
dc.subject.proposal | Tiña | spa |
dc.title | Evaluación in vitro de la actividad antifúngica del extracto de vismia baccifera (L.) frente al dermatofito Nannizzia gypsea | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: