Publicación: Nuevos híbridos ternarios 2D basados en diselenuros de metales de transición
dc.contributor.advisor | Murillo García, Jean Fred | |
dc.contributor.author | Daguer Cuadrado, Silvio Augusto | |
dc.date.accessioned | 2021-09-24T23:27:48Z | |
dc.date.available | 2021-09-24T23:27:48Z | |
dc.date.issued | 2021-07-19 | |
dc.description.abstract | En este trabajo, se estudian las propiedades estructurales y electrónicas de las aleaciones ternarias bidimensionales basadas en diselenuros de metales de transición MTxV1-xSe2 (MT=Cr, Mo y W, con x = 0.0, 0.25, 0.50, 0.75, 1.0) en estructura 1H, usando cálculos de primeros principios en el marco de la Teoría de la Funcional de la Densidad (DFT) junto el método del pseudopotencial. Para la interacción electrón-electrón, se usa la aproximación de gradiente generalizado (GGA). Las monocapas puras y sus aleaciones, se modelan usando el esquema de slab periódico. Los cálculos de los valores de las energías de cohesión y formación, indican que las aleaciones son termodinámicamente estables. Las aleaciones CrxV1-xSe2 (MT=Cr; con x = 0.25 0.50 y 0.75) poseen un comportamiento semimetálico, mientras que las aleaciones MTxV1-xSe2 (MT= Mo, W; con x = 0.25 0.50 y 0.75) poseen un comportamiento metálico. Las monocapas MTxV1-xSe2 (MT= Cr, Mo, W; con x = 0.25, 0.5, 0.75) exhiben un comportamiento magnético, observándose valores máximo y mínimo en el magnetismo para las monocapas Cr0.25V0.75Se2 y Mo0.75V0.25Se2, de 3.09 µB/celda y 0.03 µB/celda, respectivamente. Con relación a las nuevas monocapas MTxV1-xSe2 (con MT = Cr, Mo y W; x = 0.25, 0.50, 0.75) se observa que existe una tendencia lineal en las constantes de red de las monocapas prístinas y las aleaciones debido a que presentan una pequeña desviación del comportamiento lineal respeto a la ley Vegard's. La máxima desviación 0.006 (un error del 0.186%) ocurre para la aleación Cr0.75V0.25Se2. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Físicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. Introducción.................................................................................................... 8 | spa |
dc.description.tableofcontents | 2. Antecedentes.......................................................................................................11 | spa |
dc.description.tableofcontents | 3. Justificación.................................................................................................13 | spa |
dc.description.tableofcontents | 4. Planteamiento del problema .......................................................................14 | spa |
dc.description.tableofcontents | 5. Objetivos........................................................................................................ 16 | spa |
dc.description.tableofcontents | 5.1. Objetivo general........................................................................................... 16 | spa |
dc.description.tableofcontents | 5.2. Objetivos específicos.........................................................................................16 | spa |
dc.description.tableofcontents | 6. Referente teórico.......................................................................................17 | spa |
dc.description.tableofcontents | 6.1. Hamiltoniano del sistema.................................................................17 | spa |
dc.description.tableofcontents | 6.2. Teoría Funcional de la Densidad (DFT).............................................................18 | spa |
dc.description.tableofcontents | 6.2.1. Aproximación de densidad local (LDA): ………………………………….......................19 | spa |
dc.description.tableofcontents | 6.2.2. Aproximación de gradiente generalizado (GGA)...........................20 | spa |
dc.description.tableofcontents | 6.3. Pseudopotenciales y Ondas planas..........................................................21 | spa |
dc.description.tableofcontents | 7. Metodología.............................................................................................. 25 | spa |
dc.description.tableofcontents | 8. Análisis de los resultados.................................................................................26 | spa |
dc.description.tableofcontents | 8.1. Diselenuros CrSe2, MoSe2, VSe2 y WSe2 en el volumen...................26 | spa |
dc.description.tableofcontents | 8.1.1. Resultados estructurales y estabilidad energética en el volumen.............27 | spa |
dc.description.tableofcontents | 8.1.2. Carácter electrónico en el volumen.......................................................... 29 | spa |
dc.description.tableofcontents | 8.2. Monocapas prístinas CrSe2, MoSe2, VSe2 y WSe2.............................32 | spa |
dc.description.tableofcontents | 8.2.1.Resultados estructurales y estabilidad energética monocapas prístinas.... 33 | spa |
dc.description.tableofcontents | 8.3. Aleaciones 2D MTxV1-xSe2 con MT: Cr, Mo y W; x: 0.25, 0.50 y 0.75.........38 | spa |
dc.description.tableofcontents | 8.3.1. Resultados estructurales de las aleaciones.................................... 38 | spa |
dc.description.tableofcontents | 8.3.2. Carácter electrónico de las aleaciones............................................................ 43 | spa |
dc.description.tableofcontents | 9. Conclusiones.......................................................................................... 48 | spa |
dc.description.tableofcontents | Bibliografía ....................................................................................................... 50 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4549 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Físicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Alloys | eng |
dc.subject.keywords | Cohesion | eng |
dc.subject.keywords | Formation | eng |
dc.subject.keywords | Substitution | eng |
dc.subject.keywords | DFT | eng |
dc.subject.proposal | Aleaciones | spa |
dc.subject.proposal | Cohesión | spa |
dc.subject.proposal | Formación | spa |
dc.subject.proposal | Sustitución | spa |
dc.subject.proposal | DFT | spa |
dc.title | Nuevos híbridos ternarios 2D basados en diselenuros de metales de transición | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666–669. | spa |
dcterms.references | [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005). | spa |
dcterms.references | [3] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). | spa |
dcterms.references | [4] A. K. Geim, Science 324, 1530 (2009). | spa |
dcterms.references | [5] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306: 666. | spa |
dcterms.references | [6] Katsnelson, M.I., K.S. Novoselov y A. K. Geim. “Chiral tunnelling and the Klein paradox in graphene”, Nature materials (UK), 2006, Vol.2, pp.620-625. | spa |
dcterms.references | [7] X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites,” Nano Lett. 9(1), 467–472 (2009). | spa |
dcterms.references | [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008). | spa |
dcterms.references | [9] C. Tusche, H. L. Meyerheim, J. Kirschner, Physical Review Letters 99 026102 (2007). | spa |
dcterms.references | [10] Willi Auwärter, Surface Science Reports Volume 74, Issue 1, March 2019, Pages 1-95. | spa |
dcterms.references | [11] Guoan Tai, Tian Zeng, Jin Yu, Jianxin Zhou, Yuncheng You, Xufeng Wang, Hongrong Wu, Xu Sun, Tingsong Hu, Wanlin Guo, Nanoscale, 2016, 8, 2234-2241. | spa |
dcterms.references | [12] Shivangi Shree, Antony George, Tibor Lehnert, Christof Neumann, Meryem Benelajla, Cedric Robert, Xavier Marie, Kenji Watanabe, Takashi Taniguchi, Ute Kaiser, 2D Materials, Volume 7, Number 1 2019. | spa |
dcterms.references | [13] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 2009. | spa |
dcterms.references | [14] Yujie Bai, Kaiming Deng, Erjun Kan, RSC Advances, 2015, 5, 18352. | spa |
dcterms.references | [15] Krzysztof Zberecki, J Supercond Nov Magn (2012) 25:2533–2537. | spa |
dcterms.references | [16] Bo Meng, Wen-Zhi Xiao, Ling-Ling Wang, Li Yue, Song Zhang, Hong-yun Zhang, RSC Advances., 2015, 5, 82357. | spa |
dcterms.references | [17] M. Javaid, S. P. Russo, K. Kalantar-Zadeh, A. D. Greentree, D. W. Drumm, Electronic Structure 1 (2019) 015005. | spa |
dcterms.references | [18] C. Ataca, H. Şahin, S. Ciraci, Journal Physical Chemistry C 116 (2012) 8983−8999. | spa |
dcterms.references | [19] Björkman T, Gulans A, Krasheninnikov A. V., Rieminen R. M., Physical Review Letters 108 (2012) 23550. | spa |
dcterms.references | [20] M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H.-Z. Tsai, A. Riss, S.-K. Mo, D. Lee, A. Zettl, Z. Hussain, Z.-X. Shen, M. F. Crommie, Nat. Phys. 12, 92 (2016). | spa |
dcterms.references | [21] F. Wang, M. F. Crommie, D. F. Ogletree, J. B. Neaton, A. Weber-Bargioni, Nat. Phys. 12, 751 (2016). J. Chen, B. Liu, Y. Liu, W. Tang, C. T. Nai, L. Li, J. Zheng, L. Gao, Y. Zheng, H. S. Shin, H. Y. Jeong, K. P. Loh, Adv. Mater. 27, 6722 (2015). | spa |
dcterms.references | [22] M. Yoshida, T. Iizuka, Y. Saito, M. Onga, R. Suzuki, Y. Zhang, Y. Iwasa, and S. Shimizu, Nano Lett. 16, 2061 (2016). | spa |
dcterms.references | [23] J. Zhou, F. Liu, J. Lin, X. Huang, J. Xia, B. Zhang, Q. Zeng, H. Wang, C. Zhu, L. Niu, X. Wang, W. Fu, P. Yu, T.-R. Chang, C.-H. Hsu, D. Wu, H.-T. Jeng, Y. Huang, H. Lin, Z. Shen, C. Yang, L. Lu, K. Suenaga, W. Zhou, S. T. Pantelides, G. Liu, and Z. Liu, Adv. Mater. 29, 1603471 (1 (2017). | spa |
dcterms.references | [24] Yafei Zhao, Wei Wang, Can Li y Liang He. Scientific reports. 10.1038 (2017). | spa |
dcterms.references | [25] C K Ghosh, D Sarkar, M K Mitra and K K Chattopadhyay. Journal of Physics d: applied physics. 46 (2013) 395304. | spa |
dcterms.references | [26] Ali Eftekhari. Applied Materials Today. 8 (2017) 1-17. | spa |
dcterms.references | [27] Alina Shafqat, Tahir Iqbal, and Abdul Majid. AIP Advances 7, 105306 (2017). | spa |
dcterms.references | [28] H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, and Y. P. Sun. Physical Review B. : 10.1103/PhysRevB.92.214419 (2015). | spa |
dcterms.references | [29] Zhong-Liu Liu , Xu Wu , Yan Shao a, Jing Qi , Yun Cao , Li Huang, Chen Liu, Jia-Ou Wang, Qi Zheng, Zhi-Li Zhu, Kurash Ibrahim, Ye-Liang Wang, Hong-Jun Gao. Science Bulletin. (2018) | spa |
dcterms.references | [30] Wu-Xing Zhou & Ke-Qiu Chen. Scientific Reports.10.1038/srep15070 (2015). | spa |
dcterms.references | [31] Wei Liu, Jiahao Kang, Deblina Sarkar, Yasin Khatami, Debdeep Jena, and Kaustav Banerjee. Nano Letters. /10.1021/nl304777e (2013) | spa |
dcterms.references | [32] C. Ataca, H. Şahin, S. Ciraci, Journal Physical Chemistry C 116 (2012) 8983−8999. | spa |
dcterms.references | [33] Ali Eftekhari., Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Applied Materials Today. 10: 1016, 2017. | spa |
dcterms.references | [34] Alina Shafqat.,Tahir Iqbal., Abdul Majid., A DFT study of intrinsic point defects in monolayer MoSe2. Aip Advances 7: 105306. 2017. | spa |
dcterms.references | [35] L A Chernozatonskii and A A Artyukh. Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications. Phys.-Usp. 61, 2018. | spa |
dcterms.references | [36] J. A. Reyes-Retana & F. Cervantes-Sodi. Spin-orbital effects in metaldichalcogenide semiconducting monolayers. Scientific Reports. 10.1038, 20 de abril 2016. | spa |
dcterms.references | [37] Zhang Hui, Sun Liting. et al. Tunable Electronic and Magnetic Properties from Structure Phase Transition of Layered Vanadium Diselenide. Journal of Wuhan University of Technology-Mater. 10:1007, 2017. | spa |
dcterms.references | [38] Zhong-Liu Liu. , Xu Wu., Yan Shao. et al. Epitaxially grown monolayer VSe2: an airstable magnetic two-dimensional material with low work function at edges. Science Bulletin.10:2016, 2018. | spa |
dcterms.references | [39] Wu-Xing Zhou & Ke-Qiu Chen. First-Principles Determination of Ultralow Thermal Conductivity of monolayer WSe2. Scientific RepoRts 14 October 2015. | spa |
dcterms.references | [40] Wei Liu,† Jiahao Kang. Et al. Role of Metal Contacts in Designing High-Performance Monolayer n Type WSe2 Field Effect Transistors. American Chemical Society. 10.1021,2013. | spa |
dcterms.references | [41] J. Jebaraj Devadasana, C. Sanjeevirajaa, M. Jayachandranb. Electrosynthesis and characterisation of n-WSe2 thin films. Materials Chemistry and Physics 77 (2002) 397–401. | spa |
dcterms.references | [42] Hohenberg, P., Kohn W. Inhomogeneous electron gas. Phys. Rev, 136(3B): B 864, 1964. | spa |
dcterms.references | [43] W. Kohn, L. Sham. Physical Review 140(4A) (1965) A1133. | spa |
dcterms.references | [44] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21 395502 (2009); http://www.quantum-espresso.org, doi:10.1088/0953-8984/21/39/395502 | spa |
dcterms.references | [45] Burke, Kieron et al. The ABC of DFT. (2007) http://dft.uci.edu/doc/g1.pdf. | spa |
dcterms.references | [46] Perdew, J.P., ZungeR, Alex. Self-interaction correction to density-functional approximations for many-electron systems, physical review b volume 23, number 10 -15 may 198. | spa |
dcterms.references | [47] Perdew, J. P. et al. Generalized Gradient Approximation Made Simple. physical review letters 77, 18 (1996), 3865-3868. | spa |
dcterms.references | [48] Hamann, D. R., schlüter M., Chiang, C. Norm-Conserving Pseudopotentials Phys. Rev. Lett. 43: 1194, 1979. | spa |
dcterms.references | [49] Bachelet, G. B., Hamann, D. R., Schlüter M.,Pseudopotentials that work: From H to Pu. Phys. Rev. B, 26: 4199, 1982. | spa |
dcterms.references | [50] Vanderbilt, David. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, 1990. | spa |
dcterms.references | [51] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991. | spa |
dcterms.references | [52] Laasonen K., Pasquarello, A., et al. Car -Parrinello. Molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993. | spa |
dcterms.references | [54] Charles Kittel. (2005) Introduction to Solid State Physics, Jhon Wiley & Sons, Inc. 8th Edition, ISBN: 978-0-471-41526-8 pg. 50. [55] M. Javaid, S. P. Russo, K. Kalantar, A. D. Greentree, and D. W. Drumm. B | spa |
dcterms.references | [57] Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, Volume 5, Issue 1, pp.17-26 (1921) DOI: 10.1007/BF01349680 | spa |
dcterms.references | [58] Denton, A.R. and Ashcroft, N.W. Vegard’s Law. Physical Review A, 43, 3161-3164. (1991) http://dx.doi.org/10.1103/PhysRevA.43.3161 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: