Publicación: Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe)
dc.audience | ||
dc.contributor.advisor | Cogollo Pitalúa, Rafael Ricardo | |
dc.contributor.advisor | Maya Taboada, Héctor Roger | |
dc.contributor.advisor | Gutiérrez Flórez, Omar Darío | |
dc.contributor.author | Sena Castaño, Pedro Luis | |
dc.date.accessioned | 2023-11-16T14:40:54Z | |
dc.date.available | 2023-11-16T14:40:54Z | |
dc.date.issued | 2023-11-15 | |
dc.description.abstract | En este trabajo se reportan los parámetros cinéticos de la curva de brillo TL del Berilo en su variedad como Aguamarina (Be3Al2(SiO3)6: Fe) para dos grupos de curva, con el objetivo de determinar la posible influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos. El proceso de irradiación y lectura se realizó mediante un lector RISO TL / OSL DA-20 a temperatura ambiente, y las muestras no tuvieron ningún tratamiento previo a la medición. Para el desarrollo de este trabajo, la muestra se irradió a diferentes dosis de radiación β entre 4 y 100 Gy. La curva de brillo se registró a una tasa de calentamiento de 1 °C/s. Los resultados muestran cuatro picos de brillo experimentales localizados alrededor de los 75, 115, 189 y 306 °C. El pico de mayor intensidad ubicado alrededor de los 75°C se denominará “pico principal”. Un segundo grupo de curvas de brillos se obtuvo para una dosis fija de 1 Gy de radiación β registradas a diferentes tasas de calentamiento entre 0.5 y 5 °C/s. Los picos de brillo evidenciaron un desplazamiento hacia mayores valores de temperatura a medida que aumenta la tasa de calentamiento, en concordancia con la teoría. Sin embargo, se evidencia una leve disminución del área del pico de brillo, en el caso del pico principal. Para llevar a cabo un análisis cinético detallado a las curvas de brillo, registradas a diferentes dosis de radiación y tasas de calentamiento, se utilizaron los métodos de ascenso inicial (Initial Rise, IR), pico de brillo completo (Whole glow peak, WGP), tasa de calentamiento variable (VHR), ajuste de curvas (Curve fitting, CF), ajuste adimensional (Dimensionless fitting method, DFM) y la deconvolución usando la función asimétrica logística (LA) de cuatro parámetros mediante un software comercial (PeakFit). Los resultados muestran que los parámetros de atrapamiento (energía de activación, factor de frecuencia y parámetro de orden) son independientes tanto de la dosis absorbida, en el rango medido, y de la tasa de calentamiento empleada durante su lectura. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Agradecimientos.....................................................................................................................4 | spa |
dc.description.tableofcontents | Resumen .................................................................................................................................5 | spa |
dc.description.tableofcontents | Introducción............................................................................................................................8 | spa |
dc.description.tableofcontents | 1. Planteamiento del problema ......................................................................................10 | spa |
dc.description.tableofcontents | 2. Justificación............................................................................................................... 11 | spa |
dc.description.tableofcontents | 3. Objetivos....................................................................................................................12 | spa |
dc.description.tableofcontents | 3.1. Objetivo general .................................................................................................12 | spa |
dc.description.tableofcontents | 3.2. Objetivos específicos..........................................................................................12 | spa |
dc.description.tableofcontents | 4. Estado del arte ...........................................................................................................13 | spa |
dc.description.tableofcontents | 5. Marco teórico.............................................................................................................15 | spa |
dc.description.tableofcontents | 5.1. Termoluminiscencia (TL)...................................................................................15 | spa |
dc.description.tableofcontents | 5.2. Luminiscencia ....................................................................................................15 | spa |
dc.description.tableofcontents | 5.3. Modelos de termoluminiscencia.........................................................................18 | spa |
dc.description.tableofcontents | 5.4. Métodos de análisis............................................................................................30 | spa |
dc.description.tableofcontents | 6. Aspectos experimentales ...........................................................................................45 | spa |
dc.description.tableofcontents | 6.1. Berilo..................................................................................................................45 | spa |
dc.description.tableofcontents | 6.2. Lector Riso TL/OSL DA-20...............................................................................46 | spa |
dc.description.tableofcontents | 7. Resultados y análisis..................................................................................................50 | spa |
dc.description.tableofcontents | 7.1. Curva de brillo TL de aguamarina......................................................................50 | spa |
dc.description.tableofcontents | 7.2. Análisis cinético .................................................................................................55 | spa |
dc.description.tableofcontents | 7.2.1 Método de ascenso inicial...........................................................................55 | spa |
dc.description.tableofcontents | 7.2.2 Método del pico de brillo completo............................................................59 | spa |
dc.description.tableofcontents | 7.2.3 Método de la tasa de calentamiento variable ..............................................62 | spa |
dc.description.tableofcontents | 7.2.4 Técnica de ajuste de curvas.........................................................................62 | spa |
dc.description.tableofcontents | 7.2.5 Método de ajuste adimensional...................................................................67 | spa |
dc.description.tableofcontents | 7.2.6 Deconvolución con la función asimétrica logística (LA) ...........................69 | spa |
dc.description.tableofcontents | 8. Conclusiones..............................................................................................................77 | spa |
dc.description.tableofcontents | Anexo A: Deducción de las ecuaciones cinéticas de primer, segundo y orden general. ......79 | spa |
dc.description.tableofcontents | Anexo B: Deducción de las funciones de deconvolución de curvas TL para cinéticas de primer-, segundo- y orden general........................................................................................82 | spa |
dc.description.tableofcontents | Anexo C: Deducción del método de ajuste adimensional (DFM)........................................88 | spa |
dc.description.tableofcontents | Anexo D: Tabla de los parámetros logísticos obtenidos para cada curva de brillo. .............94 | spa |
dc.description.tableofcontents | Referencias ...........................................................................................................................97 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7900 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Cordoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | Akselrod, M. S., Agersnap Larsen, N., Whitley, V., & McKeever, S. W. S. (1998). Thermal quenching of F -center luminescence in Al2O3:C. Journal of Applied Physics, 84(6), 3364–3373. https://doi.org/10.1063/1.368450 | |
dc.relation.references | Anderson, S. L., & Feathers, J. K. (2019). Applying luminescence dating of ceramics to the problem of dating Arctic archaeological sites. Journal of Archaeological Science, 112, 105030. https://doi.org/10.1016/j.jas.2019.105030 | |
dc.relation.references | Azorin, J. Termoluminiscencia del SiO2, del (Al2(F,OH)2)SiO4 y del Na2OAl2O36SiO2 para la dosimetría de la radiación ionizante. (Tesis de maestría). Universidad Nacional Autónoma de México-Facultad de ciencias, México. | |
dc.relation.references | Balci-Yegen, S., Yüksel, M., Kucuk, N., Karabulut, Y., Ayvacikli, M., Can, N., & Topaksu, M. (2018). Thermoluminescence dose and heating rate dependence and kinetic analysis of ZnB 2 O 4 :0.05Dy 3+ phosphor. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 416, 50–54. https://doi.org/10.1016/j.nimb.2017.12.004 | |
dc.relation.references | Balian, H. G., & Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2), 389–395. https://doi.org/10.1016/0029-554X(77)90437-2 | |
dc.relation.references | Bos, A. J. J. (2001). High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1–2), 3–28. https://doi.org/10.1016/S0168-583X(01)00717-0 | |
dc.relation.references | Bos, A. J. J. (2006). Theory of thermoluminescence. Radiation Measurements, 41, S45–S56. https://doi.org/10.1016/j.radmeas.2007.01.003 | |
dc.relation.references | Bos, A. J. J., Vijverberg, R. N. M., Piters, T. M., & McKeeve, S. W. S. (1992). Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. Journal of Physics D: Applied Physics, 25(8), 1249–1257. https://doi.org/10.1088/0022-3727/25/8/016 | |
dc.relation.references | Bragg, W. L., & West, J. (1926). The structure of beryl, Be3Al2Si6O18. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 111(759), 691–714. https://doi.org/10.1098/rspa.1926.0088 | |
dc.relation.references | Cameron, J. R., Zimmerman, D., Kenney, G., Buch, R., Bland, R., & Grant, R. (1964). Thermoluminescent Radiation Dosimetry Utilizing LiF. Health Physics, 10(1), 25–29. | |
dc.relation.references | Chithambo, M. L., Raymond, S. G., Calderon, T., & Townsend, P. D. (1995). Low temperature luminescence of transition metal-doped beryls. Journal of African Earth Sciences, 20(1), 53–60. https://doi.org/10.1016/0899-5362(95)00044-T | |
dc.relation.references | D. Daniel et al. (2014). Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+,Ce3+). Journal of rare earths, 496-500. | |
dc.relation.references | Garlick, G. F. J., & Gibson, A. F. (1948). The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. Proceedings of the Physical Society, 60(6), 574–590. https://doi.org/10.1088/0959-5309/60/6/308 | |
dc.relation.references | Herrera, J., Cogollo, R., Gutiérrez, O. D., & Chithambo, M. L. (2022). Thermoluminescence of aquamarine: A preliminary study. Radiation Measurements, 155, 106806. https://doi.org/10.1016/j.radmeas.2022.106806 | |
dc.relation.references | Kalita, J. M., & Chithambo, M. L. (2017). Thermoluminescence of α-Al2O3:C,Mg: Kinetic analysis of the main glow peak. Journal of Luminescence, 182, 177–182. https://doi.org/10.1016/j.jlumin.2016.10.031 | |
dc.relation.references | Karampiperi, M., Tsirliganis, N. C., & Kazakis, N. A. (2020). Use of commercial pharmaceutical drug (Daktarin®) for retrospective/accidental/forensic thermoluminescence dosimetry. Applied Radiation and Isotopes, 166, 109364. https://doi.org/10.1016/j.apradiso.2020.109364 | |
dc.relation.references | Katı, M. I., Türemis, M., Keskin, I. C., Tastekin, B., Kibar, R., Çetin, A., & Can, N. (2012). Luminescence behaviour of beryl (aquamarine variety) from Turkey. Journal of Luminescence, 132(10), 2599–2602. https://doi.org/10.1016/j.jlumin.2012.03.058 | |
dc.relation.references | Kitis, G. (2002). Confirmation of the Influence of Thermal Quenching on the Initial Rise Method in ?Al2O3:C. Physica Status Solidi (a), 191, 621–627. https://doi.org/10.1002/1521-396X(200206)191:23.0.CO;2-X | |
dc.relation.references | Kitis, G., Gomez-Ros, J. M., & Tuyn, J. W. N. (1998). Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D: Applied Physics, 31(19), 2636–2641. https://doi.org/10.1088/0022-3727/31/19/037 | |
dc.relation.references | Kitis, G., Pagonis, V., & Drupieski, C. (2003). Cooling rate effects on the thermoluminescence glow curves of Arkansas quartz. Physica Status Solidi (a), 198(2), 312–321. https://doi.org/10.1002/pssa.200306601 | |
dc.relation.references | Mahmoud, B., & Mohamed, O. (2020). Determination of Thermoluminescence Kinetic Parameters of La2O3 Doped with Dy3+ and Eu3+. Multidisciplinary Digital Publishing Institute, 2-23. | |
dc.relation.references | Martini, M., & Galli, A. (2016). Materials science and cultural heritage. IL NUOVO SAGGIATORE, 32(3), 46–58. https://www.ilnuovosaggiatore.sif.it/article/33 | |
dc.relation.references | May, C. E., & Partridge, J. A. (1964). Thermoluminescent Kinetics of Alpha‐Irradiated Alkali Halides. The Journal of Chemical Physics, 40(5), 1401–1409. https://doi.org/10.1063/1.1725324 | |
dc.relation.references | McKeever, S. W. S. (1985). Thermoluminescence of Solids. Cambridge University Press. https://doi.org/10.1017/CBO9780511564994 | |
dc.relation.references | McKeever, S. W. S., & Chen, R. (1997). Luminescence models. Radiation Measurements, 27(5–6), 625–661. https://doi.org/10.1016/S1350-4487(97)00203-5 | |
dc.relation.references | Montoya, D. y Moreno, G. (2019). Esmeralda. En: Recursos minerales de Colombia, vol. 2. Bogotá: Servicio Geológico Colombiano. | |
dc.relation.references | Pagonis, V., & Kitis, G. (2001). Fit of Second Order Thermoluminescence Glow Peaks Using the Logistic Distribution Function. Radiation Protection Dosimetry, 95(3), 225–229. https://doi.org/10.1093/oxfordjournals.rpd.a006545 | |
dc.relation.references | Pagonis, V., & Kitis, G. (2002). On the Possibility of using Commercial Software Packages for Thermoluminescence Glow Curve Deconvolution Analysis. Radiation Protection Dosimetry, 101(1), 93–98. https://doi.org/10.1093/oxfordjournals.rpd.a006067 | |
dc.relation.references | Pagonis., V., Kitis., G., & Furetta, C. (2006). Numerical and Practical Exercises in Thermoluminescence (1st ed). Springer New York. https://doi.org/10.1007/0-387-30090-2 | |
dc.relation.references | Petitfils, A., Wrobel, F., Benabdesselam, M., Iacconi, P., & Butler, J. E. (2007). Role of TL thermal quenching in CVD diamond for medical applications. Diamond and Related Materials, 16(4), 1062–1065. https://doi.org/https://doi.org/10.1016/j.diamond.2006.11.092 | |
dc.relation.references | Petrov, S. A., & Bailiff, I. K. (1995). Thermal quenching and the Initial Rise technique of trap depth evaluation. Journal of Luminescence, 65(6), 289–291. https://doi.org/10.1016/0022-2313(95)00090-9 | |
dc.relation.references | Randall, J. T., & Wilkins, M. H. F. (1945a). Phosphorescence and electron traps - I. The study of trap distributions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 184(999), 365–389. https://doi.org/10.1098/rspa.1945.0024 | |
dc.relation.references | Randall, J. T., & Wilkins, M. H. F. (1945b). Phosphorescence and electron traps II. The interpretation of long-period phosphorescence. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 184(999), 390–407. https://doi.org/10.1098/rspa.1945.0025 | |
dc.relation.references | Rasheedy, M. S., El-Sherif, M. A., & Hefni, M. A. (2006). Applications of the three points analysis method for obtaining the trap parameters and the separation of thermoluminescence glow curve into its components. Radiation Effects and Defects in Solids, 161(10), 579–590. https://doi.org/10.1080/10420150600879732 | |
dc.relation.references | Rojas, J., Cogollo, R., Gil, M., Usma, J., Gutiérrez, O., & Soto, A. (2019). Cerium and manganese doped alumina matrices: Preparation, characterization and kinetic analysis of their glow curves. Journal of Luminescence, 214, 116572. https://doi.org/10.1016/j.jlumin.2019.116572 | |
dc.relation.references | Şahiner, E., Meriç, N., & Polymeris, G. S. (2015). Impact of different mechanical pre-treatment to the EPR signals of human fingernails towards studying dose response and fading subjected to UV exposure or beta irradiation. Radiation Measurements, 82, 40–46. https://doi.org/10.1016/j.radmeas.2015.08.005 | |
dc.relation.references | Subedi, B., Oniya, E., Polymeris, G. S., Afouxenidis, D., Tsirliganis, N. C., & Kitis, G. (2011). Thermal quenching of thermoluminescence in quartz samples of various origin. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(6), 572–581. https://doi.org/10.1016/j.nimb.2011.01.011 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Beryl | |
dc.subject.keywords | Thermoluminescence | |
dc.subject.keywords | Kinetic parameters | |
dc.subject.keywords | Thermal quenching | |
dc.subject.keywords | Heating rate | |
dc.subject.keywords | Dose | |
dc.subject.proposal | Berilo | spa |
dc.subject.proposal | Termoluminiscencia | spa |
dc.subject.proposal | Parámetros cinéticos | spa |
dc.subject.proposal | Apagado térmico | spa |
dc.subject.proposal | Tasa de calentamiento | spa |
dc.subject.proposal | Dosis | spa |
dc.title | Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: