Publicación:
Bioplásticos: contexto actual, aplicaciones y sostenibilidad

dc.contributor.advisorGastelbondo Pastrana, Bertha Irinaspa
dc.contributor.authorDuarte Ramírez, Luis Antonio
dc.date.accessioned2022-03-03T15:30:32Z
dc.date.available2023-02-23
dc.date.available2022-03-03T15:30:32Z
dc.date.issued2022-02-23
dc.description.abstractIntroduction. Worldwide, production of non-degradable plastic exceeds its recycling, only 1% of the total global production is recycled. The rest of these are deposited in seas, lakes, rivers, lagoons; evidencing secondary effects on these environments. Objective. To determine the current importance of bioplastics in industrial sectors and the impact on sustainable development. Method. A systematic search of articles in English and Spanish published from 2011 to 2021 was carried out through Google academic, University of Cordoba and PUBMEDNCBI databases. The following search was obtained using keywords such as bioplastic, biobased, environment. It was filtered by the scale of time designed before. Conclusions. The importance of bioplastics applications in various market sectors and the sustainability that is studied with the use of these is above the nondegradable plastic based on fossil materials because its degradability is faster, and contributes to the reduction of greenhouse gases.
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a)spa
dc.description.modalityMonografíasspa
dc.description.resumenIntroducción. A nivel mundial, la producción de plástico no degradable excede su reciclado, solo el 1% de la producción total global es reciclado. El resto de estos se depositan en mares, lagos, ríos, lagunas; evidenciando efectos secundarios sobre estos entornos. Objetivo. Determinar la importancia actual del bioplástico en los sectores industriales y el impacto que tiene en el desarrollo sostenible. Método: Se realizó una búsqueda sistemática de artículos en inglés y español publicados desde el año 2011 hasta el 2021 a través de base de datos de Google académico, Universidad de Córdoba y PUBMED-NCBI donde se obtuvo información mediante el uso de palabras claves como bioplástico, plásticos bio-basados y medio ambiente, seleccionando los artículos según parámetros de inclusión y usando como filtro de búsqueda la ventana de tiempo antes mencionada. Conclusiones. La importancia de las aplicaciones de los bioplásticos en varios sectores del mercado y la sostenibilidad que se estudia con el uso de estos está por encima del plástico no degradable a base de materiales fósiles debido a que su degradabilidad es más rápida, y contribuye con la disminución de los gases de efecto invernadero.
dc.description.tableofcontentsResumen ...........................................................................................................................1spa
dc.description.tableofcontentsPRESENTACIÓN .............................................................................................................3spa
dc.description.tableofcontentsINTRODUCCIÓN ..............................................................................................................4spa
dc.description.tableofcontentsMETODOLOGÍA ...............................................................................................................8spa
dc.description.tableofcontentsTEMÁTICA ...................................................................................................................... 10spa
dc.description.tableofcontentsConsideraciones iniciales: plásticos y ambiente ................................................... 10spa
dc.description.tableofcontentsEfectos de los microplásticos y nanoplásticos. ..................................................... 12spa
dc.description.tableofcontentsTERMINOLOGÍA ...................................................................................................... 14spa
dc.description.tableofcontentsBioplástico .......................................................................................................... 14spa
dc.description.tableofcontentsMaterial plástico biodegradable ....................................................................... 15spa
dc.description.tableofcontentsPlásticos biobasados ........................................................................................ 18spa
dc.description.tableofcontentsSector industrial del bioplástico .............................................................................. 19spa
dc.description.tableofcontentsCaracterísticas de los bioplásticos ......................................................................... 20spa
dc.description.tableofcontentsUsos de los bioplásticos .......................................................................................... 22spa
dc.description.tableofcontentsClasificación de fuentes de polímeros petroquímicos y de base biológica ....... 23spa
dc.description.tableofcontentsAlmidón: polímero natural de mayor uso ............................................................... 25spa
dc.description.tableofcontentsBioplásticos y su impacto ambiental: ventajas y desventajas ............................. 28spa
dc.description.tableofcontentsSostenibilidad, biodegradación y reciclaje ......................................................... 31spa
dc.description.tableofcontentsPerspectivas futuras: investigación e innovación .............................................. 35spa
dc.description.tableofcontentsCONCLUSIONES ........................................................................................................... 38spa
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS ............................................................................. 40spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4872
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programBacteriologíaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsBioplasticspa
dc.subject.keywordsbio-based plasticspa
dc.subject.keywordsenvironmentspa
dc.subject.proposalBioplásticospa
dc.subject.proposalplástico bio-basadospa
dc.subject.proposalmedio ambientespa
dc.titleBioplásticos: contexto actual, aplicaciones y sostenibilidadspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesNaciones Unidas (2018), La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3), Santiagospa
dcterms.referencesSantiago Organización de las naciones unidas, 2018. EL ESTADO DE LOS PLÁSTICOS. Perspectiva del día mundial del medio ambiente 2018. [online] India, p.8. Available at: <https://wedocs.unep.org/bitstream/handle/20.500.11822/25513/state_plastics_WED_SP.pdf?sequence=5&isAllowed=y> [Accessed 18 August 2021].spa
dcterms.referencesGoldstein, m., Rosenberg, M., & Cheng, L. (2012). El aumento de los desechos microplástica océano mejora la oviposición en un insecto pelágica endémica. Biologi Letters, 1-2. DOI: 10.1098/rsbl.2012.0298spa
dcterms.referencesPalanisamy, K., M Gothandam, K., Jeyaseelan, A., Murugesan, K. and Palanisamy, S., 2019. Nanoscience and Biotechnology for Environmental Applications | SpringerLink. [online] Link.springer.com. Available at: <https://link.springer.com/book/10.1007/978-3-319-97922-9> [Accessed 19 August 2021].spa
dcterms.referencesNAM, T., OGIHARA, S., TUNG H. and KOBAYASHI, S. (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites, Composites Part Bspa
dcterms.referencesLopez, O., Zaritzky, N., Grossmann, M., & García, M. (2013). Acetylated and native corn starch blend films produced by blown extrusion. Retrieved 25 August 2021, from http://ezproxyucor.unicordoba.edu.co:2095/10.1016/j.jfoodeng.2012.12.032spa
dcterms.referencesNAVIA PORRAS, D. (2011). DESARROLLO DE UN MATERIAL PARA EMPAQUES DE ALIMENTOS A PARTIR DE HARINA DE YUCA Y FIBRA DE FIQUE. Retrieved from https://bibliotecadigital.univalle.edu.co/bitstream/handle/10893/8845/TESIS%20MAESTR%c3%8dA%20Diana%20Navia.pdf?sequence=1&isAllowed=yspa
dcterms.referencesGeorges, A., Lacoste, C., & Damien, E. (2018). Effect of formulation and process on the extrudability of starch-based foam cushions. Industrial Crops And Products, 115, 306-314. doi: 10.1016/j.indcrop.2018.02.001spa
dcterms.referencesHassan, M., Le Guen, M., Tucker, N., & Parker, K. (2019). Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose, 26(7), 4463-4478. doi: 10.1007/s10570-019-02393-1spa
dcterms.referencesL.T. Sin, A.R. Rahmat, (2012). W.A.W.A. Rahman, Polylactic Acid: PLA Biopolymer Technology and Applications, William Andrew Publishing, Norwich.spa
dcterms.referencesCruz‐Tirado, J., Vejarano, R., Tapia‐Blácido, D., Angelats‐Silva, L., & Siche, R. (2019). The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams. Packaging Technology And Science, 32(5), 227-237. doi: 10.1002/pts.2429spa
dcterms.referencesCombrzyński, M., Matwijczuk, A., Wójtowicz, A., Oniszczuk, T., Karcz, D., & Szponar, J. et al. (2020). Potato Starch Utilization in Ecological Loose-Fill Packaging Materials—Sustainability and Characterization. Materials, 13(6), 1390. doi: 10.3390/ma13061390spa
dcterms.referencesGuillén Jiménez Moserrat, S. T. (2014). ¡Contribuye con medio ambiente! ¡Elaboración de bioplásticos a través de polisacáridos! Cruz Azul: Centro Educativo Cruz Azul.spa
dcterms.referencesChariguaman C, J. A. (2015). Caracterización de bioplástico de almidón elaborado por el método de casting reforzado con albedo de maracuyá . Escuela Agricola Panamericana.spa
dcterms.referencesArikan, E.B., Ozsoy, H.D., 2015. A review: investigation of bioplastics. Civil Engineering and Architecture 9, 188–192. https://doi.org/10.17265/1934-7359/2015.02.007.spa
dcterms.referencesPlastics Europe. (2015). Retrieved from Plastics Europe: http://www.plasticseurope.es/usosde-los-plasticos.aspxspa
dcterms.referencesCastellon, H. (2014). Plásticos oxo-biodegradables vs. Plásticos biodegradables: http://files.udesprocesos.webnode.es/200000042-df18fe0252/1_HELLO_CASTELLON.pdfspa
dcterms.referencesBos, H.L., Meesters, K.P., Conijn, S.G., Corré, W.J., Patel, M.K., 2016. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use. Ind. Crop. Prod. 84, 366–374. https://doi.org/ 10.1016/j.indcrop.2016.02.013.spa
dcterms.referencesEcoinventos. (2016). Bioplásticos: La única alternativa para el futuro. Retrieved October 2, 2019, from https://ecoinventos.com/bioplasticos/spa
dcterms.referencesRelevo. (2018). Reciclar vs Bioplásticos. Retrieved October 2, 2019, from https://www.relevocontigo.com/reciclar-vs-bioplastico/spa
dcterms.referencesPizá, H., Rolando, S., Ramirez, C., Villanueva, S., & Zapata, A. (2017). Análisis Experimental De La Elaboración De Bioplástico a Partir De La Cáscara De Plátano Para El Diseño De Una Línea De Producción Alterna Para Las Chifleras De Piura, Perú. Pirhua.spa
dcterms.referencesBrockhaus, S., Petersen, M., Kersten, W., 2016. A crossroads for bioplastics: exploring product developers’ challenges to move beyond petroleum-based plastics. J. Clean. Prod. 127, 84–95. https://doi.org/10.1016/j.jclepro.2016.04.003spa
dcterms.referencesPacheco Gina, F. N.-S. (2014). Bioplásticos. México D.F: Universidad Nacional Autónoma de México. https://smbb.mx/wp-content/uploads/2017/10/Revista_2014_V18_N2.pdfspa
dcterms.referencesLambis, H. H. (2016, Mayo 26). Extracción de almidón a partir de residuos de piel de plátano. Retrieved from ResearchGate: https://www.researchgate.net/publication/303541238_Extraccion_de_almidon_a_partir_de_residuos_de_piel_de_platanospa
dcterms.referencesHOLGUIN CARDONA, J. (2019). OBTENCIÓN DE UN BIOPLÁSTICO A PARTIR DE ALMIDÓN DE PAPA [Ebook] (p. 27). BOGOTÁ D.C. Retrieved from https://repository. uamerica.edu.co/bitstream/20.500.11839/7388/1/6132181-2019-1-IQ.pdfspa
dcterms.referencesAtiwesh, G., Mikhael, A., Parrish, C., Banoub, J., & Le, T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918. doi: 10.1016/j.heliyon.2021.e07918spa
dcterms.referencesWWF (2018). ¿Qué efecto tiene el plástico en el Océano? Panamá: WWF.spa
dcterms.referencesRoyer, S.-J., Ferrón, S., Wilson, S. T., & Karl, D. M. (2018). Production of methane and ethylene from plastic in the environment. PLOS ONE, 13(8), e0200574.spa
dcterms.referencesSpierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., Albrecht, S., Hermann, C., Endres, H.J., 2018. Bio-based plastics-a review of environmental, social and economic impact assessments. J. Clean. Prod. 185, 476–491. https://doi.org/ 10.1016/j.jclepro.2018.03.014.spa
dcterms.referencesMüller, C., Townsend, K., & Matschullat, J. (2012). Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles. Science Of The Total Environment, 416, 464-467. doi: 10.1016/j.scitotenv.2011.10.069spa
dcterms.referencesVázquez Morillas, A., Espinosa Valdemar, R., Beltrán Villavicencio, M., & Velasco Pérez, M. (2016). El reciclaje de los plásticos. Retrieved from http://biblioteca.anipac.mx/wp-content/uploads/2016/10/0047_El_Reciclaje_de_los_Plasticos.pdfspa
dcterms.referencesCuria, S., Dautle, S., Satterfield, B., Yorke, K., Cranley, C., & Dobson, B. et al. (2019). Betulin-Based Thermoplastics and Thermosets through Sustainable and Industrially Viable Approaches: New Insights for the Valorization of an Underutilized Resource. ACS Sustainable Chemistry & Engineering, 7(19), 16371-16381. doi: 10.1021/acssuschemeng.9b03471spa
dcterms.referencesA. Muthukumar, S. Veerappapillai, (2015). Biodegradation of plastics: a brief review, Int. J. Pharmaceut. Sci. Rev. Res. 31 (2) 204–209.spa
dcterms.referencesda Costa, J. (2018). Micro- and nanoplastics in the environment: Research and policymaking. Current Opinion In Environmental Science & Health, 1, 12-16. doi: 10.1016/j.coesh.2017.11.002spa
dcterms.referencesFERNÁNDEZ MORALES, J., & ARGAS ROMERO, P. (2015). ELABORACIÓN DE UN PLAN DE NEGOCIOS PARA DETERMINAR LA FACTIBILIDAD DE LA PRODUCCIÓN DE BIOPLÁSTICOS A PARTIR DE PAPA EN CONTRA DE LA CONTAMINACIÓN EN COLOMBIA. Retrieved from https://repository.unimilitar.edu.co/bitstream/handle/10654/13350/PRODUCCI%C3%93N%20DE%20BIOPL%C3%81STICOS.pdf?sequence=2&isAllowed=yspa
dcterms.referencesMozaffari, N., Kholdebarin, A., Mozaffari, N. (2019). A review: investigation of plastics effect on the environment, bioplastic global market share and its future perspectives. Technogenic and ecological safety, 5(1/2019), 47–54. doi: 10.5281/zenodo.2600664.spa
dcterms.referencesPanel on Contaminants in the Food Chain, Wallace, H., Alexander, J., Barregård, L. et. al. (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6), 1–30. [4501]. doi: 10.2903/j.efsa.2016.4501.spa
dcterms.referencesBouwmeester H, Hollman PC and Peters RJ, (2015). Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental Science and Technology, 49, 8932–8947spa
dcterms.referencesGESAMP, (2015). Sources, Fates and Effects of Microplastics in the Marine Environment: A Global Assessment. 98 pp. Available online at: http://www.gesamp.org/data/gesamp/files/media/Publications/Reports_and_studies_82/gallery_ 1510/object_1670_large.pdfspa
dcterms.referencesPrata, J., Silva, A., da Costa, J., Mouneyrac, C., Walker, T., Duarte, A., & Rocha-Santos, T. (2019). Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. International Journal Of Environmental Research And Public Health, 16(13), 2411. doi: 10.3390/ijerph16132411spa
dcterms.referencesAntonieta, M., & Palma, R. (2018). Obtención de bioplásticos a partir de desechos agrícolas. Una revisión de las potencialidades en Ecuador. Avances En Química, 13(3), 69–78. Retrieved from http://erevistas.saber.ula.ve/index.php/avancesenquimica/article/viewFile/13983/21921925061spa
dcterms.referencesOnen Cinar, S., Chong, Z., Kucuker, M., Wieczorek, N., Cengiz, U., & Kuchta, K. (2020). Bioplastic Production from Microalgae: A Review. International Journal Of Environmental Research And Public Health, 17(11), 3842. doi: 10.3390/ijerph17113842spa
dcterms.referencesRemar. (2011). Bioplásticos. In Red de Energía y Medio Ambiente (Vol. 2). Retrieved from www.redremar.comspa
dcterms.referencesComisión Europea. (2017). Los bioplásticos: materiales sostenibles para construir una bioeconomía circular sólida en Europa. Retrieved November 13, 2019, from https://cordis.europa.eu/article/id/400694-sustainable-materials-for-a-strong-and-circular-europeanbio-economy/esspa
dcterms.referencesNatureplast. (2017). Ventajas medioambientales del bioplástico. Retrieved November 13, 2019, from http://natureplast.eu/es/el-mercado-de-los-bioplasticos/ventajas-de-los-bioplasticos/ventajasmedioambientales-de-los-bioplasticos/spa
dcterms.referencesEU (European Union), (2016). Report for European Commission DG Environment. Study to support the development of measures to combat a range of marine litter sources. Available online at: http://ec.europa.eu/ environment/marine/good-environmental-status/descriptor-10/pdf/MSFD%20Measures%20to%20Combat% 20Marine%20Litter.pdfspa
dcterms.referencesAndrady AL, (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605spa
dcterms.referencesKoelmans AA, Besseling E and Shim WJ, (2015). Nanoplastics in the Aquatic Environment. Critical Review. In: Bergmann M, Gutow L, Klages M (eds.). Marine Anthropogenic Litter. Springer International Publishing, Cham, 325–340spa
dcterms.referencesZettler ER, Mincer TJ and Amaral-Zettler LA, (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental Science and Technology, 47, 7137–7146.spa
dcterms.referencesCozar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garciade-Lomas J, Ruiz A, Fernandez-de-Puelles ML and Duarte CM, (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 111, 10239–10244.spa
dcterms.referencesSagnelli, D., Kirkensgaard, J., Giosafatto, C., Ogrodowicz, N., Kruczała, K., & Mikkelsen, M. et al. (2017). All-natural bio-plastics using starch-betaglucan composites. Carbohydrate Polymers, 172, 237-245. doi: 10.1016/j.carbpol.2017.05.043spa
dcterms.referencesMarinero-Orantes, E., Cornejo Reyes, G., Funes Guadrón, C., & Toruño, P. (2020). Biopolímeros para uso agroindustrial: Alternativa sostenible para la elaboración de una película de almidón termoplástico biodegradable. Revista Iberoamericana De Bioeconomía Y Cambio Climático, 6(11), 1359-1382. doi: 10.5377/ribcc.v6i11.9824spa
dcterms.referencesVert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., ... & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410.spa
dcterms.referencesTerminology Relating to Plastics. (2012). doi: 10.1520/d0883-20bspa
dcterms.referencesTest Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis. (2016). doi: 10.1520/d6866-16spa
dcterms.referencesLambert, S., & Wagner, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46(22), 6855-6871. doi: 10.1039/c7cs00149espa
dcterms.referencesZhu, Y., Romain, C., & Williams, C. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi: 10.1038/nature21001spa
dcterms.referencesGarcía, A. (2015). Obtención de un polímero biodegradable a partir de almidón de maíz. International Journal of Modern Physics B, 25(26), 18. https://doi.org/10.1142/S0217979211101259spa
dcterms.referencesDi Bartolo, A., Infurna, G. y Dintcheva, N. (2021). Una revisión de los bioplásticos y su adopción en la economía circular. Polímeros, 13 (8), 1229. doi: 10.3390/polym13081229spa
dcterms.referencesEmadian, S., Onay, T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536. doi: 10.1016/j.wasman.2016.10.006spa
dcterms.referencesRazza, F., Degli Innocenti, F., Dobon, A., Aliaga, C., Sanchez, C., & Hortal, M. (2015). Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. Journal of Cleaner Production, 102, 493-500. doi: 10.1016/j.jclepro.2015.04.033spa
dcterms.referencesMostafa, N., Farag, A., Abo-dief, H., & Tayeb, A. (2018). Production of biodegradable plastic from agricultural wastes. Arabian Journal of Chemistry, 11(4), 546-553. doi: 10.1016/j.arabjc.2015.04.008spa
dcterms.referencesJain, R., & Tiwari, A. (2015). Biosynthesis of planet friendly bioplastics using renewable carbon source. Journal Of Environmental Health Science And Engineering, 13(1). doi: 10.1186/s40201-015-0165-3spa
dcterms.referencesTabasi, R., & Ajji, A. (2015). Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability, 120, 435-442. doi: 10.1016/j.polymdegradstab.2015.07.020spa
dcterms.referencesChen, L., Pelton, R., & Smith, T. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal Of Cleaner Production, 137, 667-676. doi: 10.1016/j.jclepro.2016.07.094spa
dcterms.referencesGálvez, A. G. (2016). Elaboración de plástico biodegradable a partir del almidón extraido de maíz (Zea mays). Universidad de San Carlos de Guatemala.spa
dcterms.referencesBejarano, N. (2018). Estudio de las propiedades mecánicas de un biopolimero a partir del contenido de almidón de cáscara de plátanospa
dcterms.referencesPauli, N.C., Petermann, J.S., Lott, C., Weber, M., 2017. Macro-Fouling Communities and the Degradation of Plastic Bags in the Sea: An In Situ Experiment. Royal Society Open Publishing http://rsos.royalsocietypublishing.org/.spa
dcterms.referencesWeber, M., et al., 2018. Assessing marine biodegradability of plastic-towards an environmentally relevant international standard test scheme. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer, Cham, pp. 189–193.spa
dcterms.referencesKumar, S., Shaiju, P., O’Connor., y Babu, R. (2020). Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81.spa
dcterms.referencesZhang, X., Fevre, M., Jones, G., & Waymouth, R. (2017). Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 118(2), 839-885. doi: 10.1021/acs.chemrev.7b00329spa
dcterms.referencesInvesting in the European bioeconomy. (2016). Bio-Based Industries Joint Undertaking, (Europa). Retrieved from https://www.bbi.europa.eu/sites/default/files/media/bbi_article_may_2016.pdfspa
dcterms.referencesGarcia, J., & Robertson, M. (2017). The future of plastics recycling. Science, 358(6365), 870-872. doi: 10.1126/science.aaq0324spa
dcterms.referencesNarancic, T., & O'Connor, K. (2017). Microbial biotechnology addressing the plastic waste disaster. Microbial Biotechnology, 10(5), 1232-1235. doi: 10.1111/1751-7915.12775spa
dcterms.referencesBrockhaus, S., Petersen, M., & Kersten, W. (2016). A crossroads for bioplastics: exploring product developers' challenges to move beyond petroleum-based plastics. Journal Of Cleaner Production, 127, 84-95. doi: 10.1016/j.jclepro.2016.04.003spa
dcterms.referencesHong, M., & Chen, E. (2017). Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 19(16), 3692-3706. doi: 10.1039/c7gc01496aspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
LuisAntonioDuarteRamírez.pdf
Tamaño:
813.33 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato_Autorización TG, repositorio, 2022_bgp_firmado 3.pdf
Tamaño:
576.88 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: