Publicación: A DFT study of the structural and electronic properties of cerium-doped zinc oxide
dc.contributor.advisor | Alcalá Varilla, Luis Arturo | |
dc.contributor.author | Rodriguez Mena, Eimy Yohana | |
dc.contributor.jury | Casiano Jimenez, Gladys Rocio | |
dc.contributor.jury | Ortega López, César | |
dc.date.accessioned | 2024-11-14T19:50:30Z | |
dc.date.available | 2024-11-14T19:50:30Z | |
dc.date.issued | 2024-11-13 | |
dc.description.abstract | Recent experimental studies have shown that the photocatalytic activity of zinc oxide is enhanced when doped with cerium and that these enhancements depend on the doping concentration, particularly the highest photocatalytic activity rates have been reported for cerium concentrations in zinc oxide close to 3\% or 5\%. So far, there is no sufficient explanation for why the maximum photocatalytic activity rates of cerium-doped zinc oxide occur for the above concentrations. The main objective of this work is to try to explain those mentioned above. For this, we carried out a study based on the density functional theory on the effects generated on the structural and electronic properties of different concentrations of cerium in zinc oxide, and we found that the relative position of the fermi level could be related to the highest photocatalytic activity of the $Zn_{1-x}Ce_xO$. We also observed that the energy band gap of the $Zn_{1-x}Ce_xO$ system decreases when the cerium concentration decreases, which may mean that cerium-doped zinc oxide can absorb visible light. Furthermore, the progressive decrease of the energy band gap is associated with a reduction of the lattice parameters of the system | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introduction | eng |
dc.description.tableofcontents | Theoretical framework | eng |
dc.description.tableofcontents | Materials and methods | eng |
dc.description.tableofcontents | Results and discussion | eng |
dc.description.tableofcontents | Conclusions | eng |
dc.description.tableofcontents | Research products | eng |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8729 | |
dc.language.iso | eng | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | J.H. Mondragón-Suarez, A. Sandoval Villalbazo, and F. Breña Ramo. “Calentamiento global: una secuencia didáctica”. In: Revista Mexicana de Física 65.1 (2019) | |
dc.relation.references | Roy S.C. et al. “Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons”. In: ACS Nano 4.3 (2010). doi: https://doi. org/10.1021/nn9015423 | |
dc.relation.references | Jun Inumaru et al. “Fossil fuels combustion and environmental issues”. In: Elsevier 2 (2021), pp. 1–56. doi: https://doi.org/10.1016/B978-0-12 820360-6.00001-1 | |
dc.relation.references | Lianjun Liu and Ying Li. “Understanding the Reaction Mechanism of Pho tocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review”. In: Aerosol and Air Quality Research 14 (2014), pp. 453–469. doi: https://doi.org/10.4209/aaqr.2013 | |
dc.relation.references | Xinru Li et al. “Challenges of photocatalysis and their coping strategies, Chem Catalysis”. In: Aerosol and Air Quality Research 2.6 (2022), pp. 1315–1345. doi: https://doi.org/10.1016/j.checat.2022.04.007 | |
dc.relation.references | Gomes W. P., Freund T., and S. R. Morrison. “Chemical reactions involving anodic processes on a single-crystal zinc oxide catalyst”. In: Surface Science 13.1 (1969), pp. 201–208. doi: https://doi.org/10.1016/0039-6028(69) 90250-7 | |
dc.relation.references | T. Sakata. “Photocatalysis of irradiated semiconductor surfaces: its applica tion to water splitting and some organic reactions”. In: Elsevier 29.1 (1985). doi: https://doi.org/10.1016/0047-2670(85)87072-6 | |
dc.relation.references | Yamaguchi Y. et al. “Photocatalytic ZnO films prepared by anodizing”. In: Journal of Electroanalytical Chemistry 442.1 (1998). doi: https://doi.org/ 10.1016/S0022-0728(97)00354-9 | |
dc.relation.references | OngC.B.,NgL.Y.,andMohammadA.W.“AreviewofZnOnanoparticlesas solar photocatalysts: Synthesis, mechanisms and applications”. In: Renewable and Sustainable Energy Reviews 81.1 (2018). doi: https://doi.org/10. 1016/j.rser.2017.08.020 | |
dc.relation.references | Ying Li et al. “Photocatalytic Reduction of CO2 with H2O on Mesoporous Silica Supported Cu/TiO2 Catalysts”. In: Applied Catalysis B: Environmental 100 (2010). doi: https://doi.org/10.1016/j.apcatb.2010.08.015 | |
dc.relation.references | Karakurt Huseyin and Ozlem Esen Kartal. “Investigation of photocatalytic activity of TiO2 nanotubes synthesized by hydrothermal method”. In: Chem ical Engineering Communications 210.8 (2022). doi: https://doi.org/10. 1080/00986445.2022.2103683 | |
dc.relation.references | Jemai S et al. “Impact of Annealing on ZrO2 Nanotubes for Photocatalytic Application”. In: Catalysts 13.3 (2023). doi: https://doi.org/10.3390/ catal13030558 | |
dc.relation.references | Young-Hun Kim et al. “Enhanced photocatalytic activity of Ce-doped β − Ga2O3 nanofiber fabricated by electrospinning method”. In: RJ Mater Sci: Mater Electron (2021). doi: https://doi.org/10.1007/s10854-020 05087-8 | |
dc.relation.references | G. Ramalingam et al. “Enhanced visible light-driven photocatalytic perfor manceof CdSenanorods”. In: Environmental Research 203 (2022). doi: https: //doi.org/10.1016/j.envres.2021.111855 | |
dc.relation.references | Yuntae Ha et al. “Improvement of Carbon Dioxide Reduction Efficiency of Titanium Dioxide Photocatalyst Using 1-propanol”. In: JOURNAL OF SEN SOR SCIENCE AND TECHNOLOGY 31.5 (2022). doi: https://doi.org/ 10.46670/JSST.2022.31.5.343 | |
dc.relation.references | Danyliuk et al. “Optimal H2O2 Concentration in Advanced Oxidation over Titanium Dioxide Photocatalyst”. In: Physics and Chemistry of Solid State 22.1 (2021). doi: https://doi.org/10.15330/pcss.22.1.73-79 | |
dc.relation.references | Amir Azizi and Marziyeh Kazemi. “Green synthesis of zinc oxide magnetic nanocomposite via zinc electroplating effluent: Its characterization and ap plication as a photocatalyst”. In: Results in Optics 16 (2024). doi: https: //doi.org/10.1016/j.rio.2024.100698 | |
dc.relation.references | Sayuri Okunaka et al. “Z-Scheme Water Splitting under Near-Ambient Pres sure using a Zirconium Oxide Coating on Printable Photocatalyst Sheets”. In: ChemsusChem 13.18 (2020). doi: https://doi.org/10.1002/cssc. 202001706 | |
dc.relation.references | KentaSonodaetal. “Synthesis of nanometer-sized gallium oxide using graphene oxide template as a photocatalyst for carbon dioxide reduction”. In: Applied Surface Science 542 (2021). doi: https://doi.org/10.1016/j.apsusc. 2020.148680 | |
dc.relation.references | Hongxuan Qiu, Akira Yamamoto, and Hisao Yoshida. “Gallium Oxide Assist ing Ag-Loaded Calcium Titanate Photocatalyst for Carbon Dioxide Reduc tion with Water”. In: ACS Catalysis 13.6 (2023). doi: https://doi.org/10. 1021/acscatal.2c06038 | |
dc.relation.references | Chin Ong. B., Ng L. Y., and A. W. Mohammad. “A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications”. In: Energy Reviews 81 (2018). doi: https://doi.org/10.1016/j.rser.2017. 08.020 | |
dc.relation.references | Cao B. Gong, H. H. Zeng, and Cai W.P. Chapter 9: Photoluminescence / Flu orescence spectroscopic technique for nanomaterials characterization. Wiley VCH Verlag and Co. KGaA, 2012, pp. 597–616. doi: https://doi.org/10.1002/9783527646821.ch9 | |
dc.relation.references | Vallejo William, Cantillo Alvaro, and Diaz-Uribe Carlos. “Improvement of the photocatalytic activity of ZnO thin films doped with manganese”. In: EHeliyon 9.10 (2023). doi: https://doi.org/10.1016/j.heliyon.2023. e20809 | |
dc.relation.references | Rosales Vera M. C. “Sintesis controlada de semiconductores metal-oxido na noestructurados y su efecto en el tratamiento de aguas contaminadas por fotocatálisis heterogénea”. In: Universidad de Chile (2020) | |
dc.relation.references | Liza Castillo D. C. “Efecto del dopaje con cobalto o plata en las propiedades estructurales, ópticas y fotocatalíticas de nanopartículas de titanato de zinc y óxido de zinc”. In: Universidad Nacional de Trujillo (2019) | |
dc.relation.references | Vaiano V., Iervolino G., and Rizzo L. “Cu-doped ZnO as efficient photocata lyst for the oxidation of arsenite to arsenate under visible light”. In: Applied Catalysis B: Environmental 238 (2018). doi: https://doi.org/10.1016/j. apcatb.2018.07.026 | |
dc.relation.references | Márquez Álvarez J. “Estudio por primeros principios de propiedades estructurales, electrónicas y magnéticas para el compuesto ZnO codopado con titanio y vanadio”. In: Universidad del Norte (2017) | |
dc.relation.references | Jin-Chung Sin et al. “Preparation of rare earth-doped ZnO hierarchical mi cro/nanospheres and their enhanced photocatalytic activity under visible light irradiation”. In: Ceramics International 40.4 (2014). doi: https://doi.org/ 10.1016/j.ceramint.2013.10.128 | |
dc.relation.references | Fuchun Zhang et al. “The first-principles study of electronic structures, mag netic and optical properties for Ce-doped ZnO”. In: Integrated Ferroelectrics 172.1 (2016). doi: https://doi.org/10.1080/10584587.2016.1176486 | |
dc.relation.references | Yue Feng et al. “A first-principle study on photoelectric characteristics of Ce doped ZnO”. In: Ferroelectrics 573.1 (2021). doi: https://doi.org/10. 1080/00150193.2021.1890478 | |
dc.relation.references | Yue Feng et al. “A first-principle study on photoelectric characteristics of Ce doped ZnO”. In: Ferroelectrics 573.1 (2021). doi: https://doi.org/10. 1080/00150193.2021.1890478 | |
dc.relation.references | Trilok K. Pathak et al. “Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications”. In: Materials Science and Engineering: B 261 (2020). doi: https://doi.org/10.1016/j. mseb.2020.114780 | |
dc.relation.references | José Daniel Ortiz Romero. Efectos de impurezas de cerio sobre las propiedades estructurales y electrónicas del óxido de zinc. 2023 | |
dc.relation.references | T. V. H. Luu et al. “A comparative study of 0d and 1D ce-zno nanocatalysts in photocatalytic decomposition of organic pollutants. RSC advances”. In: Materials Science and Engineering: B (2021). doi: https://doi.org/10. 1039/D1RA07493H | |
dc.relation.references | A. Henglei. “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles”. In: Chemical reviews (1989). doi: http://dx.doi.org/10.1021/cr00098a010 | |
dc.relation.references | Liubin Zheng, Kenji Ogino, and Li Xiaoqiang. “Low-temperature welding en gineering of ZnO nanoparticles films via sol-gel method”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 698.5 (2024). doi: https: //doi.org/10.1016/j.colsurfa.2024.134506 | |
dc.relation.references | Iman Amer, Ahmadand Yasir, Hussein Mohammed.“Synthesis of ZnO nanowires by thermal chemical vapor deposition technique: Role of oxygen flow rate”. In: Micro and Nanostructures 698.5 (2023). doi: https://doi.org/10.1016/j. micrna.2023.207628 | |
dc.relation.references | R. A. Castillo Burgos. “Efectos de la temperatura y tiempo en el depósito de películas delgadas de zno por baño químico para aplicaciones fotocatalíticas”. In: Universidad de ciencias y artes de chiapas (2021) | |
dc.relation.references | IA. P. Neethu Sha and Deepthi N. Rajendran. “Structural and optical prop erties of Ni doped ZnO synthesized by solution combustion method”. In: AIP Conf. Proc (2020). doi: https://doi.org/10.1063/5.0001465 | |
dc.relation.references | L.M.AguilarEcheverría. “Materiales de tierras raras: Producción, propiedades, aplicaciones industriales y necesidad tecnológica”. In: Universidad de Pamplona (2022) | |
dc.relation.references | C Sorbello. “Diseño de óxidos mixtos Ce (IV)-Ln (III) de textura controlada y sus aplicaciones en fotoluminiscencia y catálisis heterogénea”. In: Universidad de Buenos Aires (2016) | |
dc.relation.references | C. R. Nave. Energy Bands for Solids. 2010 | |
dc.relation.references | Cantor Brian. “The Fermi Level: Electrical Properties”. In: The Equations of Materials Oxford Academy (2020). doi: https://doi.org/10.1093/oso/ 9780198851875.003.0013 | |
dc.relation.references | C. R. Nave. El Dopado de Semiconductores. 2010. | |
dc.relation.references | Sergey Bravyi et al. “Approximation algorithms for quantum many-body problems”. In: J. Math. Phys 60 (2019). doi: https://doi.org/10.1063/1. 5085428 | |
dc.relation.references | J. Kohanoff. Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge university press, 2006. doi: https: //doi.org/10.1017/CBO9780511755613 | |
dc.relation.references | Wasan A Hussien. “Calculation Some Atomic Properties For Three and Four Electron Systems by Using Hartree-Fock Method”. In: Ser.: Mater. Sci. Eng. (2020). doi: 10.1088/1757-899X/757/1/012068 | |
dc.relation.references | Nuñez de los Reyes Wilmer. “Estudio de Clústeres de Cobre (CuN N = 25) como almacenadores de CO2 usando métodos de primeros principios”. In: Universidad de Córdoba (2020) | |
dc.relation.references | T. L. Gilbert. “Hohenberg-Kohn theorem for nonlocal external potentials”. In: Physical Review B 12.6 (1975) | |
dc.relation.references | W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and Correlation Effects”. In: Physical Review B 140.4A (1965). doi: https: //doi.org/10.1103/PhysRev.140.A1133 | |
dc.relation.references | Castaño González. “Estudio teórico de las propiedades estructurales, electrónicas y magnéticas del compuesto semiconductor GaSb dopado con Mn”. In: Uni versidad del Norte (2017) | |
dc.relation.references | R.O. Jones and O. Gunnarsson. The density functional formalism, its appli cations and prospects. 1989 | |
dc.relation.references | J. P. Perdew et al. “Restoring the density-gradient expansion for exchange in solids and surfaces”. In: R. Physical review letters 100.13 (2008) | |
dc.relation.references | J. P. Perdew and M. Levy. “Physical content of the exact Kohn-sham orbital energies: band gaps and derivative discontinuities”. In: R. Physical review letters 51.20 (1983) | |
dc.relation.references | J. P. Perdew, K. Burke, and Y. Wang. “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”. In: Physical Review B 54.23 (1996) | |
dc.relation.references | J. P. Perdew and A. Zunge. “Self-interaction correction to density-functional approximations for many-electron systems”. In: Physical Review B (1981) | |
dc.relation.references | E. F. Beckenbach. “Bloch’s theorem for minimal surfaces”. In: Physical Review B (1933). doi: https://doi.org/10.1090/S0002-9904-1933-05666-5 | |
dc.relation.references | D. Singh and L. Nordstrom. Plane waves, pseudopotentials and the LAPW method Springer. Springer New York, NY, 2006 | |
dc.relation.references | Vanderbilt David. “Soft self-consistent pseudopotentials in a generalized eigen value formalism”. In: Phys. Rev. B 41 (1990). doi: https://doi.org/10. 1103/PhysRevB.41.7892 | |
dc.relation.references | N.D.MerminN.W.Ashcroft. Solid State Physics. Saunders College, Philadel phia, 1976 | |
dc.relation.references | Scandolo S et al. “First-principles codes for computational crystallography in the Quantum ESPRESSO package”. In: Zeitschrift für Kristallographie Crystalline Materials 41 (2004) | |
dc.relation.references | Miha Ravbar et al. “Nickel-decorated ZnO nanoparticles for effective solar reduction of hexavalent chromium and removal of selected pharmaceuticals”. In: Applied Surface Science 681 (2025). doi: https://doi.org/10.1016/j. apsusc.2024.161463 | |
dc.relation.references | Bechambi O. an Touati, A. Sayadi, and Najjar W. “Effect of cerium doping on the textural, structural and optical properties of zinc oxide: Role of cerium and hydrogen peroxide to enhance the photocatalytic degradation of endocrine disrupting compounds”. In: Materials Science in Semiconductor Processing 39 (2015). doi: https://doi.org/10.1016/j.mssp.2015.05.052 | |
dc.relation.references | Vijayaprasath G., Soundarrajan P., and Ravi G. “Synthesis of ZnO Nanosheets Morphology by Ce Doping for Photocatalytic Activity”. In: Journal of Elec tronic Materials 39 (2019). doi: https://doi.org/10.1007/s11664-018 6763-y | |
dc.relation.references | X.F. Jia et al. “Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle”. In: Journal of Magnetism and Magnetic Material 465 (2019). doi: https://doi.org/10.1016/j.jmmm.2018.05.037 | |
dc.relation.references | Shangcong Sun et al. “Boosting photoelectron transfer by Fermi and dop ing levels regulation in carbon nitride towards efficient solar-driven hydro gen production”. In: Chemical Engineering Journal 465 (2024). doi: https: //doi.org/10.1016/j.cej.2024.153547 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Photocatalytic activity | eng |
dc.subject.keywords | ZnO | eng |
dc.subject.keywords | Doped cerium | eng |
dc.subject.keywords | DFT | eng |
dc.subject.keywords | Fermi level | eng |
dc.subject.proposal | Actividad fotocatalítica | spa |
dc.subject.proposal | ZnO | spa |
dc.subject.proposal | Dopaje con cerio | spa |
dc.subject.proposal | DFT | spa |
dc.subject.proposal | Nivel de Fermi | spa |
dc.title | A DFT study of the structural and electronic properties of cerium-doped zinc oxide | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: