Publicación:
A DFT study of the structural and electronic properties of cerium-doped zinc oxide

dc.contributor.advisorAlcalá Varilla, Luis Arturo
dc.contributor.authorRodriguez Mena, Eimy Yohana
dc.contributor.juryCasiano Jimenez, Gladys Rocio
dc.contributor.juryOrtega López, César
dc.date.accessioned2024-11-14T19:50:30Z
dc.date.available2024-11-14T19:50:30Z
dc.date.issued2024-11-13
dc.description.abstractRecent experimental studies have shown that the photocatalytic activity of zinc oxide is enhanced when doped with cerium and that these enhancements depend on the doping concentration, particularly the highest photocatalytic activity rates have been reported for cerium concentrations in zinc oxide close to 3\% or 5\%. So far, there is no sufficient explanation for why the maximum photocatalytic activity rates of cerium-doped zinc oxide occur for the above concentrations. The main objective of this work is to try to explain those mentioned above. For this, we carried out a study based on the density functional theory on the effects generated on the structural and electronic properties of different concentrations of cerium in zinc oxide, and we found that the relative position of the fermi level could be related to the highest photocatalytic activity of the $Zn_{1-x}Ce_xO$. We also observed that the energy band gap of the $Zn_{1-x}Ce_xO$ system decreases when the cerium concentration decreases, which may mean that cerium-doped zinc oxide can absorb visible light. Furthermore, the progressive decrease of the energy band gap is associated with a reduction of the lattice parameters of the systemeng
dc.description.degreelevelPregrado
dc.description.degreenameFísico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsIntroductioneng
dc.description.tableofcontentsTheoretical frameworkeng
dc.description.tableofcontentsMaterials and methodseng
dc.description.tableofcontentsResults and discussioneng
dc.description.tableofcontentsConclusionseng
dc.description.tableofcontentsResearch productseng
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8729
dc.language.isoeng
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programFísica
dc.relation.referencesJ.H. Mondragón-Suarez, A. Sandoval Villalbazo, and F. Breña Ramo. “Calentamiento global: una secuencia didáctica”. In: Revista Mexicana de Física 65.1 (2019)
dc.relation.referencesRoy S.C. et al. “Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons”. In: ACS Nano 4.3 (2010). doi: https://doi. org/10.1021/nn9015423
dc.relation.referencesJun Inumaru et al. “Fossil fuels combustion and environmental issues”. In: Elsevier 2 (2021), pp. 1–56. doi: https://doi.org/10.1016/B978-0-12 820360-6.00001-1
dc.relation.referencesLianjun Liu and Ying Li. “Understanding the Reaction Mechanism of Pho tocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review”. In: Aerosol and Air Quality Research 14 (2014), pp. 453–469. doi: https://doi.org/10.4209/aaqr.2013
dc.relation.referencesXinru Li et al. “Challenges of photocatalysis and their coping strategies, Chem Catalysis”. In: Aerosol and Air Quality Research 2.6 (2022), pp. 1315–1345. doi: https://doi.org/10.1016/j.checat.2022.04.007
dc.relation.referencesGomes W. P., Freund T., and S. R. Morrison. “Chemical reactions involving anodic processes on a single-crystal zinc oxide catalyst”. In: Surface Science 13.1 (1969), pp. 201–208. doi: https://doi.org/10.1016/0039-6028(69) 90250-7
dc.relation.referencesT. Sakata. “Photocatalysis of irradiated semiconductor surfaces: its applica tion to water splitting and some organic reactions”. In: Elsevier 29.1 (1985). doi: https://doi.org/10.1016/0047-2670(85)87072-6
dc.relation.referencesYamaguchi Y. et al. “Photocatalytic ZnO films prepared by anodizing”. In: Journal of Electroanalytical Chemistry 442.1 (1998). doi: https://doi.org/ 10.1016/S0022-0728(97)00354-9
dc.relation.referencesOngC.B.,NgL.Y.,andMohammadA.W.“AreviewofZnOnanoparticlesas solar photocatalysts: Synthesis, mechanisms and applications”. In: Renewable and Sustainable Energy Reviews 81.1 (2018). doi: https://doi.org/10. 1016/j.rser.2017.08.020
dc.relation.referencesYing Li et al. “Photocatalytic Reduction of CO2 with H2O on Mesoporous Silica Supported Cu/TiO2 Catalysts”. In: Applied Catalysis B: Environmental 100 (2010). doi: https://doi.org/10.1016/j.apcatb.2010.08.015
dc.relation.referencesKarakurt Huseyin and Ozlem Esen Kartal. “Investigation of photocatalytic activity of TiO2 nanotubes synthesized by hydrothermal method”. In: Chem ical Engineering Communications 210.8 (2022). doi: https://doi.org/10. 1080/00986445.2022.2103683
dc.relation.referencesJemai S et al. “Impact of Annealing on ZrO2 Nanotubes for Photocatalytic Application”. In: Catalysts 13.3 (2023). doi: https://doi.org/10.3390/ catal13030558
dc.relation.referencesYoung-Hun Kim et al. “Enhanced photocatalytic activity of Ce-doped β − Ga2O3 nanofiber fabricated by electrospinning method”. In: RJ Mater Sci: Mater Electron (2021). doi: https://doi.org/10.1007/s10854-020 05087-8
dc.relation.referencesG. Ramalingam et al. “Enhanced visible light-driven photocatalytic perfor manceof CdSenanorods”. In: Environmental Research 203 (2022). doi: https: //doi.org/10.1016/j.envres.2021.111855
dc.relation.referencesYuntae Ha et al. “Improvement of Carbon Dioxide Reduction Efficiency of Titanium Dioxide Photocatalyst Using 1-propanol”. In: JOURNAL OF SEN SOR SCIENCE AND TECHNOLOGY 31.5 (2022). doi: https://doi.org/ 10.46670/JSST.2022.31.5.343
dc.relation.referencesDanyliuk et al. “Optimal H2O2 Concentration in Advanced Oxidation over Titanium Dioxide Photocatalyst”. In: Physics and Chemistry of Solid State 22.1 (2021). doi: https://doi.org/10.15330/pcss.22.1.73-79
dc.relation.referencesAmir Azizi and Marziyeh Kazemi. “Green synthesis of zinc oxide magnetic nanocomposite via zinc electroplating effluent: Its characterization and ap plication as a photocatalyst”. In: Results in Optics 16 (2024). doi: https: //doi.org/10.1016/j.rio.2024.100698
dc.relation.referencesSayuri Okunaka et al. “Z-Scheme Water Splitting under Near-Ambient Pres sure using a Zirconium Oxide Coating on Printable Photocatalyst Sheets”. In: ChemsusChem 13.18 (2020). doi: https://doi.org/10.1002/cssc. 202001706
dc.relation.referencesKentaSonodaetal. “Synthesis of nanometer-sized gallium oxide using graphene oxide template as a photocatalyst for carbon dioxide reduction”. In: Applied Surface Science 542 (2021). doi: https://doi.org/10.1016/j.apsusc. 2020.148680
dc.relation.referencesHongxuan Qiu, Akira Yamamoto, and Hisao Yoshida. “Gallium Oxide Assist ing Ag-Loaded Calcium Titanate Photocatalyst for Carbon Dioxide Reduc tion with Water”. In: ACS Catalysis 13.6 (2023). doi: https://doi.org/10. 1021/acscatal.2c06038
dc.relation.referencesChin Ong. B., Ng L. Y., and A. W. Mohammad. “A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications”. In: Energy Reviews 81 (2018). doi: https://doi.org/10.1016/j.rser.2017. 08.020
dc.relation.referencesCao B. Gong, H. H. Zeng, and Cai W.P. Chapter 9: Photoluminescence / Flu orescence spectroscopic technique for nanomaterials characterization. Wiley VCH Verlag and Co. KGaA, 2012, pp. 597–616. doi: https://doi.org/10.1002/9783527646821.ch9
dc.relation.referencesVallejo William, Cantillo Alvaro, and Diaz-Uribe Carlos. “Improvement of the photocatalytic activity of ZnO thin films doped with manganese”. In: EHeliyon 9.10 (2023). doi: https://doi.org/10.1016/j.heliyon.2023. e20809
dc.relation.referencesRosales Vera M. C. “Sintesis controlada de semiconductores metal-oxido na noestructurados y su efecto en el tratamiento de aguas contaminadas por fotocatálisis heterogénea”. In: Universidad de Chile (2020)
dc.relation.referencesLiza Castillo D. C. “Efecto del dopaje con cobalto o plata en las propiedades estructurales, ópticas y fotocatalíticas de nanopartículas de titanato de zinc y óxido de zinc”. In: Universidad Nacional de Trujillo (2019)
dc.relation.referencesVaiano V., Iervolino G., and Rizzo L. “Cu-doped ZnO as efficient photocata lyst for the oxidation of arsenite to arsenate under visible light”. In: Applied Catalysis B: Environmental 238 (2018). doi: https://doi.org/10.1016/j. apcatb.2018.07.026
dc.relation.referencesMárquez Álvarez J. “Estudio por primeros principios de propiedades estructurales, electrónicas y magnéticas para el compuesto ZnO codopado con titanio y vanadio”. In: Universidad del Norte (2017)
dc.relation.referencesJin-Chung Sin et al. “Preparation of rare earth-doped ZnO hierarchical mi cro/nanospheres and their enhanced photocatalytic activity under visible light irradiation”. In: Ceramics International 40.4 (2014). doi: https://doi.org/ 10.1016/j.ceramint.2013.10.128
dc.relation.referencesFuchun Zhang et al. “The first-principles study of electronic structures, mag netic and optical properties for Ce-doped ZnO”. In: Integrated Ferroelectrics 172.1 (2016). doi: https://doi.org/10.1080/10584587.2016.1176486
dc.relation.referencesYue Feng et al. “A first-principle study on photoelectric characteristics of Ce doped ZnO”. In: Ferroelectrics 573.1 (2021). doi: https://doi.org/10. 1080/00150193.2021.1890478
dc.relation.referencesYue Feng et al. “A first-principle study on photoelectric characteristics of Ce doped ZnO”. In: Ferroelectrics 573.1 (2021). doi: https://doi.org/10. 1080/00150193.2021.1890478
dc.relation.referencesTrilok K. Pathak et al. “Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications”. In: Materials Science and Engineering: B 261 (2020). doi: https://doi.org/10.1016/j. mseb.2020.114780
dc.relation.referencesJosé Daniel Ortiz Romero. Efectos de impurezas de cerio sobre las propiedades estructurales y electrónicas del óxido de zinc. 2023
dc.relation.referencesT. V. H. Luu et al. “A comparative study of 0d and 1D ce-zno nanocatalysts in photocatalytic decomposition of organic pollutants. RSC advances”. In: Materials Science and Engineering: B (2021). doi: https://doi.org/10. 1039/D1RA07493H
dc.relation.referencesA. Henglei. “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles”. In: Chemical reviews (1989). doi: http://dx.doi.org/10.1021/cr00098a010
dc.relation.referencesLiubin Zheng, Kenji Ogino, and Li Xiaoqiang. “Low-temperature welding en gineering of ZnO nanoparticles films via sol-gel method”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 698.5 (2024). doi: https: //doi.org/10.1016/j.colsurfa.2024.134506
dc.relation.referencesIman Amer, Ahmadand Yasir, Hussein Mohammed.“Synthesis of ZnO nanowires by thermal chemical vapor deposition technique: Role of oxygen flow rate”. In: Micro and Nanostructures 698.5 (2023). doi: https://doi.org/10.1016/j. micrna.2023.207628
dc.relation.referencesR. A. Castillo Burgos. “Efectos de la temperatura y tiempo en el depósito de películas delgadas de zno por baño químico para aplicaciones fotocatalíticas”. In: Universidad de ciencias y artes de chiapas (2021)
dc.relation.referencesIA. P. Neethu Sha and Deepthi N. Rajendran. “Structural and optical prop erties of Ni doped ZnO synthesized by solution combustion method”. In: AIP Conf. Proc (2020). doi: https://doi.org/10.1063/5.0001465
dc.relation.referencesL.M.AguilarEcheverría. “Materiales de tierras raras: Producción, propiedades, aplicaciones industriales y necesidad tecnológica”. In: Universidad de Pamplona (2022)
dc.relation.referencesC Sorbello. “Diseño de óxidos mixtos Ce (IV)-Ln (III) de textura controlada y sus aplicaciones en fotoluminiscencia y catálisis heterogénea”. In: Universidad de Buenos Aires (2016)
dc.relation.referencesC. R. Nave. Energy Bands for Solids. 2010
dc.relation.referencesCantor Brian. “The Fermi Level: Electrical Properties”. In: The Equations of Materials Oxford Academy (2020). doi: https://doi.org/10.1093/oso/ 9780198851875.003.0013
dc.relation.referencesC. R. Nave. El Dopado de Semiconductores. 2010.
dc.relation.referencesSergey Bravyi et al. “Approximation algorithms for quantum many-body problems”. In: J. Math. Phys 60 (2019). doi: https://doi.org/10.1063/1. 5085428
dc.relation.referencesJ. Kohanoff. Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge university press, 2006. doi: https: //doi.org/10.1017/CBO9780511755613
dc.relation.referencesWasan A Hussien. “Calculation Some Atomic Properties For Three and Four Electron Systems by Using Hartree-Fock Method”. In: Ser.: Mater. Sci. Eng. (2020). doi: 10.1088/1757-899X/757/1/012068
dc.relation.referencesNuñez de los Reyes Wilmer. “Estudio de Clústeres de Cobre (CuN N = 25) como almacenadores de CO2 usando métodos de primeros principios”. In: Universidad de Córdoba (2020)
dc.relation.referencesT. L. Gilbert. “Hohenberg-Kohn theorem for nonlocal external potentials”. In: Physical Review B 12.6 (1975)
dc.relation.referencesW. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and Correlation Effects”. In: Physical Review B 140.4A (1965). doi: https: //doi.org/10.1103/PhysRev.140.A1133
dc.relation.referencesCastaño González. “Estudio teórico de las propiedades estructurales, electrónicas y magnéticas del compuesto semiconductor GaSb dopado con Mn”. In: Uni versidad del Norte (2017)
dc.relation.referencesR.O. Jones and O. Gunnarsson. The density functional formalism, its appli cations and prospects. 1989
dc.relation.referencesJ. P. Perdew et al. “Restoring the density-gradient expansion for exchange in solids and surfaces”. In: R. Physical review letters 100.13 (2008)
dc.relation.referencesJ. P. Perdew and M. Levy. “Physical content of the exact Kohn-sham orbital energies: band gaps and derivative discontinuities”. In: R. Physical review letters 51.20 (1983)
dc.relation.referencesJ. P. Perdew, K. Burke, and Y. Wang. “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”. In: Physical Review B 54.23 (1996)
dc.relation.referencesJ. P. Perdew and A. Zunge. “Self-interaction correction to density-functional approximations for many-electron systems”. In: Physical Review B (1981)
dc.relation.referencesE. F. Beckenbach. “Bloch’s theorem for minimal surfaces”. In: Physical Review B (1933). doi: https://doi.org/10.1090/S0002-9904-1933-05666-5
dc.relation.referencesD. Singh and L. Nordstrom. Plane waves, pseudopotentials and the LAPW method Springer. Springer New York, NY, 2006
dc.relation.referencesVanderbilt David. “Soft self-consistent pseudopotentials in a generalized eigen value formalism”. In: Phys. Rev. B 41 (1990). doi: https://doi.org/10. 1103/PhysRevB.41.7892
dc.relation.referencesN.D.MerminN.W.Ashcroft. Solid State Physics. Saunders College, Philadel phia, 1976
dc.relation.referencesScandolo S et al. “First-principles codes for computational crystallography in the Quantum ESPRESSO package”. In: Zeitschrift für Kristallographie Crystalline Materials 41 (2004)
dc.relation.referencesMiha Ravbar et al. “Nickel-decorated ZnO nanoparticles for effective solar reduction of hexavalent chromium and removal of selected pharmaceuticals”. In: Applied Surface Science 681 (2025). doi: https://doi.org/10.1016/j. apsusc.2024.161463
dc.relation.referencesBechambi O. an Touati, A. Sayadi, and Najjar W. “Effect of cerium doping on the textural, structural and optical properties of zinc oxide: Role of cerium and hydrogen peroxide to enhance the photocatalytic degradation of endocrine disrupting compounds”. In: Materials Science in Semiconductor Processing 39 (2015). doi: https://doi.org/10.1016/j.mssp.2015.05.052
dc.relation.referencesVijayaprasath G., Soundarrajan P., and Ravi G. “Synthesis of ZnO Nanosheets Morphology by Ce Doping for Photocatalytic Activity”. In: Journal of Elec tronic Materials 39 (2019). doi: https://doi.org/10.1007/s11664-018 6763-y
dc.relation.referencesX.F. Jia et al. “Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle”. In: Journal of Magnetism and Magnetic Material 465 (2019). doi: https://doi.org/10.1016/j.jmmm.2018.05.037
dc.relation.referencesShangcong Sun et al. “Boosting photoelectron transfer by Fermi and dop ing levels regulation in carbon nitride towards efficient solar-driven hydro gen production”. In: Chemical Engineering Journal 465 (2024). doi: https: //doi.org/10.1016/j.cej.2024.153547
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsPhotocatalytic activityeng
dc.subject.keywordsZnOeng
dc.subject.keywordsDoped ceriumeng
dc.subject.keywordsDFTeng
dc.subject.keywordsFermi leveleng
dc.subject.proposalActividad fotocatalíticaspa
dc.subject.proposalZnOspa
dc.subject.proposalDopaje con ceriospa
dc.subject.proposalDFTspa
dc.subject.proposalNivel de Fermispa
dc.titleA DFT study of the structural and electronic properties of cerium-doped zinc oxide
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
RodriguezMenaEimyYohana.pdf
Tamaño:
4.37 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización de publicación.pdf
Tamaño:
286.86 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: