Publicación: Proceso de electrocoagulación en el tratamiento de aguas superficiales del río Sinú como estrategia de abastecimiento en comunidades vulnerables: optimización de condiciones y costos energéticos de operación
dc.contributor.advisor | PATERNINA URIBE, ROBERTH | |
dc.contributor.advisor | Pinedo, José | |
dc.contributor.author | Fuentes Flórez, Ángel Manuel | |
dc.contributor.jury | Marrugo Madrid, Siday María | |
dc.contributor.jury | Diaz Pongutá, Basilio | |
dc.date.accessioned | 2025-02-07T20:13:30Z | |
dc.date.available | 2026-02-07 | |
dc.date.available | 2025-02-07T20:13:30Z | |
dc.date.issued | 2025-02-07 | |
dc.description.abstract | Este trabajo evaluó la viabilidad de la electrocoagulación (EC) como alternativa para el tratamiento de aguas superficiales del río Sinú, utilizando un diseño experimental Box-Behnken para la optimización de parámetros operativos clave. El proceso se llevó a cabo en un sistema de flujo continuo con una celda electrolítica de diseño cilíndrico, construida a partir de recipientes plásticos reciclados con un volumen efectivo de 1000 mL. Los electrodos de aluminio utilizados como anodo se sacrificio fueron fabricados a partir de latas recicladas, promoviendo un enfoque sostenible y de bajo costo. Las condiciones óptimas alcanzaron una remoción máxima de 96,4% para el color y 96,8% para la turbidez, con alta concordancia entre los resultados experimentales y los predichos. El agua tratada mostró mejoras significativas en parámetros fisicoquímicos y microbiológicos, incluyendo la remoción completa de coliformes fecales, cumpliendo en gran medida los estándares normativos. El análisis económico estimó un costo operativo de $6600/m³. En general, los resultados posicionan a la electrocoagulación como una propuesta técnica, económica y ambientalmente viable para el tratamiento de agua superficial en comunidades vulnerables, con perspectivas prometedoras para su implementación en escalas mayores o sistemas piloto. | spa |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Químicas | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introducción | |
dc.description.tableofcontents | 1. Planteamiento del Problema | |
dc.description.tableofcontents | 1.1 Pregunta problema | |
dc.description.tableofcontents | 1.2 Justificación | |
dc.description.tableofcontents | 1.3 Objetivos | |
dc.description.tableofcontents | 1.3.1 Objetivo general | |
dc.description.tableofcontents | 1.3.2 Objetivos específicos | |
dc.description.tableofcontents | 2. Marco Teórico Conceptual | |
dc.description.tableofcontents | 2.1 Generalidades | |
dc.description.tableofcontents | 2.2 Aguas Superciales | |
dc.description.tableofcontents | 2.2.1 Aguas superficiales naturales | |
dc.description.tableofcontents | 2.2.2 Aguas superficiales artificiales | |
dc.description.tableofcontents | 2.2.3 Aguas superficiales modificadas | |
dc.description.tableofcontents | 2.2.4 Aguas lénticas | |
dc.description.tableofcontents | 2.2.5 Aguas lóticas | |
dc.description.tableofcontents | 2.3 Fundamento De La Electrocoagulación | |
dc.description.tableofcontents | 2.4 Tratamiento De Aguas Por Electrocoagulación | |
dc.description.tableofcontents | 2.5 Tipos De Reactores | |
dc.description.tableofcontents | 2.5.1 El reactor tipo batch | |
dc.description.tableofcontents | 2.5.2 Reactor de lecho fluidizado | |
dc.description.tableofcontents | 2.5.3 Reactor de electrodo cilíndrico rotativo | |
dc.description.tableofcontents | 2.5.4 Reactor tipo filtro prensa | |
dc.description.tableofcontents | 2.5.5 Reactor catalítico | |
dc.description.tableofcontents | 2.6 Aplicaciones De La Elctrocoagulaión | |
dc.description.tableofcontents | 2.7 Ventajas De La Electrocoagulación | |
dc.description.tableofcontents | 2.8 Reacciones Involucradas En La Electrocoagulación | |
dc.description.tableofcontents | 2.9 Factores Que Afectan La Electrocoagulación | |
dc.description.tableofcontents | 2.9.1 Efecto del material del electrodo | |
dc.description.tableofcontents | 2.9.2 Efecto del pH | |
dc.description.tableofcontents | 2.9.3 Efecto de la corriente eléctrica | |
dc.description.tableofcontents | 2.9.4 Efecto de la conductividad | |
dc.description.tableofcontents | 2.9.5 Efecto de la temperatura | |
dc.description.tableofcontents | 3. Metodología | |
dc.description.tableofcontents | 3.1 Recolección y análisis de muestras | |
dc.description.tableofcontents | 3.2 Sistema de electrocoagulación | |
dc.description.tableofcontents | 3.3 Diseño experimental | |
dc.description.tableofcontents | 3.4 Consumo de energía eléctrica | |
dc.description.tableofcontents | 4. Resultados y discusiones | |
dc.description.tableofcontents | 4.1 Optimización de las condiciones de electrocoagulación | |
dc.description.tableofcontents | 4.2 Efecto de los parámetros operativos | |
dc.description.tableofcontents | 4.3 Caracterización. fisicoquímica de agua superficial pre y post tratamiento | |
dc.description.tableofcontents | 4.4 Evaluación económica | |
dc.description.tableofcontents | 5. Conclusión | |
dc.description.tableofcontents | 6. RECOMENDACIONES | |
dc.description.tableofcontents | 7. BIBLIOGRAFIA | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9051 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.program | Maestría en Ciencias Químicas | |
dc.relation.references | Acosta-Ordoñez, K. (2013). La economía de las aguas del río Sinú. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 194. | |
dc.relation.references | Aguirre, S. E., Piraneque, N. v., & Cruz, R. K. (2018). Natural substances: Alternative for the treatment of magdalena river´s water in palermo Colombia. Informacion Tecnologica, 29(3), 59–70. https://doi.org/10.4067/S0718- 07642018000300059 | |
dc.relation.references | Akter, S., Suhan, M. B. K., & Islam, M. S. (2022). Recent advances and perspective of electrocoagulation in the treatment of wastewater: A review. In Environmental Nanotechnology, Monitoring and Management (Vol. 17). Elsevier B.V. | |
dc.relation.references | APHA, AWWA, WEF (2017) Standards methods for examination of water and wastewater, 23rd edn. American Public Health Association, Washington DC | |
dc.relation.references | Arango-Ruíz, Á. (2014). Artículo Original Tratamiento de aguas residuales mediante electrocoagulación: desarrollo y potencial de aplicación. Engineering and Technology Journal of A. Arango / J. Eng. Technol, 3. | |
dc.relation.references | Arambarri, J., Abbassi, B., Zytner, P., 2019. Enhanced removal of phosphorus from wastewater using sequential electrocoagulation and chemical coagulation. Water Air Soil Pollut., vol. 230 (12), 312. | |
dc.relation.references | Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023). A state-of the-art review of the electrocoagulation technology for wastewater treatment. In Water Cycle (Vol.4,pp.26–36). KeAi Communications Co. https://doi.org/10.1016/j.watcyc.2023.01.001 | |
dc.relation.references | Briongos, R. (2021). LA IMPORTANCIA DE LAS AGUAS SUPERFICIALES. Cursos de Ingeniería, Medio Ambiente y Calidad. | |
dc.relation.references | Burgos, G, C. A., Lafont, Á, K., & Estrada, P, P. A. (2018). Análisis comparativo de indicadores de la calidad del agua del río Sinú municipio de Montería, Córdoba. Revista MODUM, 1, 55–64. | |
dc.relation.references | Castañeda, L. F., Rodríguez, J. F., & Nava, J. L. (2021). Electrocoagulation as an affordable technology for decontamination of drinking water containing fluoride: A critical review. In Chemical Engineering Journal (Vol. 413). Elsevier B.V. | |
dc.relation.references | Combatt, M. P. M., Amorim, W. C. S., Brito, E. M. da S., Cupertino, A. F., Mendonça, R. C. S., & Pereira, H. A. (2020). Design of parallel plate electrocoagulation reactors supplied by photovoltaic system applied to water treatment. Computers and Electronics in Agriculture, 177. https://doi.org/10.1016/j.compag.2020.105676 | |
dc.relation.references | Correa, E. P., & Martínez, M. P. (2002). El sector rural en Colombia su crisis actual. Cuadernos de desarrollo rural, (48). | |
dc.relation.references | Cuicas, R, J P., & Cuadra, R, L, A. (2017). Evaluación de la electrocoagulación en el tratamiento de agua potable. Química Viva, 16, 56–69. | |
dc.relation.references | Du, X., Zhao, W., Wang, Z., Ma, R., Luo, Y., Wang, Z., Sun, Q., & Liang, H. (2021). Rural drinking water treatment system combining solar-powered electrocoagulation and a gravity-driven ceramic membrane bioreactor. Separation and Purification Technology, 276. https://doi.org/10.1016/j.seppur.2021.119383 | |
dc.relation.references | Feria, J. J., Luis Marrugo, J., & González, H. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America Metales pesados en el río Sinú, departamento de Córdoba, Colombia, Sudamérica. In Rev. Fac. Ing. Univ. Antioquia N.° (Vol. 55). | |
dc.relation.references | Hernández Flórez, J. S. y Mejia Roa, S. (2019). Evaluación del sistema de electrocoagulación para disminuir la carga contaminante a escala de laboratorio. Fundación Universidad de América. | |
dc.relation.references | Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355– 367. https://doi.org/10.1016/j.chemosphere.2004.10.023 | |
dc.relation.references | Idusuyi, N., Ajide, O. O., Abu, R., Okewole, O. A., & Ibiyemi, O. O. (2022). Low cost electrocoagulation process for treatment of contaminated water using aluminium electrodes from recycled cans. Materials Today: Proceedings, 56, 1712–1716. | |
dc.relation.references | Jain, A., Rai, S., Srinivas, R., & Al-Raoush, R. I. (2022). Bioinspired modeling and biogeography-based optimization of electrocoagulation parameters for enhanced heavy metal removal. Journal of Cleaner Production, 338. https://doi.org/10.1016/j.jclepro.2022.130622 | |
dc.relation.references | Jasim, A, M., AlJaberi, F. Y., Le, P. C., Salman, A. D., Miklos, J., Van, B., La, D. D., Chang, S. W., & Nguyen, D. D. (2023). Investigating the influences of the cathode configuration on the electrocoagulation performance: A comparative study. Case Studies in Chemical and Environmental Engineering, 8. | |
dc.relation.references | Khavari, K, M. R., Wang, Q., Khatebasreh, M., Li, X., Sheikh Asadi, A. M., Boczkaj, G., & Ghanbari, F. (2023). Sequential treatment of landfill leachate by electrocoagulation/aeration, PMS/ZVI/UV and electro-Fenton: Performance, biodegradability and toxicity studies. Journal of Environmental Management, 338. https://doi.org/10.1016/j.jenvman.2023.117781 | |
dc.relation.references | López R, Á., Feria Díaz, J. J., Martinez Acosta, L., & Cruz Benedetti, J. (2016). Planificación del recurso hídrico en la quebrada Aguas Blancas, zona rural de Montería, Córdoba. Prospectiva, 14(2), 71. https://doi.org/10.15665/rp.v14i2.567 | |
dc.relation.references | Lü, X., Xu, T., Zhou, Y., Peng, Q., Ou, J., Hu, B., Xie, Z., Lei, X., & Yu, G. (2023). Effect of iron ion configurations on Ni2+ removal in electrocoagulation. Journal of Environmental Sciences (China), 124, 823–834. https://doi.org/10.1016/j.jes.2022.01.037 | |
dc.relation.references | Marco, D. (2005). de Aguas. ambiental, 70. | |
dc.relation.references | McBeath, S. T., Nouri-Khorasani, A., Mohseni, M., & Wilkinson, D. P. (2020). In situ determination of current density distribution and fluid modeling of an electrocoagulation process and its effects on natural organic matter removal for drinking water treatment. Water Research, 171. https://doi.org/10.1016/j.watres.2019.115404 | |
dc.relation.references | Montgomery DC. Design and analysis of experiments. Nebraska: John Wiley & Sons. 2000. | |
dc.relation.references | Mousazadeh, M., Naghdali, Z., Al-Qodah, Z., Alizadeh, S. M., Karamati Niaragh, E., Malekmohammadi, S., Nidheesh, P. v., Roberts, E. P. L., Sillanpää, M., & Mahdi Emamjomeh, M. (2021). A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review. Sustainable Energy Technologies and Assessments, 47. https://doi.org/10.1016/j.seta.2021.101353 | |
dc.relation.references | G. Mouedhen, M. Feki, M. De Petris Wery, H. F. Ayedi, Behavior of Aluminum Electrodes in Electrocoagulation Process, J. Hazard. Mater. 2008, 150 (1), 124–135. DOI: https://doi.org/10.1016/j.jhazmat.2007.04.090 | |
dc.relation.references | Muñoz, E, M. Á., Cortés, J. D., & Agudelo, R. N. (2022). Electrocoagulation with Aluminum Electrodes for the Wastewater Treatment of Tanneries in Villapinzón, Cundinamarca, Colombia. | |
dc.relation.references | Nadal Martinez, G. (2022, June). Agua dulce, ¿un recurso en peligro? Diploma final work, Universitat Politècnica de Catalunya. Retrieved from | |
dc.relation.references | Nidheesh, P. v., Oladipo, A. A., Yasri, N. G., Laiju, A. R., Cheela, V. R. S., Thiam, A., Asfaha, Y. G., Kanmani, S., & Roberts, E. (Ted) P. L. (2022). Emerging applications, reactor design and recent advances of electrocoagulation process. In Process Safety and Environmental Protection (Vol. 166, pp. 600–616). Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2022.08.051 | |
dc.relation.references | Ntambwe Kambuyi, T., Zmirli, Z., Bejjany, B., Mellouk, H., Digua, K., Lekhlif, B., & Dani, A. (2022). Performance analysis of a continuous-flow single-channel reactor for surface water treatment using electrocoagulation process. Chemical Engineering Journal, 428. https://doi.org/10.1016/j.cej.2021.131261 | |
dc.relation.references | Ogando, F. I. B., Aguiar, C. L. de, Viotto, J. V. N., Heredia, F. J., & Hernanz, D. (2019). Removal of phenolic, turbidity and color in sugarcane juice by electrocoagulation as a sulfur-free process. Food Research International, 122, 643–652. | |
dc.relation.references | Oladipo, A. A., Mustafa, F. S., Ezugwu, O. N., & Gazi, M. (2022). Efficient removal of antibiotic in single and binary mixture of nickel by electrocoagulation process: Hydrogen generation and cost analysis. Chemosphere, 300. | |
dc.relation.references | Otter, P., Sattler, W., Grischek, T., Jaskolski, M., Mey, E., Ulmer, N., Grossmann, P., Matthias, F., Malakar, P., Goldmaier, A., Benz, F., & Ndumwa, C. (2020). Economic evaluation of water supply systems operated with solar-driven electro-chlorination in rural regions in Nepal, Egypt and Tanzania. Water Research, 187. https://doi.org/10.1016/j.watres.2020.116384 | |
dc.relation.references | Pearson, R. G., Connolly, N. M., Davis, A. M., & Brodie, J. E. (2021). Fresh waters and estuaries of the Great Barrier Reef catchment: Effects and management of anthropogenic disturbance on biodiversity, ecology and connectivity. Marine Pollution Bulletin, 166. https://doi.org/10.1016/j.marpolbul.2021.112194 | |
dc.relation.references | Pérez S, S., & Pineda , M. (2019). Diagnóstico del estado actual de abastecimiento de agua potable en las zonas rurales de Colombia. | |
dc.relation.references | Petersen, L., Heynen, M., & Pellicciotti, F. (2017). Freshwater Resources: Past, Present, Future. In International Encyclopedia of Geography: People, the Earth, Environment and Technology (pp. 1–11). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118786352.wbieg0712 | |
dc.relation.references | Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2020). Removal of Cypermethrin and Chemical Oxygen Demand from Livestock Wastewater by Electrocoagulation. Chemical Engineering and Technology, 43(2), 211–217. | |
dc.relation.references | Piña, M.S., Martin, A.D., González, C.A.R., Prieto, F.G., Guevara, A.L., & García J.E.E. (2011). Review of design variables and operation conditions in electrocoagulation. Mexican journal of chemical engineering (Vol. 10, pp. 257-271). Mexican Institute of Water Technology (IMTA) | |
dc.relation.references | Prihartini Aryanti, P.T., et al., 2022. Integrated electrocoagulation- tight ultrafiltration for river water decontamination: The influence of electrode configuration and operating pressure. Clean. Eng. Technol., vol. 9, 100524 | |
dc.relation.references | Rahman, A, N., Jose Jol, C., Albania Linus, A., Wan Borhan, W. W. S., Abdul Jalal, N. S., Baharudin, N., Samsul, S. N. A., Abdul Mutalip, N., Jitai, A. A., & Abang Abdul Hamid, D. F. A. (2023). Continuous electrocoagulation treatment system for partial desalination of tropical brackish peat water in Sarawak coastal peatlands. Science of The Total Environment, 880, 163517. https://doi.org/10.1016/j.scitotenv.2023.163517 | |
dc.relation.references | Ramírez, C. A. S. (2021). Calidad del agua: evaluación y diagnóstico. Ediciones de la U. | |
dc.relation.references | Restrepo, A P, M ., Arango, R, Á., & Garcés, f G, L. (n.d.). (2006). Electrocoagulation: Challenges and opportunities in water treatment. Revista Mutis, 12(1). | |
dc.relation.references | Salinas-Echeverría, D, D., Sánchez L, C., Zambrano-Intriago, L, A., Rodríguez Díaz, J, M., Sanoja-Lopez, K,A., Luque,R., Fernández-Andrade K, J., Gómez-Salcedo, Y & Baquerizo-Crespo R, J. (2023). | |
dc.relation.references | Z. Zaroual, H. Chaair, A. H. Essadki, K. Ass, E. I. Ass, M. Azzi, Optimizing the Removal of Trivalent Chromium by Electrocoagulation Using Experimental Design, Chem. Eng. J. 2009, 148 (2–3), 488–495. https://doi.org/10.1016/j.cej.2008.09.040 | |
dc.relation.references | Salinas-Echeverría, D. D., Sánchez-De La Cruz, L. C., Zambrano-Intriago, L. A., Rodríguez-Díaz, J. M., Sanoja-Lopez, K. A., Luque, R., ... & Baquerizo-Crespo, R. J. (2023). Evaluation of a continuous flow electrocoagulation reactor for turbidity removal from surface water. Chemical Engineering Research and Design, 198, 478-488. | |
dc.relation.references | Sefatjoo, P., Alavi Moghaddam, M.R., Mehrabadi, A.R., 2020. Evaluating electrocoagulation pretreatment prior to reverse osmosis system for simultaneous scaling and colloidal fouling mitigation: application of RSM in performance and cost optimization. J. Water Process Eng., vol. 35, 101201 | |
dc.relation.references | Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428. https://doi.org/10.1016/j.cej.2021.131161 | |
dc.relation.references | Singh, A. (2016). Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview. Agricultural Water Management, 174, 2–10. https://doi.org/10.1016/j.agwat.2016.04.021 | |
dc.relation.references | Sonia Akter, Md Burhan Kabir Suhan, Md Shahinoor islam. (2022). Recent advances and perspective of electrocoagulation in the treatment of wastewater: A review. Environmental Nanotechnology, Monitoring & Management. Volume17 | |
dc.relation.references | B. Tak, B. Tak, Y. Kim, Y. Park, Y. Yoon, G. Min, Optimization of Color and COD Removal from Livestock Wastewater by Electrocoagulation Process: Application of Box-Behnken Design (BBD), J. Ind. Eng. Chem. 2015, 28, 307–315. DOI: https://doi.org/10.1016/j.jiec.2015.03.008 | |
dc.relation.references | K. Thirugnanasambandham, V. Sivakumar, J. Prakash Maran, Response Surface Modelling and Optimization of Treatment of Meat Industry Wastewater Using Electrochemical Treatment Method, J. Taiwan Inst. Chem. Eng. 2015, 46, 160–167. DOI: https://doi.org/10.1016/j.jtice.2014.09.021 | |
dc.relation.references | Ulla Rothschuh Osorio. (2022). What are surface waters: definition and examples. Green ecology | |
dc.relation.references | Zamudio Rodríguez, C. (2012). Gobernabilidad sobre el recurso hídrico en Colombia: entre avances y retos. Universidad Nacional de Colombia. | |
dc.relation.references | Zhang, F., Yang, C., Zhu, H., Li, Y., & Gui, W. (2020). An integrated prediction model of heavy metal ion concentration for iron electrocoagulation process. Chemical Engineering Journal, 391. https://doi.org/10.1016/j.cej.2019.123628 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Electrocoagulation | eng |
dc.subject.keywords | Surface water | eng |
dc.subject.keywords | Water treatment | eng |
dc.subject.keywords | Operating cost | eng |
dc.subject.proposal | Electrocoagulación | spa |
dc.subject.proposal | Agua superficial | spa |
dc.subject.proposal | Tratamiento de aguas | spa |
dc.subject.proposal | Costo operativo | spa |
dc.title | Proceso de electrocoagulación en el tratamiento de aguas superficiales del río Sinú como estrategia de abastecimiento en comunidades vulnerables: optimización de condiciones y costos energéticos de operación | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: