Publicación: Evaluación energética del edificio bioclimático de la Universidad de Córdoba
dc.contributor.advisor | Tapia Vertel, Andrés Felipe | |
dc.contributor.author | Ramos Ramos, Romario Carlos | |
dc.contributor.author | Ozuna Díaz, Jessica | |
dc.date.accessioned | 2021-10-08T14:21:27Z | |
dc.date.available | 2021-10-08T14:21:27Z | |
dc.date.issued | 2021-10-07 | |
dc.description.abstract | En este documento se analizó el consumo de energía del edificio bioclimático en mención, proponiendo 3 condiciones de análisis que van desde la condición actual del edificio, después la implementación de sistemas de aire acondicionado en las aulas y por último el cambio de los equipos de refrigeración por otros con una mayor eficiencia. A su vez se implementó un nuevo perfil de uso para las aulas que consiste en no usarlas entre las (12:00 – 14:00) pm. Y por último la instalación de material aislante en los cerramientos, todo esto con el fin de reducir dichos consumos energéticos. Para llevar a cabo este estudio se dividió el edificio en zonas y en 6 grupos de recintos que son, aulas, oficinas, baños, locales comerciales, cuartos de oficios varios y cafetines. Entonces primero se realizaron los planos del edificio usando el software AutoCAD®, seguidamente se utilizó el software IFC Builder® para crear el modelo arquitectónico para cada condición planteada, después con la ayuda del software CYPETHERM LOADS® se obtuvieron los informes de cargas térmicas para cada condición; por último, se utilizó el software CYPETHERM EPLUS® para la estimación de los informes de consumo y demanda de energía para cada condición. Teniendo en cuenta consumos producidos por iluminación, refrigeración. Ventilación, y otros equipos presentes en el edificio. Obteniendo como resultados un consumo anual de 112492,8 kWh para la condición 1, 357139,2 kWh para la condición 2 y 289939,2 kWh para la condición 3, lo que refleja un aumento de más del 65 % del consumo energético partiendo de la condición 1 a la dos 2, y una reducción del consumo energético superior al 20 % entre la condición 2 y 3 | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografía | spa |
dc.description.tableofcontents | RESUMEN......................................................................................................................................10 | spa |
dc.description.tableofcontents | ABSTRACT....................................................................................................................................12 | spa |
dc.description.tableofcontents | 2 OBJETIVOS................................................................................................................................17 | spa |
dc.description.tableofcontents | 3.2.1. Evaluación de indicadores de uso del espacio: ...............................................................20 | spa |
dc.description.tableofcontents | 3.2.2. Parámetros de simulación................................................................................................21 | spa |
dc.description.tableofcontents | 3.2.3. Modelos de confort térmico. ............................................................................................21 | spa |
dc.description.tableofcontents | 5 METODOLOGÍA ......................................................................................................................35 | spa |
dc.description.tableofcontents | 6 RESULTADOS.......................................................................................................................49 | spa |
dc.description.tableofcontents | 6.1. RECOMENDACIONES ....................................................................................................59 | spa |
dc.description.tableofcontents | 7 CONCLUSION.......................................................................................................................60 | spa |
dc.description.tableofcontents | 8 BIBLIOGRAFIA ....................................................................................................................61 | spa |
dc.description.tableofcontents | 9 ANEXOS .................................................................................................................................66 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4632 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Energy evaluation | eng |
dc.subject.keywords | Bioclimatic building | eng |
dc.subject.keywords | Thermal loads | eng |
dc.subject.keywords | Energy demand | eng |
dc.subject.keywords | Cypetherm | eng |
dc.subject.proposal | Evaluación energética | spa |
dc.subject.proposal | Edificio bioclimático | spa |
dc.subject.proposal | Cargas térmicas | spa |
dc.subject.proposal | Demanda energética | spa |
dc.subject.proposal | Cypetherm | spa |
dc.title | Evaluación energética del edificio bioclimático de la Universidad de Córdoba | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Hawas, A., & Al-Habaibeh, A. (2017). Innovative concept of an educational physical simulation tool for teaching energy consumption in buildings for enhancing public engagement. Energy Procedia, 142, 2942–2952. https://doi.org/10.1016/j.egypro.2017.12.312 | spa |
dcterms.references | Wang, Z., Liu, J., Zhang, Y., Yuan, H., Zhang, R., & Srinivasan, R. S. (2021). Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles. Renewable and Sustainable Energy Reviews, 143(February), 110929. https://doi.org/10.1016/j.rser.2021.110929 | spa |
dcterms.references | Carnero, P. (2018). Análisis y estudio de la simulación energética de edificios residenciales con programas reconocidos. V Congreso Edificios Energía Casi Nula, 237–242. https://www.construible.es/comunicaciones/comunicacion-analisis-estudiosimulacion-energetica-edificios-residenciales-programas-reconocidos | spa |
dcterms.references | Camara, T., Kamsu-Foguem, B., Diourte, B., Maiga, A. I., & Habbadi, A. (2017). Management and assessment of performance risks for bioclimatic buildings. Journal of Cleaner Production, 147, 654–667. https://doi.org/10.1016/j.jclepro.2017.01.063 | spa |
dcterms.references | ACAIRE. (2017). Rite 2017. | spa |
dcterms.references | ASHRAE-55. (2017). Thermal environmental conditions for human occupancy. In ANSI/ASHRAE Standard - 55 (Vol. 7). ASHRAE Research. https://books.google.com.co/books?id=RXfGDAEACAAJ | spa |
dcterms.references | Zakula, T., Bagaric, M., Ferdelji, N., Milovanovic, B., Mudrinic, S., & Ritosa, K. (2019). Comparison of dynamic simulations and the ISO 52016 standard for the assessment of 62 building energy performance. Applied Energy, 254(March 2019), 113553. https://doi.org/10.1016/j.apenergy.2019.113553 | spa |
dcterms.references | Fenner, A. E., Kibert, C. J., Li, J., Razkenari, M. A., Hakim, H., Lu, X., Kouhirostami, M., & Sam, M. (2020). Embodied, operation, and commuting emissions: A case study comparing the carbon hotspots of an educational building. Journal of Cleaner Production, 268, 122081. https://doi.org/10.1016/j.jclepro.2020.122081 | spa |
dcterms.references | Azizi, S., Nair, G., Rabiee, R., & Olofsson, T. (2020). Application of Internet of Things in academic buildings for space use efficiency using occupancy and booking data. Building and Environment, 186(June), 107355. https://doi.org/10.1016/j.buildenv.2020.107355 | spa |
dcterms.references | Apriesnig, J. L., Manning, D. T., Suter, J. F., Magzamen, S., & Cross, J. E. (2020). Academic stars and Energy Stars, an assessment of student academic achievement and school building energy efficiency. Energy Policy, 147(September), 111859. https://doi.org/10.1016/j.enpol.2020.111859 | spa |
dcterms.references | Kairies-Alvarado, D., Muñoz-Sanguinetti, C., & Martínez-Rocamora, A. (2021). Contribution of energy efficiency standards to life-cycle carbon footprint reduction in public buildings in Chile. Energy and Buildings, 236, 110797. https://doi.org/10.1016/j.enbuild.2021.110797 | spa |
dcterms.references | Allab, Y., Pellegrino, M., Guo, X., Nefzaoui, E., & Kindinis, A. (2017). Energy and comfort assessment in educational building: Case study in a French university campus. Energy and Buildings, 143, 202–219. https://doi.org/10.1016/j.enbuild.2016.11.028 | spa |
dcterms.references | Frank, A. A., & Kuchen, E. (2017). Metodológica De Alonso-Frank Energética Del Usuario De Un Edificio Residencial En Altura , En for a User of a Residential Building At Height , San Juan -. Revista Hábitat Sustentable, 7, 7–13 | spa |
dcterms.references | Akkose, G., Meral Akgul, C., & Dino, I. G. (2021). Educational building retrofit under climate change and urban heat island effect. Journal of Building Engineering, 40(February), 102294. https://doi.org/10.1016/j.jobe.2021.102294 | spa |
dcterms.references | El-Darwish, I., & Gomaa, M. (2017). Retrofitting strategy for building envelopes to achieve energy efficiency. Alexandria Engineering Journal, 56(4), 579–589. https://doi.org/10.1016/j.aej.2017.05.011 | spa |
dcterms.references | Ghose, A., McLaren, S. J., Dowdell, D., & Phipps, R. (2017). Environmental assessment of deep energy refurbishment for energy efficiency-case study of an office building in New Zealand. Building and Environment, 117, 274–287. https://doi.org/10.1016/j.buildenv.2017.03.012 | spa |
dcterms.references | Liu, Q., & Ren, J. (2020). Research on the building energy efficiency design strategy of Chinese universities based on green performance analysis. Energy and Buildings, 224, 110242. https://doi.org/10.1016/j.enbuild.2020.110242 | spa |
dcterms.references | Harputlugil, T., & de Wilde, P. (2021). The interaction between humans and buildings for energy efficiency: A critical review. Energy Research and Social Science, 71(November 2020), 101828. https://doi.org/10.1016/j.erss.2020.101828 | spa |
dcterms.references | Franco, A., & Leccese, F. (2020). Measurement of CO2 concentration for occupancy estimation in educational buildings with energy efficiency purposes. Journal of Building Engineering, 32(August), 101714. https://doi.org/10.1016/j.jobe.2020.101714 | spa |
dcterms.references | Ocampo Batlle, E. A., Escobar Palacio, J. C., Silva Lora, E. E., Martínez Reyes, A. M., Melian Moreno, M., & Morejón, M. B. (2020). A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: Case study, Federal University of Itajubá (UNIFEI). Journal of Cleaner Production, 244. https://doi.org/10.1016/j.jclepro.2019.118551 | spa |
dcterms.references | Omar, A. I., David, D., Vergnault, E., Virgone, J., & Idriss, A. I. (2020). A new set of indicators to evaluate the bioclimatic performance of air conditioned buildings in a hot and humid climate. Journal of Building Engineering, 31(November 2019), 101350. https://doi.org/10.1016/j.jobe.2020.101350 | spa |
dcterms.references | Pietrapertosa, F., Tancredi, M., Salvia, M., Proto, M., Pepe, A., Giordano, M., Afflitto, N., Sarricchio, G., Di Leo, S., & Cosmi, C. (2021). An educational awareness program to reduce energy consumption in schools. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123949 | spa |
dcterms.references | Hawas, A., & Al-Habaibeh, A. (2017). Innovative concept of an educational physical simulation tool for teaching energy consumption in buildings for enhancing public engagement. Energy Procedia, 142, 2942–2952. https://doi.org/10.1016/j.egypro.2017.12.312 | spa |
dcterms.references | Niemann, P., & Schmitz, G. (2020). Impacts of occupancy on energy demand and thermal comfort for a large-sized administration building. Building and Environment, 182(July), 107027. https://doi.org/10.1016/j.buildenv.2020.107027 | spa |
dcterms.references | Gui, X., Gou, Z., & Zhang, F. (2020). The relationship between energy use and space use of higher educational buildings in subtropical Australia. Energy and Buildings, 211. https://doi.org/10.1016/j.enbuild.2020.109799 | spa |
dcterms.references | Fathi, A., Salehi, M., Mohammadi, M., Rahimof, Y., & Hajialigol, P. (2021). Cooling/heating load management in educational buildings through course scheduling. Journal of Building Engineering, 41(February), 102405. https://doi.org/10.1016/j.jobe.2021.102405 | spa |
dcterms.references | Prias Caicedo, O. F., Campos Avella, J. C., Rojas Rodríguez, D. B., & Palencia Salas, A. (2019). Implementación de un sistema de Gestión de la Energía Guía con base en la norma ISO | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: