Publicación: Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
dc.contributor.advisor | Ortega López, Cesar | |
dc.contributor.author | Pérez Rossi, Kevin David | |
dc.contributor.jury | Espriella Vélez, Nicolás De la | |
dc.contributor.jury | Murillo García, Jean Fred | |
dc.contributor.projectmember | Meléndez Martínez, Raul Francisco | |
dc.contributor.projectmember | Lara Martínez, Ronald Steven | |
dc.contributor.projectmember | Arteaga Calderón, Mario | |
dc.date.accessioned | 2024-08-14T21:10:31Z | |
dc.date.available | 2024-08-14T21:10:31Z | |
dc.date.issued | 2024-08-14 | |
dc.description.abstract | En este trabajo, se hace un estudio sobre los co-dopados con manganeso (Mn) y oxigeno (O) en la monocapa AlN hexagonal planar, en la geometría 4x4 (h-4x4-AlN (0001)). Los cálculos se ejecutan usando la Teoría del Funcional de la Densidad junto con pseudopotenciales atómicos y una base de ondas planas. La monocapa se modela usando el esquema del slab periódico. Aquí, se hacen, por separado, dos co-sustituciones de los átomos Al y N por Mn y O, respectivamente. En el primer caso, los átomos sustitutos, se colocan a una distancia lo suficiente grande de modo que las impurezas, no interactúen, es decir no forman la molécula Mn-O. En el segundo caso, los átomos sustitutos, se colocan a una distancia lo suficiente pequeña de modo que las impurezas, interactúen, es decir se forma la molécula Mn-O. Se encuentra que las propiedades estructurales de la monocapa con impurezas, no interactuantes, no cambian significativamente, con respecto a la monocapa prístina, mientras que, en el caso de las impurezas, interactuantes, sí cambian significativamente, con respecto a la monocapa prístina. En particular, la distancia optima entre las impurezas interactuantes del par atómico, es ≈2.4 Å, mientras que la longitud de enlace del par atómico, en las impurezas, no interactuantes, es ≈2.1 Å. En todos los casos, se establece la estabilidad termodinámica y analizan las propiedades electrónicas de la monocapa h-AlN con y sin impurezas de Mn y O, a través de cálculos de la energía de formación y DOS/carga Löwdin , respectivamente. En ambos casos, pares atómicos (Mn y O) interactuantes y no interactuantes, la monocapa presenta propiedades magnéticas, con una magnetización total de 5.0 μ_0/cell y 4.9 μ_0/cell, respectivamente. De estos resultados, se infiere que, en el caso en el que las impurezas interactúan, la magnetización en la monocapa AlN codopada, se incrementa significativamente, con respecto al caso en que las co-impurezas, no interactúan. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | 1. Introduccion..........4 | spa |
dc.description.tableofcontents | 2. Marco Teórica..................6 | spa |
dc.description.tableofcontents | 2.1. Fundamentación teórica...............6 | spa |
dc.description.tableofcontents | 2.2. Aproximación adiabatica(Born-Oppenheiner)...............7 | spa |
dc.description.tableofcontents | 2.3. Enfoques quimicos.......8 | spa |
dc.description.tableofcontents | 2.4. Teoria funcional de la densidad (DFT)..........9 | spa |
dc.description.tableofcontents | 2.5. Aproximación densidad local (LDA)...............11 | spa |
dc.description.tableofcontents | 2.6. Aproximación gradiente generalizado (GGA)...............12 | spa |
dc.description.tableofcontents | 2.7. Teoria de pseudopotenciales.................13 | spa |
dc.description.tableofcontents | 3. Detalles computacionales………14 | |
dc.description.tableofcontents | 4.Análisis y resultados……………….. 15 | |
dc.description.tableofcontents | 5.Conclusiones……………………………36 | |
dc.description.tableofcontents | 6.Referencias………………………..36 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8525 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | [1] Novoselov , K., y otros. Electric Field Effect in Atomically Thin Carbon Films. s.l. : Science , 2004. págs. 666-669. Vol. 306. | |
dc.relation.references | [2] Vahedi Fakhrabad, D., Shahtahmasebi, N., & Ashhadi, M. (2015). Optical excitations and quasiparticle energies in the AlN monolayer honeycomb structure. Superlattices and Microstructures, 79, 38–44. doi:10.1016/j.spmi.2014.12.012 | |
dc.relation.references | [3] Ganji, M. D., Jameh-Bozorgi, S., & Rezvani, M. (2016). A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Applied Surface Science, 384, 175–181. doi:10.1016/j.apsusc.2016.05.011 | |
dc.relation.references | [4] Han, R., Chen, X., & Yan, Y. (2017). Magnetic properties of AlN monolayer doped with group 1ª or 2ª nonmagnetic element: First-principles study. Chinese Physics B, 26(9), 097503. doi:10.1088/1674-1056/26/9/097503 | |
dc.relation.references | [5] Wang, S., An, Y., Xie, C., Zhang, H., & Zeng, Q. (2018). First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN. Superlattices and Microstructures. doi:10.1016/j.spmi.2018.08.009 | |
dc.relation.references | [6] Dai, Y., Chen, X., & Jiang, C. (2012). Electronic structures of zigzag AlN, GaN nanoribbons and AlxGa1−xN nanoribbon heterojunctions: First-principles study. Physica B: Condensed Matter, 407(3), 515–518. doi:10.1016/j.physb.2011.11.026 | |
dc.relation.references | [7] S. Strite and H. Morkoc, J. Vac. Sci. Technol.B 10 (1992) 1237. | |
dc.relation.references | [8] Núñez-González, Roberto; Reyes-Serrato, Armando; Posada-Amarillas, Alvaro; Galván, Donald H. First-principles calculation of the band gap of AlxGa1¡-xN and InxGa1¡-xN Revista Mexicana de Física, vol. 54, núm. 2, noviembre, 2008, pp. 111-118 Sociedad Mexicana de Física A.C.Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=57019061017 | |
dc.relation.references | [9] Zhao, L., Xu, S., Wang, M., & Lin, S. (2016). Probing the Thermodynamic Stability and Phonon Transport in Two-Dimensional Hexagonal Aluminum Nitride Monolayer. The Journal of Physical Chemistry C, 120(48), 27675–27681. doi:10.1021/acs.jpcc.6b09706 | |
dc.relation.references | [10] Bacaksiz, C., Sahin, H., Ozaydin, H. D., Horzum, S., Senger, R. T., & Peeters, F. M. (2015). Hexagonal AlN: Dimensional-crossover-driven band-gap transition. Physical Review B, 91(8). | |
dc.relation.references | [11] C.J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. DenBaars, U.K. Mishra, Highquantum efficiency InGaN/GaN solar cells with 2.95 eV band gap, Appl. Phys.Lett. 93 (2008) 143502 | |
dc.relation.references | [12] Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441 (2006) 325. | |
dc.relation.references | [13] A. Khan, Nature 441 (2006) 299. | |
dc.relation.references | [14] E.F. de Almeida Junior, F. de Brito Mota, C.M.C. de Castilho, A. Kakanakova-Georgieva, and G.K. Gueorguiev. Defects in hexagonal-AlN sheets by first-principles calculations. | |
dc.relation.references | [15] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 109231. doi:10.1016/j.vacuum.2020.109231 | |
dc.relation.references | [16] Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352 | |
dc.relation.references | [17] Van Gog, H., Li, W.-F., Fang, C., Koster, R. S., Dijkstra, M., & van Huis, M. (2019). Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. Npj 2D Materials and Applications, 3(1). doi:10.1038/s41699-019-0100-z | |
dc.relation.references | [18] Kan, E., Li, M., Hu, S., Xiao, C., Xiang, H., & Deng, K. (2013). Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics. The Journal of Physical Chemistry Letters, 4(7), 1120–1125. doi:10.1021/jz4000559 | |
dc.relation.references | [19] Gopal, P., Spaldin, N. A., & Waghmare, U. V. (2004). First-principles study of wurtzite-structure MnO. Physical Review B, 70(20). doi:10.1103/physrevb.70.205104 | |
dc.relation.references | [20]. HAN Han (2013) Elastic, Piezoelectric and Acoustic Properties of Wurtzite MnO from Density Functional Calculation | |
dc.relation.references | [21]Nam, K. M., Kim, Y.-I., Jo, Y., Lee, S. M., Kim, B. G., Choi, R., … Park, J. T. (2012). New Crystal Structure: Synthesis and Characterization of Hexagonal Wurtzite MnO. Journal of the American Chemical Society, 134(20), 8392–8395. doi:10.1021/ja302440y | |
dc.relation.references | [22] Max Born; J. Robert Oppenheimer (1927). “Zur Quantentheorie der Molekeln” [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): | |
dc.relation.references | [23] Hartree, D. R. (1928). “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods”. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89–110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305-0041. S2CID 122077124 | |
dc.relation.references | [24] Slater, J. C. (1928). “The Self Consistent Field and the Structure of Atoms”. Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339 | |
dc.relation.references | [25] Slater, J. C. (1930). “Note on Hartree’s Method”. Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2 | |
dc.relation.references | [26] Hohenberg, P.; Kohn, W. (1964). “Inhomogeneous Electron Gas”. Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864. | |
dc.relation.references | [27] Kohn, W.; Sham, L. J. (1965). “Self-Consistent Equations Including Exchange and Correlation Effects”. Physical Review. 140 (4ª): A1133. | |
dc.relation.references | [28] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physica review,136(3B), B864. | |
dc.relation.references | [29]J. Kohanoff and N.I. Gidopoulos. Density functional theory: Basics, new trends and applications. Handbook of Molecular Physics and Quantum Chemistry, 2,part 5(26):532–568, October 2003.https://scinapse.io/papers/1570346971. 12, 13 | |
dc.relation.references | [30] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865 | |
dc.relation.references | [31]Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN. | |
dc.relation.references | [32]Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497. | |
dc.relation.references | [33] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895. | |
dc.relation.references | [34] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991. | |
dc.relation.references | [35] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993. | |
dc.relation.references | [36] QUANTUM ESPRESSO: a modular and open-source software project for quantum. Giannozzi, P., y otros. 39, 2009, Journal of Physics: Condensed Matter, Vol. 21, pág. 395502. | |
dc.relation.references | [37] Electronic energy minimisation with ultrasoft pseudopotentials. Hasnip, P.J. y Pickard, C.J. 1, 2006, Computer Physics Communications, Vol. 174. 0010-4655. | |
dc.relation.references | [38]Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. | |
dc.relation.references | [39] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The Intrinsic Ferromagnetism in a MnO2 Monolayer. The Journal of Physical Chemistry Letters, 4(20), 3382–3386. | |
dc.relation.references | [40] Methfessel, M., & Paxton, A. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review, 40(6), 3616–3621. | |
dc.relation.references | [41] Estudio de la interfaz grafeno/BN mediante DFT (2019-11-29) Casiano Jiménez, Gladys Rocío; Ortega López, César; González Hernández, Rafael | |
dc.relation.references | [42] Laurent Pizzagalli, I. Belabbas, J. Kioseoglou, Jie Chen. First-principles calculations of threading screw dislocations in AlN and InN. Physical Review Materials, American Physical Society, 2018, 2 (6), 10.1103/PhysRevMaterials.2.064607 | |
dc.relation.references | [43] B.Ahmed, B. I. Sharma. Structural and electronic properties of AlN in rocksalt, Zinc blende and wurtzite: a DFT study. January - March 2021, p. 125 – 133 | |
dc.relation.references | [44] J. Ruiz-González, G. H. Cocoletzi, and L. Morales de la Garza. Modeling the electronic structure and stability of three aluminum nitride phases | |
dc.relation.references | [45] David Holec, Paul H. Mayrhofer. Surface energies of AlN allotropes from first principles. Montanuniversiat Leoben, Franz-Josef-Straße 18, Leoben A-8700, Austria | |
dc.relation.references | [46] Jain, A., Ong, S., Hautier, G., Chen, W., Richards, W., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. | |
dc.relation.references | [47] van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Björkman, T., y otros. 5, Phys. Rev. Lett., Vol. 108, pág. 235502 | |
dc.relation.references | [48]L. I. Bendavid and E. A. Carter, First principles study of bonding, adhesion, and electronic structure at the Cu2O(111)/ZnO(1010) interface. Surface Science 618 (2013) 62–71 | |
dc.relation.references | [49] Sun, S., Sun, S., Ren, Y., Tan, X., & Xu, P. (2019). First principle calculations study of AlN surface terminal structure evolution under different conditions. Surface and Interface Analysis. | |
dc.relation.references | [50] A Rigorous Method of Calculating Exfoliation Energies from First Principles. Jung, J., Park, C. y Ihm, J. 5, 2018, Nano Letters, Vol. 18, págs. 2759-2765. | |
dc.relation.references | [51] Y. Kadioglu, F.Ersan, D. Kecik, O. U. Akturk, E. Akturk and S. Ciraci, Phys. Chem. Chem. Phys., 2018 | |
dc.relation.references | [52] F. Ersan, A. Akcay, G. Gkoglu, E. Akturk. Interactions of h-AlN monolayer with platinum, oxygen, and their clusters. Chemical Physics 455 (2015) 73–80. | |
dc.relation.references | [53] Qi-Zhi Lang et al 2020 Mater. Res. Express 7 116301 | |
dc.relation.references | [54] Ling-Yun Xie and Jian-Min Zhang. The Structure, Electronic, Magnetic and Optical Properties of the Mn-X (X = B, C, N and O) Co-Doped Monolayer WS2. 2017 The Minerals, Metals & Materials Society | |
dc.relation.references | [55] Woldesenbet, M.S., Debelo, N.G. & Woldemariam, M.M. The effect of Mn-doping on structural, electronic, ferromagnetic, and optical properties of monolayer-WSe2 using first-principles calculations. Eur. Phys. J. B 97, 104 (2024). https://doi.org/10.1140/epjb/s10051-024-00748-7 | |
dc.relation.references | [56] J. Vac. Sci. Technol. A 31, 061515 (2013) https://doi.org/10.1116/1.4824163 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Monolayer | eng |
dc.subject.keywords | Codoped | eng |
dc.subject.keywords | Magnetization | eng |
dc.subject.proposal | Monocapa | spa |
dc.subject.proposal | Codopado | spa |
dc.subject.proposal | Magnetizacion | spa |
dc.title | Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: