Publicación: Bioplásticos: contexto actual, aplicaciones y sostenibilidad
dc.contributor.advisor | Gastelbondo Pastrana, Bertha Irina | spa |
dc.contributor.author | Duarte Ramírez, Luis Antonio | |
dc.date.accessioned | 2022-03-03T15:30:32Z | |
dc.date.available | 2023-02-23 | |
dc.date.available | 2022-03-03T15:30:32Z | |
dc.date.issued | 2022-02-23 | |
dc.description.abstract | Introduction. Worldwide, production of non-degradable plastic exceeds its recycling, only 1% of the total global production is recycled. The rest of these are deposited in seas, lakes, rivers, lagoons; evidencing secondary effects on these environments. Objective. To determine the current importance of bioplastics in industrial sectors and the impact on sustainable development. Method. A systematic search of articles in English and Spanish published from 2011 to 2021 was carried out through Google academic, University of Cordoba and PUBMEDNCBI databases. The following search was obtained using keywords such as bioplastic, biobased, environment. It was filtered by the scale of time designed before. Conclusions. The importance of bioplastics applications in various market sectors and the sustainability that is studied with the use of these is above the nondegradable plastic based on fossil materials because its degradability is faster, and contributes to the reduction of greenhouse gases. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | Introducción. A nivel mundial, la producción de plástico no degradable excede su reciclado, solo el 1% de la producción total global es reciclado. El resto de estos se depositan en mares, lagos, ríos, lagunas; evidenciando efectos secundarios sobre estos entornos. Objetivo. Determinar la importancia actual del bioplástico en los sectores industriales y el impacto que tiene en el desarrollo sostenible. Método: Se realizó una búsqueda sistemática de artículos en inglés y español publicados desde el año 2011 hasta el 2021 a través de base de datos de Google académico, Universidad de Córdoba y PUBMED-NCBI donde se obtuvo información mediante el uso de palabras claves como bioplástico, plásticos bio-basados y medio ambiente, seleccionando los artículos según parámetros de inclusión y usando como filtro de búsqueda la ventana de tiempo antes mencionada. Conclusiones. La importancia de las aplicaciones de los bioplásticos en varios sectores del mercado y la sostenibilidad que se estudia con el uso de estos está por encima del plástico no degradable a base de materiales fósiles debido a que su degradabilidad es más rápida, y contribuye con la disminución de los gases de efecto invernadero. | |
dc.description.tableofcontents | Resumen ...........................................................................................................................1 | spa |
dc.description.tableofcontents | PRESENTACIÓN .............................................................................................................3 | spa |
dc.description.tableofcontents | INTRODUCCIÓN ..............................................................................................................4 | spa |
dc.description.tableofcontents | METODOLOGÍA ...............................................................................................................8 | spa |
dc.description.tableofcontents | TEMÁTICA ...................................................................................................................... 10 | spa |
dc.description.tableofcontents | Consideraciones iniciales: plásticos y ambiente ................................................... 10 | spa |
dc.description.tableofcontents | Efectos de los microplásticos y nanoplásticos. ..................................................... 12 | spa |
dc.description.tableofcontents | TERMINOLOGÍA ...................................................................................................... 14 | spa |
dc.description.tableofcontents | Bioplástico .......................................................................................................... 14 | spa |
dc.description.tableofcontents | Material plástico biodegradable ....................................................................... 15 | spa |
dc.description.tableofcontents | Plásticos biobasados ........................................................................................ 18 | spa |
dc.description.tableofcontents | Sector industrial del bioplástico .............................................................................. 19 | spa |
dc.description.tableofcontents | Características de los bioplásticos ......................................................................... 20 | spa |
dc.description.tableofcontents | Usos de los bioplásticos .......................................................................................... 22 | spa |
dc.description.tableofcontents | Clasificación de fuentes de polímeros petroquímicos y de base biológica ....... 23 | spa |
dc.description.tableofcontents | Almidón: polímero natural de mayor uso ............................................................... 25 | spa |
dc.description.tableofcontents | Bioplásticos y su impacto ambiental: ventajas y desventajas ............................. 28 | spa |
dc.description.tableofcontents | Sostenibilidad, biodegradación y reciclaje ......................................................... 31 | spa |
dc.description.tableofcontents | Perspectivas futuras: investigación e innovación .............................................. 35 | spa |
dc.description.tableofcontents | CONCLUSIONES ........................................................................................................... 38 | spa |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS ............................................................................. 40 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4872 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Bacteriología | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Bioplastic | spa |
dc.subject.keywords | bio-based plastic | spa |
dc.subject.keywords | environment | spa |
dc.subject.proposal | Bioplástico | spa |
dc.subject.proposal | plástico bio-basado | spa |
dc.subject.proposal | medio ambiente | spa |
dc.title | Bioplásticos: contexto actual, aplicaciones y sostenibilidad | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | eng |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Naciones Unidas (2018), La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3), Santiago | spa |
dcterms.references | Santiago Organización de las naciones unidas, 2018. EL ESTADO DE LOS PLÁSTICOS. Perspectiva del día mundial del medio ambiente 2018. [online] India, p.8. Available at: <https://wedocs.unep.org/bitstream/handle/20.500.11822/25513/state_plastics_WED_SP.pdf?sequence=5&isAllowed=y> [Accessed 18 August 2021]. | spa |
dcterms.references | Goldstein, m., Rosenberg, M., & Cheng, L. (2012). El aumento de los desechos microplástica océano mejora la oviposición en un insecto pelágica endémica. Biologi Letters, 1-2. DOI: 10.1098/rsbl.2012.0298 | spa |
dcterms.references | Palanisamy, K., M Gothandam, K., Jeyaseelan, A., Murugesan, K. and Palanisamy, S., 2019. Nanoscience and Biotechnology for Environmental Applications | SpringerLink. [online] Link.springer.com. Available at: <https://link.springer.com/book/10.1007/978-3-319-97922-9> [Accessed 19 August 2021]. | spa |
dcterms.references | NAM, T., OGIHARA, S., TUNG H. and KOBAYASHI, S. (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites, Composites Part B | spa |
dcterms.references | Lopez, O., Zaritzky, N., Grossmann, M., & García, M. (2013). Acetylated and native corn starch blend films produced by blown extrusion. Retrieved 25 August 2021, from http://ezproxyucor.unicordoba.edu.co:2095/10.1016/j.jfoodeng.2012.12.032 | spa |
dcterms.references | NAVIA PORRAS, D. (2011). DESARROLLO DE UN MATERIAL PARA EMPAQUES DE ALIMENTOS A PARTIR DE HARINA DE YUCA Y FIBRA DE FIQUE. Retrieved from https://bibliotecadigital.univalle.edu.co/bitstream/handle/10893/8845/TESIS%20MAESTR%c3%8dA%20Diana%20Navia.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Georges, A., Lacoste, C., & Damien, E. (2018). Effect of formulation and process on the extrudability of starch-based foam cushions. Industrial Crops And Products, 115, 306-314. doi: 10.1016/j.indcrop.2018.02.001 | spa |
dcterms.references | Hassan, M., Le Guen, M., Tucker, N., & Parker, K. (2019). Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose, 26(7), 4463-4478. doi: 10.1007/s10570-019-02393-1 | spa |
dcterms.references | L.T. Sin, A.R. Rahmat, (2012). W.A.W.A. Rahman, Polylactic Acid: PLA Biopolymer Technology and Applications, William Andrew Publishing, Norwich. | spa |
dcterms.references | Cruz‐Tirado, J., Vejarano, R., Tapia‐Blácido, D., Angelats‐Silva, L., & Siche, R. (2019). The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams. Packaging Technology And Science, 32(5), 227-237. doi: 10.1002/pts.2429 | spa |
dcterms.references | Combrzyński, M., Matwijczuk, A., Wójtowicz, A., Oniszczuk, T., Karcz, D., & Szponar, J. et al. (2020). Potato Starch Utilization in Ecological Loose-Fill Packaging Materials—Sustainability and Characterization. Materials, 13(6), 1390. doi: 10.3390/ma13061390 | spa |
dcterms.references | Guillén Jiménez Moserrat, S. T. (2014). ¡Contribuye con medio ambiente! ¡Elaboración de bioplásticos a través de polisacáridos! Cruz Azul: Centro Educativo Cruz Azul. | spa |
dcterms.references | Chariguaman C, J. A. (2015). Caracterización de bioplástico de almidón elaborado por el método de casting reforzado con albedo de maracuyá . Escuela Agricola Panamericana. | spa |
dcterms.references | Arikan, E.B., Ozsoy, H.D., 2015. A review: investigation of bioplastics. Civil Engineering and Architecture 9, 188–192. https://doi.org/10.17265/1934-7359/2015.02.007. | spa |
dcterms.references | Plastics Europe. (2015). Retrieved from Plastics Europe: http://www.plasticseurope.es/usosde-los-plasticos.aspx | spa |
dcterms.references | Castellon, H. (2014). Plásticos oxo-biodegradables vs. Plásticos biodegradables: http://files.udesprocesos.webnode.es/200000042-df18fe0252/1_HELLO_CASTELLON.pdf | spa |
dcterms.references | Bos, H.L., Meesters, K.P., Conijn, S.G., Corré, W.J., Patel, M.K., 2016. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use. Ind. Crop. Prod. 84, 366–374. https://doi.org/ 10.1016/j.indcrop.2016.02.013. | spa |
dcterms.references | Ecoinventos. (2016). Bioplásticos: La única alternativa para el futuro. Retrieved October 2, 2019, from https://ecoinventos.com/bioplasticos/ | spa |
dcterms.references | Relevo. (2018). Reciclar vs Bioplásticos. Retrieved October 2, 2019, from https://www.relevocontigo.com/reciclar-vs-bioplastico/ | spa |
dcterms.references | Pizá, H., Rolando, S., Ramirez, C., Villanueva, S., & Zapata, A. (2017). Análisis Experimental De La Elaboración De Bioplástico a Partir De La Cáscara De Plátano Para El Diseño De Una Línea De Producción Alterna Para Las Chifleras De Piura, Perú. Pirhua. | spa |
dcterms.references | Brockhaus, S., Petersen, M., Kersten, W., 2016. A crossroads for bioplastics: exploring product developers’ challenges to move beyond petroleum-based plastics. J. Clean. Prod. 127, 84–95. https://doi.org/10.1016/j.jclepro.2016.04.003 | spa |
dcterms.references | Pacheco Gina, F. N.-S. (2014). Bioplásticos. México D.F: Universidad Nacional Autónoma de México. https://smbb.mx/wp-content/uploads/2017/10/Revista_2014_V18_N2.pdf | spa |
dcterms.references | Lambis, H. H. (2016, Mayo 26). Extracción de almidón a partir de residuos de piel de plátano. Retrieved from ResearchGate: https://www.researchgate.net/publication/303541238_Extraccion_de_almidon_a_partir_de_residuos_de_piel_de_platano | spa |
dcterms.references | HOLGUIN CARDONA, J. (2019). OBTENCIÓN DE UN BIOPLÁSTICO A PARTIR DE ALMIDÓN DE PAPA [Ebook] (p. 27). BOGOTÁ D.C. Retrieved from https://repository. uamerica.edu.co/bitstream/20.500.11839/7388/1/6132181-2019-1-IQ.pdf | spa |
dcterms.references | Atiwesh, G., Mikhael, A., Parrish, C., Banoub, J., & Le, T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918. doi: 10.1016/j.heliyon.2021.e07918 | spa |
dcterms.references | WWF (2018). ¿Qué efecto tiene el plástico en el Océano? Panamá: WWF. | spa |
dcterms.references | Royer, S.-J., Ferrón, S., Wilson, S. T., & Karl, D. M. (2018). Production of methane and ethylene from plastic in the environment. PLOS ONE, 13(8), e0200574. | spa |
dcterms.references | Spierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., Albrecht, S., Hermann, C., Endres, H.J., 2018. Bio-based plastics-a review of environmental, social and economic impact assessments. J. Clean. Prod. 185, 476–491. https://doi.org/ 10.1016/j.jclepro.2018.03.014. | spa |
dcterms.references | Müller, C., Townsend, K., & Matschullat, J. (2012). Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles. Science Of The Total Environment, 416, 464-467. doi: 10.1016/j.scitotenv.2011.10.069 | spa |
dcterms.references | Vázquez Morillas, A., Espinosa Valdemar, R., Beltrán Villavicencio, M., & Velasco Pérez, M. (2016). El reciclaje de los plásticos. Retrieved from http://biblioteca.anipac.mx/wp-content/uploads/2016/10/0047_El_Reciclaje_de_los_Plasticos.pdf | spa |
dcterms.references | Curia, S., Dautle, S., Satterfield, B., Yorke, K., Cranley, C., & Dobson, B. et al. (2019). Betulin-Based Thermoplastics and Thermosets through Sustainable and Industrially Viable Approaches: New Insights for the Valorization of an Underutilized Resource. ACS Sustainable Chemistry & Engineering, 7(19), 16371-16381. doi: 10.1021/acssuschemeng.9b03471 | spa |
dcterms.references | A. Muthukumar, S. Veerappapillai, (2015). Biodegradation of plastics: a brief review, Int. J. Pharmaceut. Sci. Rev. Res. 31 (2) 204–209. | spa |
dcterms.references | da Costa, J. (2018). Micro- and nanoplastics in the environment: Research and policymaking. Current Opinion In Environmental Science & Health, 1, 12-16. doi: 10.1016/j.coesh.2017.11.002 | spa |
dcterms.references | FERNÁNDEZ MORALES, J., & ARGAS ROMERO, P. (2015). ELABORACIÓN DE UN PLAN DE NEGOCIOS PARA DETERMINAR LA FACTIBILIDAD DE LA PRODUCCIÓN DE BIOPLÁSTICOS A PARTIR DE PAPA EN CONTRA DE LA CONTAMINACIÓN EN COLOMBIA. Retrieved from https://repository.unimilitar.edu.co/bitstream/handle/10654/13350/PRODUCCI%C3%93N%20DE%20BIOPL%C3%81STICOS.pdf?sequence=2&isAllowed=y | spa |
dcterms.references | Mozaffari, N., Kholdebarin, A., Mozaffari, N. (2019). A review: investigation of plastics effect on the environment, bioplastic global market share and its future perspectives. Technogenic and ecological safety, 5(1/2019), 47–54. doi: 10.5281/zenodo.2600664. | spa |
dcterms.references | Panel on Contaminants in the Food Chain, Wallace, H., Alexander, J., Barregård, L. et. al. (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6), 1–30. [4501]. doi: 10.2903/j.efsa.2016.4501. | spa |
dcterms.references | Bouwmeester H, Hollman PC and Peters RJ, (2015). Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental Science and Technology, 49, 8932–8947 | spa |
dcterms.references | GESAMP, (2015). Sources, Fates and Effects of Microplastics in the Marine Environment: A Global Assessment. 98 pp. Available online at: http://www.gesamp.org/data/gesamp/files/media/Publications/Reports_and_studies_82/gallery_ 1510/object_1670_large.pdf | spa |
dcterms.references | Prata, J., Silva, A., da Costa, J., Mouneyrac, C., Walker, T., Duarte, A., & Rocha-Santos, T. (2019). Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. International Journal Of Environmental Research And Public Health, 16(13), 2411. doi: 10.3390/ijerph16132411 | spa |
dcterms.references | Antonieta, M., & Palma, R. (2018). Obtención de bioplásticos a partir de desechos agrícolas. Una revisión de las potencialidades en Ecuador. Avances En Química, 13(3), 69–78. Retrieved from http://erevistas.saber.ula.ve/index.php/avancesenquimica/article/viewFile/13983/21921925061 | spa |
dcterms.references | Onen Cinar, S., Chong, Z., Kucuker, M., Wieczorek, N., Cengiz, U., & Kuchta, K. (2020). Bioplastic Production from Microalgae: A Review. International Journal Of Environmental Research And Public Health, 17(11), 3842. doi: 10.3390/ijerph17113842 | spa |
dcterms.references | Remar. (2011). Bioplásticos. In Red de Energía y Medio Ambiente (Vol. 2). Retrieved from www.redremar.com | spa |
dcterms.references | Comisión Europea. (2017). Los bioplásticos: materiales sostenibles para construir una bioeconomía circular sólida en Europa. Retrieved November 13, 2019, from https://cordis.europa.eu/article/id/400694-sustainable-materials-for-a-strong-and-circular-europeanbio-economy/es | spa |
dcterms.references | Natureplast. (2017). Ventajas medioambientales del bioplástico. Retrieved November 13, 2019, from http://natureplast.eu/es/el-mercado-de-los-bioplasticos/ventajas-de-los-bioplasticos/ventajasmedioambientales-de-los-bioplasticos/ | spa |
dcterms.references | EU (European Union), (2016). Report for European Commission DG Environment. Study to support the development of measures to combat a range of marine litter sources. Available online at: http://ec.europa.eu/ environment/marine/good-environmental-status/descriptor-10/pdf/MSFD%20Measures%20to%20Combat% 20Marine%20Litter.pdf | spa |
dcterms.references | Andrady AL, (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605 | spa |
dcterms.references | Koelmans AA, Besseling E and Shim WJ, (2015). Nanoplastics in the Aquatic Environment. Critical Review. In: Bergmann M, Gutow L, Klages M (eds.). Marine Anthropogenic Litter. Springer International Publishing, Cham, 325–340 | spa |
dcterms.references | Zettler ER, Mincer TJ and Amaral-Zettler LA, (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental Science and Technology, 47, 7137–7146. | spa |
dcterms.references | Cozar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garciade-Lomas J, Ruiz A, Fernandez-de-Puelles ML and Duarte CM, (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 111, 10239–10244. | spa |
dcterms.references | Sagnelli, D., Kirkensgaard, J., Giosafatto, C., Ogrodowicz, N., Kruczała, K., & Mikkelsen, M. et al. (2017). All-natural bio-plastics using starch-betaglucan composites. Carbohydrate Polymers, 172, 237-245. doi: 10.1016/j.carbpol.2017.05.043 | spa |
dcterms.references | Marinero-Orantes, E., Cornejo Reyes, G., Funes Guadrón, C., & Toruño, P. (2020). Biopolímeros para uso agroindustrial: Alternativa sostenible para la elaboración de una película de almidón termoplástico biodegradable. Revista Iberoamericana De Bioeconomía Y Cambio Climático, 6(11), 1359-1382. doi: 10.5377/ribcc.v6i11.9824 | spa |
dcterms.references | Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., ... & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. | spa |
dcterms.references | Terminology Relating to Plastics. (2012). doi: 10.1520/d0883-20b | spa |
dcterms.references | Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis. (2016). doi: 10.1520/d6866-16 | spa |
dcterms.references | Lambert, S., & Wagner, M. (2017). Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46(22), 6855-6871. doi: 10.1039/c7cs00149e | spa |
dcterms.references | Zhu, Y., Romain, C., & Williams, C. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi: 10.1038/nature21001 | spa |
dcterms.references | García, A. (2015). Obtención de un polímero biodegradable a partir de almidón de maíz. International Journal of Modern Physics B, 25(26), 18. https://doi.org/10.1142/S0217979211101259 | spa |
dcterms.references | Di Bartolo, A., Infurna, G. y Dintcheva, N. (2021). Una revisión de los bioplásticos y su adopción en la economía circular. Polímeros, 13 (8), 1229. doi: 10.3390/polym13081229 | spa |
dcterms.references | Emadian, S., Onay, T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536. doi: 10.1016/j.wasman.2016.10.006 | spa |
dcterms.references | Razza, F., Degli Innocenti, F., Dobon, A., Aliaga, C., Sanchez, C., & Hortal, M. (2015). Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. Journal of Cleaner Production, 102, 493-500. doi: 10.1016/j.jclepro.2015.04.033 | spa |
dcterms.references | Mostafa, N., Farag, A., Abo-dief, H., & Tayeb, A. (2018). Production of biodegradable plastic from agricultural wastes. Arabian Journal of Chemistry, 11(4), 546-553. doi: 10.1016/j.arabjc.2015.04.008 | spa |
dcterms.references | Jain, R., & Tiwari, A. (2015). Biosynthesis of planet friendly bioplastics using renewable carbon source. Journal Of Environmental Health Science And Engineering, 13(1). doi: 10.1186/s40201-015-0165-3 | spa |
dcterms.references | Tabasi, R., & Ajji, A. (2015). Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability, 120, 435-442. doi: 10.1016/j.polymdegradstab.2015.07.020 | spa |
dcterms.references | Chen, L., Pelton, R., & Smith, T. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal Of Cleaner Production, 137, 667-676. doi: 10.1016/j.jclepro.2016.07.094 | spa |
dcterms.references | Gálvez, A. G. (2016). Elaboración de plástico biodegradable a partir del almidón extraido de maíz (Zea mays). Universidad de San Carlos de Guatemala. | spa |
dcterms.references | Bejarano, N. (2018). Estudio de las propiedades mecánicas de un biopolimero a partir del contenido de almidón de cáscara de plátano | spa |
dcterms.references | Pauli, N.C., Petermann, J.S., Lott, C., Weber, M., 2017. Macro-Fouling Communities and the Degradation of Plastic Bags in the Sea: An In Situ Experiment. Royal Society Open Publishing http://rsos.royalsocietypublishing.org/. | spa |
dcterms.references | Weber, M., et al., 2018. Assessing marine biodegradability of plastic-towards an environmentally relevant international standard test scheme. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer, Cham, pp. 189–193. | spa |
dcterms.references | Kumar, S., Shaiju, P., O’Connor., y Babu, R. (2020). Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81. | spa |
dcterms.references | Zhang, X., Fevre, M., Jones, G., & Waymouth, R. (2017). Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 118(2), 839-885. doi: 10.1021/acs.chemrev.7b00329 | spa |
dcterms.references | Investing in the European bioeconomy. (2016). Bio-Based Industries Joint Undertaking, (Europa). Retrieved from https://www.bbi.europa.eu/sites/default/files/media/bbi_article_may_2016.pdf | spa |
dcterms.references | Garcia, J., & Robertson, M. (2017). The future of plastics recycling. Science, 358(6365), 870-872. doi: 10.1126/science.aaq0324 | spa |
dcterms.references | Narancic, T., & O'Connor, K. (2017). Microbial biotechnology addressing the plastic waste disaster. Microbial Biotechnology, 10(5), 1232-1235. doi: 10.1111/1751-7915.12775 | spa |
dcterms.references | Brockhaus, S., Petersen, M., & Kersten, W. (2016). A crossroads for bioplastics: exploring product developers' challenges to move beyond petroleum-based plastics. Journal Of Cleaner Production, 127, 84-95. doi: 10.1016/j.jclepro.2016.04.003 | spa |
dcterms.references | Hong, M., & Chen, E. (2017). Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 19(16), 3692-3706. doi: 10.1039/c7gc01496a | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- LuisAntonioDuarteRamírez.pdf
- Tamaño:
- 813.33 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Formato_Autorización TG, repositorio, 2022_bgp_firmado 3.pdf
- Tamaño:
- 576.88 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: