Publicación: Detección de DENV y ZIKV en pacientes con síndrome febril agudo en el departamento de Córdoba
dc.contributor.advisor | Ricardo Caldera, Dina Marcela | |
dc.contributor.author | Avilés Vergara, Paula Andrea | |
dc.date.accessioned | 2022-01-25T23:27:30Z | |
dc.date.available | 2022-01-25T23:27:30Z | |
dc.date.issued | 2022-01-24 | |
dc.description.abstract | Objective To determine simultaneous circulation of DENV serotypes and ZIKV in Córdoba, Colombia, during 2015 and 2016. Material and methods A total of 294 samples from patients with clinical diagnosis of febrile syndrome compatible with dengue were collected between June 2015 and December 2016. All samples were tested for DENV and ZIKV by RT-PCR using C6/36 cells culture supernatant. Results Thirty-three percent of the samples were positive (97/294); from these, 61.8% were positive for DENV and 31% were positive for Zika. The predominant serotype was DENV-2 (70.1%), followed by DENV-3 (8.9%), DENV-4 (6%), and DENV-1 (3%). DENV/ZIKV coinfection was identified in 7.2% of the cases associated with DENV-2 and DENV-4 serotypes. The confirmed cases of dengue, Zika, and DENV/ZIKV coinfections were clinically mild and self-limited. Conclusions We reported the co-circulation of all four DENV serotypes, with a higher frequency of DENV-2. ZIKV introduction in Córdoba department-Colombia in August 2015 favored the appearance of DENV/ZIKV coinfections. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología Tropical | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | Objetivo: Detectar la co-circulación de los serotipos del DENV y confirmar la circulación simultánea de ZIKV en el departamento de Córdoba. Materiales y métodos: Se recolectaron 294 muestras de pacientes con diagnóstico clínico de síndrome febril agudo y con sospecha clinica de dengue entre junio de 2015 y diciembre de 2016. Todas las muestras fueron analizadas para DENV y ZIKV mediante RT-PCR utilizando sobrenadante de cultivo de células C6/36. Resultados: El 33% de las muestras fueron positivas (97/294); de ellas, el 61,8% fueron positivas para el DENV y el 31% para el Zika. El serotipo predominante fue el DENV-2 (70,1%), seguido del DENV-3 (8,9%), el DENV-4 (6%) y el DENV-1 (3%). La coinfección DENV/ZIKV se identificó en el 7,2% de los casos, asociados a los serotipos DENV-2 y DENV-4. Los casos confirmados de dengue, Zika y coinfecciones DENV/ZIKV fueron clínicamente leves y autolimitados. Conclusiones: Reportamos la co-circulación de los cuatro serotipos de DENV, con una mayor frecuencia de DENV-2. La introducción del ZIKV en el departamento de Córdoba-Colombia en agosto de 2015, favoreció la aparición de coinfecciones por DENV/ZIKV. | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ..................................................................................................................................... 10 | spa |
dc.description.tableofcontents | 2.JUSTIFICACIÓN................................................................................................................................13 | spa |
dc.description.tableofcontents | 3.MARCOTEÓRICO.............................................................................................................................14 | spa |
dc.description.tableofcontents | 3.1Epidemiología.............................................................................................................................. 14 | spa |
dc.description.tableofcontents | 3.1.1 Serotipos y genotipos del DENV.............................................................................................. 15 | spa |
dc.description.tableofcontents | 3.2 Biología del virus ....................................................................................................................... 16 | spa |
dc.description.tableofcontents | 3.2.1 Estructura y genoma del DENV ............................................................................................... 16 | spa |
dc.description.tableofcontents | 3.2.2 Transmisión y ciclo de vida ..................................................................................................... 18 | spa |
dc.description.tableofcontents | 3.3 Interacciones primarias del DENV con componentes de la respuesta inmune innata. ............. 19 | spa |
dc.description.tableofcontents | 3.3.1 Respuesta inmunitaria innata contra el DENV........................................................................ 19 | spa |
dc.description.tableofcontents | 3.3.2 Respuesta inmunitaria adaptativa contra el DENV ................................................................. 20 | spa |
dc.description.tableofcontents | 3.4 Inmunopatogénesis de la enfermedad por el virus del dengue ................................................ 21 | spa |
dc.description.tableofcontents | 3.4.1 Mejora de la enfermedad dependiente de anticuerpos (ADE) ............................................... 21 | spa |
dc.description.tableofcontents | 3.4.2 El fenómeno del pecado antigénico original........................................................................... 22 | spa |
dc.description.tableofcontents | 3.5 Diagnóstico................................................................................................................................. 23 | spa |
dc.description.tableofcontents | 3.6 Vigilancia, prevención y control ............................................................................................... 24 | spa |
dc.description.tableofcontents | 4. OBJETIVOS................................................................................................................................... 25 | spa |
dc.description.tableofcontents | 4.1 Objetivo general ........................................................................................................................ 25 | spa |
dc.description.tableofcontents | 4.2 Objetivos específicos.................................................................................................................. 25 | spa |
dc.description.tableofcontents | 5. METODOLOGÍA ............................................................................................................................ 26 | spa |
dc.description.tableofcontents | 5.1 Tipo, lugar y diseño del estudio.................................................................................................. 26 | spa |
dc.description.tableofcontents | 5.2 Muestras..................................................................................................................................... 27 | spa |
dc.description.tableofcontents | 5.3 Aislamiento viral en línea celular C6/36..................................................................................... 27 | spa |
dc.description.tableofcontents | 5.4 Detección Molecular por RT-PCR para DENV ........................................................................... 28 | spa |
dc.description.tableofcontents | 5.5 RT-PCR ZIKV................................................................................................................................ 28 | spa |
dc.description.tableofcontents | 5.6 Análisis estadístico...................................................................................................................... 29 | spa |
dc.description.tableofcontents | 5.7 Consideraciones éticas .............................................................................................................. 29 | spa |
dc.description.tableofcontents | 6. RESULTADOS................................................................................................................................ 30 | spa |
dc.description.tableofcontents | 7. DISCUSIÓN.................................................................................................................................... 34 | spa |
dc.description.tableofcontents | 8. CONCLUSIONES ........................................................................................................................... 37 | spa |
dc.description.tableofcontents | 9. PERSPECTIVAS Y RECOMENDACIONES ........................................................................................ 38 | spa |
dc.description.tableofcontents | 10. REFERENCIAS BIBLIOGRÁFICAS................................................................................................... 39 | spa |
dc.description.tableofcontents | 11. ANEXOS....................................................................................................................................... 46 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4773 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | spa |
dc.publisher.place | Berástegui, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Microbiología Tropical | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Dengue virus | eng |
dc.subject.keywords | Zika Virus | eng |
dc.subject.keywords | Coinfection | eng |
dc.subject.keywords | Colombia | eng |
dc.subject.proposal | Virus del dengue | spa |
dc.subject.proposal | Virus del Zika | spa |
dc.subject.proposal | Coinfecciones | spa |
dc.subject.proposal | Colombia | spa |
dc.title | Detección de DENV y ZIKV en pacientes con síndrome febril agudo en el departamento de Córdoba | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Acosta-Bas C, Gómez-Cordero I. Biología y métodos diagnósticos del dengue. Rev Biomédica. 2005;16(2):113–37. | spa |
dcterms.references | Koraka P, Zeller H, Niedrig M, Osterhaus ADME, Groen J. Reactivity of serum samples from patients with a flavivirus infection measured by immunofluorescence assay and ELISA. Microbes Infect. 2002;4(12):1209–15. | spa |
dcterms.references | Usme-Ciro JA, Gómez-Castañeda AM, Gallego-Gómez JC. Detección molecular y tipificación del virus dengue por RT-PCR y PCR anidada usando oligonucleótidos mejorados. Salud Uninorte. 2012;28(1):1– 15. | spa |
dcterms.references | Weaver S, Vasilakis N. Molecular Evolution of Dengue Virus. Infect Genet Evol. 2009;9(4):523–40. | spa |
dcterms.references | Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res. 2016;2016:6803098. | spa |
dcterms.references | Martínez Torres E. Dengue. Estud Avançados. 2008;22(64):33–52. | spa |
dcterms.references | Chaparro-Narváez P, León-Quevedo W, Castañeda-Orjuela CA. Comportamiento de la mortalidad por dengue en Colombia entre 1985 y 2012. Biomédica. 2016 Aug;36(0):125–34. | spa |
dcterms.references | World Health Organization. Dengue: guidelines for diagnosis, treatment, prevention, and control. Spec Program Res Train Trop Dis. 2009;x, 147. | spa |
dcterms.references | Guzman MG, Fuentes O, Martinez E, Perez AB. Dengue A2 - Quah, Stella R. In: International Encyclopedia of Public Health (Second Edition). Oxford: Academic Press; 2017. p. 233–57. | spa |
dcterms.references | World Human Organization. (Julio 24). Dengue y dengue grave. 2020. https://www.who.int/es/news room/fact-sheets/detail/dengue-and-severe-dengue | spa |
dcterms.references | Verhagen LM, de Groot R. Dengue in children. Journal Infect. 2014, Supple:S77–86. | spa |
dcterms.references | Espinal MA, Andrus JK, Jauregui B, Waterman SH, Michael D. Arbovirosis emergentes y reemergentes transmitidas por Aedes en la Región de las Américas : implicaciones en materia de políticas de salud *. Am J Public Heal [Internet]. 2019;1–8. Available from: https://doi.org/10.2105/AJPH.2018.304849 | spa |
dcterms.references | Paniz-Mondolfi AE, Rodriguez-Morales AJ, Blohm G, Marquez M, Villamil-Gomez WE. ChikDenMaZika Syndrome: the challenge of diagnosing arboviral infections in the midst of concurrent epidemics. Ann Clin Microbiol Antimicrob [Internet]. 2016;15(1):42. Available from: http://ann clinmicrob.biomedcentral.com/articles/10.1186/s12941-016-0157-x | spa |
dcterms.references | Estofolete C, Bernardes A, Parreira R, Esteves A, Hardman L, Greque GV, et al. Clinical and laboratory profile of Zika virus infection in dengue suspected patients: A case series. J Clin Virol. 2016;81(May 2015):25–30. | spa |
dcterms.references | Arredondo-García J, Méndez-Herrera A, Medina-Cortina H, H M-C. Arbovirus in Latin America. Acta Pediatr Mex. 2016;37(2):111–31. | spa |
dcterms.references | Carey De. Chikungunya and dengue: A Case of Mistaken Identity? J Hist Med Allied Sci [Internet]. 1971 Jul 1 [cited 2019 Jun 13];XXVI(3):243–62. Available from: https://academic.oup.com/jhmas/article lookup/doi/10.1093/jhmas/XXVI.3.243 | spa |
dcterms.references | Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol [Internet]. 2010 Dec 1 [cited 2019 Jun 13];8(S12):S7–16. Available from: Página 40 de 47 http://www.nature.com/articles/nrmicro2460 | spa |
dcterms.references | Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol [Internet]. 2010 Dec 1 [cited 2019 Jun 13];8(S12):S7–16. Available from: Página 40 de 47 http://www.nature.com/articles/nrmicro2460 | spa |
dcterms.references | Sánchez, I., & Ruiz, B.H. (1996). A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. The Journal of general virology, 77 ( Pt 10), 2541-5. | spa |
dcterms.references | Espada-murao LA, Morita K. Dengue and Soluble Mediators of the Innate Immune System. 2011;39(4):53–62. | spa |
dcterms.references | Powers AM. Chikungunya. Clin Lab Med. 2010;30(2010):209–19. | spa |
dcterms.references | Kalita J, Kumar P, Misra UK. Stimulus-sensitive myoclonus and cerebellar ataxia following chikungunya meningoencephalitis. Infection [Internet]. 2013 Jun 29 [cited 2019 Jun 13];41(3):727–9. Available from: http://link.springer.com/10.1007/s15010-013-0406-2 | spa |
dcterms.references | Castrillón JC, Castaño JC, Urcuqui S. Dengue en Colombia: Diez años de evolución. Vol. 32, Revista Chilena de Infectologia. 2015. p. 142–9. | spa |
dcterms.references | Instituto Nacional de Salud - Republica de Colombia. Boletín epidemológico semanal (BES) Semana epidemiológica 30 del año 2021. 2021. | spa |
dcterms.references | Laura Gutiérrez Ruiz, Diana Carolina Quintero Gil MMG. Actualización en diagnóstico del dengue: evolución de las técnicas y su aplicación real en la clínica. Med Lab. 2012;18:411–42. | spa |
dcterms.references | Acosta-Bas C, Ivonne G-C. Biología y métodos diagnósticos del dengue. Rev Biomédica. 2005;16(2):113–37. | spa |
dcterms.references | Salvador B, Zhou Y, Michault A, Muench MO, Simmons G. Characterization of Chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology [Internet]. 2009 [cited 2019 Jun 13];393(1):33–41. Available from: https://www.sciencedirect.com/science/article/pii/S0042682209004450 | spa |
dcterms.references | Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, et al. Characterization of Reemerging Chikungunya Virus. PLoS Pathog [Internet]. 2007 [cited 2019 Jun 14];3(6):e89. Available from: https://dx.plos.org/10.1371/journal.ppat.0030089 | spa |
dcterms.references | Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis. 2017;11(1):1–24. | spa |
dcterms.references | Chew MH, Rahman MM, Hussin S. Molecular epidemiology and phylogenetic analysis of dengue virus type-1 and 2 isolated in malaysia. Pakistan J Med Sci. 2015;31(3):615–20. | spa |
dcterms.references | Pacheco O, Beltrán M, Nelson C a, Valencia D, Tolosa N, Farr SL, et al. Zika Virus Disease in Colombia - Preliminary Report. N Engl J Med. 2016;1–10. | spa |
dcterms.references | Rodriguez-Morales AJ, Villamil-Gomez WE, Franco-Paredes C. The arboviral burden of disease caused by co-circulation and co-infection of dengue, chikungunya and Zika in the Americas. Travel Med Infect Dis. 2016;14:177–9. | spa |
dcterms.references | Castanha PMS, Nascimento EJM, Braga C, Cordeiro MT, De Carvalho O V., De Mendonça LR, et al. Dengue virus-specific antibodies enhance Brazilian Zika virus infection. J Infect Dis. 2017;215(5):781– 5. | spa |
dcterms.references | Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, et al. Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunol. 2016;5(12):e117. | spa |
dcterms.references | Swanstrom JA, Plante JA, Plante KS, Young EF, Mcgowan E, Gallichotte EN, et al. Isolated from Dengue Patients Are Protective against Zika Virus. Am Soc Microbiol. 2016;7(4):1–8. | spa |
dcterms.references | Villabona-Arenas CJ, de Oliveira JL, de Capra CS, Balarini K, Loureiro M, Fonseca CRTP, et al. Detection Of Four Dengue Serotypes Suggests Rise In Hyperendemicity In Urban Centers Of Brazil. PLoS Negl Trop Dis. 2014;8(2):3–5. | spa |
dcterms.references | Organización Mundial de la Salud. Dengue y dengue grave: Datos y cifras [Internet]. 2018. Available from: http://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue | spa |
dcterms.references | Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clin Infect Dis. 2016;63(12):1584–90. | spa |
dcterms.references | Nugent EK, Nugent AK, Nugent R, Nugent K. Zika virus: Epidemiology, pathogenesis, and human disease. Am J Med Sci. 2017;353(5):466–73. | spa |
dcterms.references | Kantor IN. DENGUE , ZIKA Y CHIKUNGUNYA Arbovirus y enfermedades virales transmitidas por artrópodos Dengue. 2016;1–5. | spa |
dcterms.references | Padilla et al. Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. 2012 | spa |
dcterms.references | Ministerio de la Protección Social S de V y C en SP (SIVIGILA). Boletín epidemiológico semanal. Semana epidemiológica número 53. Vol. 2011. 2011. | spa |
dcterms.references | nstituto Nacional de Salud - Republica de Colombia. Boletín Epidemiológico Semanal -Situación Nacional Semana epidemiológica 52 [Internet]. Instituto Nacional de Salud- SIVIGILA. 2019. Available from: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_8.p | spa |
dcterms.references | Guzman G, Fuentes O, Martinez E, Perez AB, Who P. Dengue. 2017;2:233–57. | spa |
dcterms.references | Klungthong C, Putnak R, Mammen MP, Li T, Zhang C. Molecular genotyping of dengue viruses by phylogenetic analysis of the sequences of individual genes. J Virol Methods. 2008;154(1–2):175–81. | spa |
dcterms.references | Padilla J, Rojas D, Sáezn R. Dengue en Colombia, Epidemiología de la reemergencia a la hiperendemia. Vol. Primera Ed, Guías de Impresión Ltda. 2012. 281 p. | spa |
dcterms.references | Holbrook MR. Historical perspectives on flavivirus research. Viruses. 2017;9(5):1–19. | spa |
dcterms.references | Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A minireview. Viruses. 2020;12(829). | spa |
dcterms.references | St. John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol. 2019;19(4):218–30. | spa |
dcterms.references | Chong HY, Chiuan YL, Abdul Majeed AB, Leow CH. Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019;274. | spa |
dcterms.references | Estofolete CF, de Oliveira Mota MT, Bernardes Terzian AC, de Aguiar Milhim BHG, Ribeiro MR, Nunes DV, et al. Unusual clinical manifestations of dengue disease – Real or imagined? Acta Trop [Internet]. 2019;199(August):105134. Available from: https://doi.org/10.1016/j.actatropica.2019.105134 | spa |
dcterms.references | Garcia M, Wehbe M, Lévêque N, Bodet C. Skin innate response to flaviviral infection. Eur Cytokine Netw. 2017;28. | spa |
dcterms.references | Ngono AE, Shresta S. Immune Response to Dengue and Zika. Annu Rev Immunol. 2018;36:279–308. | spa |
dcterms.references | Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Prim [Internet]. 2016;2:1–26. Available from: http://dx.doi.org/10.1038/nrdp.2016.55 | spa |
dcterms.references | Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol. 2015;15(12):745–59. | spa |
dcterms.references | Tsai TT, Chuang YJ, Lin YS, Wan SW, Chen CL, Lin CF. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci. 2013;20(1):1–9. | spa |
dcterms.references | Singla M, Kar M, Sethi T, Kabra SK, Lodha R, Chandele A, et al. Immune Response to Dengue Virus Infection in Pediatric Patients in New Delhi, India—Association of Viremia, Inflammatory Mediators and Monocytes with Disease Severity. PLoS Negl Trop Dis. 2016;10(3):1–25. | spa |
dcterms.references | Tian Y, Babor M, Lane J, Schulten V, Patil VS, Seumois G, et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat Commun [Internet]. 2017;8(1). Available from: http://dx.doi.org/10.1038/s41467-017-01728-5 | spa |
dcterms.references | Weiskopf D, Bangs DJ, Sidney J, Kolla R V., De Silva AD, De Silva AM, et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc Natl Acad Sci U S A. 2015;112(31):E4256–63. | spa |
dcterms.references | Ong EZ, Zhang SL, Tan HC, Gan ES, Chan KR, Ooi EE. Dengue virus compartmentalization during antibody-enhanced infection. Sci Rep [Internet]. 2017;7(December 2016):1–9. Available from: http://dx.doi.org/10.1038/srep40923 | spa |
dcterms.references | Glasner DR, Puerta-Guardo H, Harris E. The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol. 2018;176(5):139–48. | spa |
dcterms.references | Petitdemange C, Wauquier N, Rey J, Hervier B, Leroy E, Vieillard V. Control of acute dengue virus infection by natural killer cells. Front Immunol. 2014;5(MAY):1–5. | spa |
dcterms.references | Beltrán D, López-Vergès S. NK cells during dengue disease and their recognition of dengue virus infected cells. Front Immunol. 2014;5(MAY):1–6. | spa |
dcterms.references | Pantoja P, Pérez-Guzmán EX, Rodríguez I V., White LJ, González O, Serrano C, et al. Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat Commun. 2017;8. | spa |
dcterms.references | Hattakam S, Elong Ngono A, McCauley M, Shresta S, Yamabhai M. Repeated exposure to dengue virus elicits robust cross neutralizing antibodies against Zika virus in residents of Northeastern Thailand. Sci Rep [Internet]. 2021;11(1):1–10. Available from: https://doi.org/10.1038/s41598-021-88933-x | spa |
dcterms.references | Wen J, Elong Ngono A, Angel Regla-Nava J, Kim K, Gorman MJ, Diamond MS, et al. Dengue virus reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat Commun [Internet]. 2017;8(1). Available from: http://dx.doi.org/10.1038/s41467-017-01669-z | spa |
dcterms.references | Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol. 2016;17(9):1102–8. | spa |
dcterms.references | Slon-Campos JL, Dejnirattisai W, Jagger BW, López-Camacho C, Wongwiwat W, Durnell LA, et al. A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat Immunol [Internet]. 2019;20(10):1291–8. Available from: http://dx.doi.org/10.1038/s41590-019-0477-z | spa |
dcterms.references | Rothman AL. Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11(8):532–43. | spa |
dcterms.references | Nikin-Beers R, Ciupe SM. Modelling original antigenic sin in dengue viral infection. Math Med Biol. 2018;35(2):257–72. | spa |
dcterms.references | Rivino L. Understanding the Human T Cell Response to Dengue Virus. In: Advances in Experimental Medicine and Biology. 2018. p. 355–60. | spa |
dcterms.references | Guzmán MG, Kourí G. Advances in dengue diagnosis. Clinical and Diagnostic Laboratory Immunology. 1996 Nov;3(6):621-627. DOI: 10.1128/cdli.3.6.621-627.1996. PMID: 8914749; PMCID: PMC170421 | spa |
dcterms.references | Chappell W, Calisher CH, Toole RF, Maness KC, Sasso DR, Henderson BE. Comparison of three methods used to isolate dengue virus type 2. Appl Microbiol. 1971;22(6):1100–3. | spa |
dcterms.references | Yamada K-I, Takasaki T, Nawa M, Kurane I. Virus isolation as one of the diagnostic methods for dengue virus infection. J Clin Virol. 2002;24(3):203–9 | spa |
dcterms.references | Lozano A, Filipe AR. Anticuerpos frente a virus west nile y otros virus transmitidos por artropodos en la poblacion del delta del ebro. Rev Esp Salud Publica. 1998;72(1):245–50 | spa |
dcterms.references | Silvia MG, Alma S, Olga E, Garrido-pérez SMG, Beltrán-moha AS, Piña-gutierrez OE, et al. Estudio serológico de arbovirus en población expuesta en municipios de riesgo en Tabasco , México. 2004; | spa |
dcterms.references | Ivette L, Asprilla LI. Disponible en: http://www.redalyc.org/articulo.oa?id=105116726024. 2005; | spa |
dcterms.references | Dixon KE, Llewellyn CH, Travassos Da Rosa APA, Travassos Da Rosa JF. Programa multidisciplinario de vigilancia de las enfermedades infecciosas en zonas colindantes con la Carretera Transamazónica en Brasil. II. Epidemiología de las infecciones por arbovirus. Boletín la Of Sanit Panam [Internet]. 1981;91(3):200–18. Available from: http://iris.paho.org/xmlui/bitstream/handle/123456789/17158/v91n3p200.pdf?sequence=1&isAllowed= y | spa |
dcterms.references | John Jairo González Duque. Vigilanciade susceptibilidad a insecticidasde Anopheles(Nyssorhynchus)darlingi, An. (N.) nuneztovari yAn. (N.) albimanusen localidades centinelas de los departamentos de Antioquia, Cauca, Choco, Córdoba y Valle del Cuaca. Año 2009 -2014. [Internet]. [cited 2019 May 11]. Available from: https://studylib.es/doc/8461416/10 | spa |
dcterms.references | World Human Organization. Malaria vector control decision making criteria and procedures for By : Dr J . A . Najera and Dr M . Zaim World Health Organization Communicable Disease Control , Prevention and Eradication WHO Pesticide Evaluation Scheme. 2002. | spa |
dcterms.references | Claudia M, Jesús M De, Cristina M, Caldera M, Elías E, Atencia MC, et al. Primer reporte de la mutación F1534C asociada con resistencia cruzada a DDT y piretroides en Aedes aegypti en Colombia. 2016; | spa |
dcterms.references | Santacoloma L, Chaves B, Brochero HL. Estado de la susceptibilidad de poblaciones naturales del vector del dengue a insecticidas en trece localidades de Colombia. Biomedica. 2012;32(3):333–43. | spa |
dcterms.references | Conde M, Orjuela LI, Castellanos CA, Herrera-Varela M, Licastro S, Quiñones ML. Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomedica. 2015;35(1):43–52. | spa |
dcterms.references | Aguirre-Obando OA, Dalla Bona AC, Duque L JE, Navarro-Silva MA. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia. 2015;32(1):14–22. | spa |
dcterms.references | Aponte A, Penilla RP, Rodríguez AD, Ocampo CB. Mechanisms of pyrethroid resistance in Aedes Página 44 de 47 (Stegomyia) aegypti from Colombia. Acta Trop [Internet]. 2019;191(October 2018):146–54. Available from: https://doi.org/10.1016/j.actatropica.2018.12.021 | spa |
dcterms.references | Organización Mundial de la Salud O, Programa Especial para Investigación y Capacitación en Enfermedades Tropicales (TDR). Dengue: Guias para el diagnóstico, tratamiento, prevención y control. 2009. | spa |
dcterms.references | Rosario D, Álvarez M, Díaz J, Contreras R, Rodríguez R, Vázquez S, et al. Reacción en cadena de la polimerasa para la detección rápida y determinación del serotipo de virus del dengue en muestras clínicas. Rev Panam Salud Publica. 1998;4(1):1–5. | spa |
dcterms.references | Chien L, Liao T, Shu P, Gubler DJ, Chang GJ, Huang J. Development of Real-Time Reverse Transcriptase PCR Assays To Detect and Serotype Dengue Viruses. J Clin Microbiol. 2006;44(4):1295– 304. | spa |
dcterms.references | Calvo EP, Sánchez-Quete F, Durán S, Sandoval I, Castellanos JE. Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients. Acta Trop. 2016;163:32–7. | spa |
dcterms.references | Feder HM, Jr., Plucinski M, Hoss DM. Dengue with a morbilliform rash and a positive tourniquet test. JAAD Case Reports [Internet]. 2016 Sep [cited 2019 Jun 20];2(5):422. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27872891 | spa |
dcterms.references | Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, et al. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop [Internet]. 2017 Dec 1 [cited 2019 Jun 20];176:206–23. Available from: https://www.sciencedirect.com/science/article/pii/S0001706X17308185 | spa |
dcterms.references | Suwanmanee S, Surasombatpattana P, Soonthornworasiri N, Hamel R, Maneekan P, Missé D, et al. Monitoring arbovirus in Thailand: Surveillance of dengue, chikungunya and zika virus, with a focus on coinfections. Acta Trop [Internet]. 2018;188(April):244–50. Available from: https://doi.org/10.1016/j.actatropica.2018.09.012 | spa |
dcterms.references | Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-β-lactamase NDM-1- producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother. 2010;54(11):4914–6. | spa |
dcterms.references | Villar LA, Rojas DP, Besada-lombana S, Sarti E. Epidemiological Trends of Dengue Disease in Colombia ( 2000-2011 ): A Systematic Review. w PLoS Negl Trop Dis. 2015;9:1–16. | spa |
dcterms.references | Fares RCG, Souza KPR, Añez G, Rios M. Epidemiological Scenario of Dengue in Brazil. Biomed Res Int. 2015;2015:1–13. | spa |
dcterms.references | Ocazionez RE, Cortés FM, Villar LA, Gómez SY. Temporal distribution of dengue virus serotypes in Colombian endemic area and dengue incidence . Re-introduction of dengue-3 associated to mild febrile illness and primary infection. Mem Inst Oswaldo Cruz. 2006;101(7):725–31. | spa |
dcterms.references | Chien LJ, Liao TL, Shu PY, Huang JH, Gubler DJ, Chang GJJ. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J Clin Microbiol. 2006;44(4):1295– 304. | spa |
dcterms.references | M.K. K, T. A, V. F, R.S. S, C. D. Zika: The origin and spread of a mosquito-borne virus. Bull World Health Organ. 2016;94(9):675-686C. | spa |
dcterms.references | Chan M, Kam YW, Chong CY, Thoon KC, Yung CF. Clinical Features of Patients with Zika and dengue virus co-infection in Singapore. J Infect. 2017; | spa |
dcterms.references | Blanco-Tuirán P, Camacho-Burgos E, Corrales-Aldana H, Ruiz-Contreras V. Detección molecular del Página 45 de 47 virus Dengue en mosquitos Aedes aegypti (Diptera: Culicidae) de la ciudad de Sincelejo, Colombia. Rev Investig en Med Trop. 2015;1(July 2013):1–7. | spa |
dcterms.references | Estofolete CF, Terzian ACB, Colombo TE, de Freitas Guimarães G, Ferraz HC, da Silva RA, et al. Co infection between Zika and different Dengue serotypes during DENV outbreak in Brazil. J Infect Public Health [Internet]. 2019;12(2):178–81. Available from: https://doi.org/10.1016/j.jiph.2018.09.007 | spa |
dcterms.references | Organization WH. Zika virus outbreaks in the Americas [Internet]. Vol. 90. 2015. Available from: https://apps.who.int/iris/handle/10665/254522 | spa |
dcterms.references | Aubry M, Teissier A, Huart M, Merceron S, Vanhomwegen J, Roche C, et al. Zika Virus Seroprevalence, French Polynesia, 2014–2015. Emerg Infect Dis. 2017;23(4):2014–5. | spa |
dcterms.references | Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis 2018 181 [Internet]. 2018 Jan 30 [cited 2021 Jul 20];18(1):1–12. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-018-2976-1 | spa |
dcterms.references | Silva MMO, Tauro LB, Kikuti M, Anjos RO, Santos VC, Gonçalves TSF, et al. Concomitant Transmission of Dengue, Chikungunya, and Zika Viruses in Brazil: Clinical and Epidemiological Findings From Surveillance for Acute Febrile Illness. Clin Infect Dis [Internet]. 2019 Sep 27 [cited 2021 Jul 20];69(8):1353–9. Available from: https://academic.oup.com/cid/article/69/8/1353/5251719 | spa |
dcterms.references | Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, et al. Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunol [Internet]. 2016 Dec 1 [cited 2021 Jul 20];5(12):e117. Available from: https://onlinelibrary.wiley.com/doi/full/10.1038/cti.2016.72 | spa |
dcterms.references | Chia PY, Yew H Sen, Ho H, Chow A, Sadarangani SP, Chan M, et al. Clinical features of patients with Zika and dengue virus co-infection in Singapore. J Infect. 2017 Jun 1;74(6):611–5. | spa |
dcterms.references | Abudurexiti A, Adkins S, Alioto D, Alkhovsky S V., Avšič-Županc T, Ballinger MJ, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019;164(7):1949–65. | spa |
dcterms.references | Chia PY, Yew H Sen, Ho H, Chow A, Sadarangani SP, Chan M, et al. Clinical features of patients with Zika and dengue virus co-infection in Singapore. J Infect [Internet]. 2017 Jun 1 [cited 2021 Jul 20];74(6):611–5. Available from: http://www.journalofinfection.com/article/S0163445317300841/fulltext | spa |
dcterms.references | Mattar S, Tique V, Miranda J, Montes E, Garzon D. Undifferentiated tropical febrile illness in Cordoba , Colombia : Not everything is dengue. J Infect Public Health [Internet]. 2017;10(5):507–12. Available from: http://dx.doi.org/10.1016/j.jiph.2016.09.014 | spa |
dcterms.references | Jarman RG, Nisalak A, Anderson KB, Klungthong C, Thaisomboonsuk B, Kaneechit W, et al. Factors influencing dengue virus isolation by C6/36 cell culture and mosquito inoculation of nested PCR-positive clinical samples. Am J Trop Med Hyg. 2011;84(2):218–23. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: