Publicación: Fenómenos críticos de un ferrimagneto de momentos magnéticos 3/2 y 5/2: tratamiento monte carlo
dc.contributor.advisor | Espriella Vélez, Nicolás De la | |
dc.contributor.author | Ferrer Bettín, Francisco Javier | |
dc.coverage.spatial | Montería, Córdoba | |
dc.date.accessioned | 2020-11-13T15:09:41Z | spa |
dc.date.available | 2020-11-13T15:09:41Z | spa |
dc.date.issued | 2020-11-12 | spa |
dc.description.abstract | En este trabajo han sido estudiados por simulaciones Monte Carlo (MC) los comportamientos críticos de primer orden y de compensación de espín en un sistema de Ising ferrimagnético que consta de espines S = 3/2 y Q = 5/2 alternados en una red cuadrada. El sistema está definido por un Hamiltoniano (Ɦ) que contiene interacciones ferromagnéticas a segundos vecinos de la red entre espines S (J'2) y espines Q (J'3), así como también campos de anisotropía iónica (D'1, D'2) y un campo magnético externo (h'). Se analizan en detalle los efectos de los campo cristalinos D'1 y magnético (h') sobre los fenómenos críticos, de doble transición de primer orden y de compensación. Encontramos que la existencia de una doble transición de fase de primer orden depende de la temperatura y la intensidad de h'. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Físico(a) | spa |
dc.description.modality | Trabajo de Investigación/Extensión | spa |
dc.description.tableofcontents | Introducción ................................................................................................................ 1 | spa |
dc.description.tableofcontents | 2. Sistemas magnéticos y modelo de Ising de espines mixtos S = 3=2 y Q = 5=2 ……………………………………………………...............................................................…………… 4 | spa |
dc.description.tableofcontents | 2.1. Momentos magnéticos de los átomos ..............................................….………… 4 | spa |
dc.description.tableofcontents | 2.1.1. Magnetización ........................................................................….…………..…….... 7 | spa |
dc.description.tableofcontents | 2.1.2. Inducción Magnética. ....................................................................................... 7 | spa |
dc.description.tableofcontents | 2.1.3. Permeabilidad y Susceptibilidad Magnética. ...…………................................. 7 | spa |
dc.description.tableofcontents | 2.2. Materiales Magnéticos. .…………………................................................................ 7 | spa |
dc.description.tableofcontents | 2.2.1. Tipos de magnetismo en materiales .……………….......................................... 8 | spa |
dc.description.tableofcontents | 2.2.2. Ferromagnetismo..………………………….............................................................. 8 | spa |
dc.description.tableofcontents | 2.2.3. Antiferromagnetismo. ………………..………........................................................ 9 | spa |
dc.description.tableofcontents | 2.2.4. Ferrimagnetismo .…………………….……............................................................... 9 | spa |
dc.description.tableofcontents | 2.3. Ciclo de histéresis ……………….…........................................................................... 9 | spa |
dc.description.tableofcontents | 2.3.1. Ciclos de histéresis magnética para materiales blandos y duros ............. 10 | spa |
dc.description.tableofcontents | 2.4. Modelo de Ising .…………………….......................................................................... 11 | spa |
dc.description.tableofcontents | 2.4.1. Modelo de Ising en una dimensión: solución exacta …............................... 11 | spa |
dc.description.tableofcontents | 2.4.2. Modelo de Ising en dos dimensiones. ...............................……….…………...... 12 | spa |
dc.description.tableofcontents | 2.5. Modelo de espines mixtos ...................................................................…...……... 14 | spa |
dc.description.tableofcontents | 3. Resultados y análisis ...................................................................…...……............... 15 | spa |
dc.description.tableofcontents | 3.1. Descripción del Hamiltoniano de interacción en la red de momentos 3=2 y 5=2 ................................................................................................................................ 15 | spa |
dc.description.tableofcontents | 3.2. Magnetizaciones de las subredes mS, mQ y la total MT ………..................... 16 | spa |
dc.description.tableofcontents | 3.3. Efectos del campo cristalino D .....…………………………………………………………... 16 | spa |
dc.description.tableofcontents | 3.4. Efectos del campo magnético h’ .......................................…………................... 18 | spa |
dc.description.tableofcontents | 4. Conclusiones ..……………………………….……............................................………….…. 23 | spa |
dc.description.tableofcontents | Bibliografía ……………………...............................................………………………………….. 24 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/3596 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Física | spa |
dc.relation.references | J.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer, J. Magn. Magn. Mater. 429 (2017)34. | spa |
dc.relation.references | } N. De La Espriella, J.C. Madera, G.M. Buendí a, Critical phenomena in a mixed spin-3/2 and spin-5/2 Ising ferro-ferrimagnetic system in a longitudinal magnetic field, J. Magn. Magn. Mater. 442 (2017) 350–359. | spa |
dc.relation.references | A. Feraoun, S. Amraoui, M. Kerouad, Critical and compensation behaviors of an Ising mixed spin-(5/2, 3/2) on a nanographene layer, Appl. Phys. A 124 (2018) 329. | spa |
dc.relation.references | B. Deviren, M. Keskin, Dynamic phase transitions and compensation temperatures in a mixed spin 3/2 and spin 5/2 Ising system, J. Stat. Phys. 140 (2010) 934–947. | spa |
dc.relation.references | M. Keskin, M. Ertaş, Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins, Physica A 496 (2018) 79–89. | spa |
dc.relation.references | H.K. Mohamad, Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet, J. Magn. Magn. Mater. 323 (2011) 61–66. | spa |
dc.relation.references | J.A. Reyes, N. De La Espriella, G.M. Buendí a, Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: a Monte Carlo study, Phys. Stat. Sol. B 252 (2015) 2268–2274. | spa |
dc.relation.references | M. Ertaş, A. Yilmaz, Dynamic magnetic properties of mixed half-integer Q = 3/2 and half-integer (S= 5/2) spins: Dynamic effectice-field theory, Comput. Cond. Matt. 14 (2018)1–7. | spa |
dc.relation.references | M. Reis, Fundamentals of Magnetism, Academic Press, Oxford, 2013. | spa |
dc.relation.references | M. Ertaş, M. Keskin, Dynamic hysteresis features in a two-dimensional mixed Ising system, Phys. Lett. A 379 (2015) 1576–1583. | spa |
dc.relation.references | M. Ertaş, Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field, Superlattices Microstruct. 85 (2015) 734–742. | spa |
dc.relation.references | M. Batı, M. Ertaş, Effect of the hamiltonian parameters on the hysteresis properties of the kinetic mixed spin (1/2, 1) Ising ferrimagnetic model on a hexagonal lattice, Physica B 513 (2017) 40–47. | spa |
dc.relation.references | M. Batı, M. Ertaş, Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (s=5/2) and low-spin (s=1/2), Phase Transit. 90 (2016) 863. | spa |
dc.relation.references | B. Deviren, M. Ertaş, M. Keskin, The effective-field theory studies of critical phenomena in a mixed spin-1 and spin-2 Ising model on honeycomb and square lattices, Physica A 389 (2010) 2036. | spa |
dc.relation.references | M. Ertaş, M. Keskin, Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice, Chin. Phys. B 22 (2013) 120507. | spa |
dc.relation.references | M. Batı, Mixed spin (1, 5/2) Ising ferromagnetic blume–Capel model under time-dependent sinusoidal magnetic field: an effective-field theory analysis, J. Supercond. Nov. Magn. 31 (2018) 821. | spa |
dc.relation.references | N. De La Espriella, G.M. Buendí a, Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model, J. Phys.: Condens. Matter 23 (2011) 176003. | spa |
dc.relation.references | B. Boughazi, M. Boughrara, M. Kerouad, Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film: Monte Carlo treatment, Chin. Phys. B 28 (2019) 027501. | spa |
dc.relation.references | N. De La Espriella, J.C. Madera, A. Sánchez-Caraballo, Reentrant and spin compensation phenomena in an Ising type ferrimagnetic system, Physica A 511 (2018) 289–301. | spa |
dc.relation.references | D.P. Landau, K. Binder, A Guide Monte Carlo Simulations in Statistical Physics, second ed., University Press, Cambridge, 2005. | spa |
dc.relation.references | R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of cluster dendrimers of core/shell with mixed spins Q = 3/2 and S=2: A Monte Carlo study, Chem. Phys. Lett. 691 (2018) 199–205. | spa |
dc.relation.references | R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice, J. Magn. Magn. Mater. 393 (2015) 151–156. | spa |
dc.relation.references | R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure, Physica B 472 (2015) 19–24. | spa |
dc.relation.references | A. Jabar, R. Masrour, N. Tahiri, Ground state phase diagrams and magnetic properties of a bilayer hexagonal structure, Physica A 490 (2018) 1019–1027. | spa |
dc.relation.references | R. Masrour, A. Jabar, Magnetic properties in stacked triangular lattice: Monte Carlo approach, Physica A 491 (2018) 926–934. | spa |
dc.relation.references | R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of the Ising system on alternate layers of a hexagonal lattice, Physica A 491 (2018) 1028–1039. | spa |
dc.relation.references | R. Masrour, A. Jabar, L. Bahmad, M. Hamedoun, A. Benyoussef, Magnetic properties of mixed integer and half-integer spins in a Blume–Capel model: A Monte Carlo study, J. Magn. Magn. Mater. 421 (2017) 76–81. | spa |
dc.relation.references | A. Jabar, R. Masrour, Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: A Monte Carlo simulation, Physica A 515 (2019) 270–278. | spa |
dc.relation.references | A. Jabar, R. Masrour, Magnetic properties of a graphene with alternate layers, Superlattices Microstruct. 112 (2017) 541–553. | spa |
dc.relation.references | A. Jabar, R. Masrour, Effect of surface and interface couplings in thin film system: Monte Carlo simulation, Comput. Condens. Matter 13 (2017) 91–95. | spa |
dc.relation.references | A. Jabar, R. Masrour, A. Benyoussef, M. Hamedoun, Magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice: A Monte Carlo study, Chem. Phys. Lett. 670 (2017) 16–21. | spa |
dc.relation.references | L.N. Néel, Ann. Phys. 3 (1948) 137. | spa |
dc.relation.references | M. Mansuripur, J. Appl. Phys. 61 (1987) 1580. | spa |
dc.relation.references | G.M. Buendí a, E. Machado, Phys. Rev. B 61 (2000) 14686. | spa |
dc.relation.references | S. Ohkoshi, A. Yukinori, F. Akira, K. Hashimoto, Phys. Rev. Lett. 82 (1999) 1285. | spa |
dc.relation.references | H.P. Shieh, M.H. Kryder, Appl. Phys. Lett. 49 (1986) 473. | spa |
dc.relation.references | T.A. Ostler, J. Barker, R.F.L. Evans, et al., Ultrafast heating as a suffcient stimulus for magnetization reversal in a ferrimagnet, Nat. Commun. (2012) 1–6. | spa |
dc.relation.references | J. Barker, U. Atxitia, T.A. Ostler, O. Hovorka, O. Chubykalo-Fesenko, R.W. Chantrell, Two-magnon bound state causes ultrafast thermally induced magnetisation switching, Sci. Rep. 3 (2013) 1–6. | spa |
dc.relation.references | S. Dutz, R. Hergt, J. Mürbe, Hysteresis losses of magnetic nanoparticle powders in the single domain size range, J. Magn. Magn. Mater. 308 (2007) 305–312. | spa |
dc.relation.references | N. Lupu, M. Lostun, H. Chiriac, Surface magnetization processes in soft magnetic nanowires, J. Appl. Phys. 107 (2010) 09E315. | spa |
dc.relation.references | S. Bouhou, I. Essaoudi et al, J. Magn. Magn. Mater. 324 (2012) 2434. | spa |
dc.relation.references | R. Weiss, A. Gold, J. Tener, Cytochromes c': biological model for the S=3/2, 5/2 admixture, Chem. Rev. 106 (2006) 2550–2579. | spa |
dc.relation.references | W. Wang, R. Liu, D. Lv, X. Luo, Monte Carlo Simulation of magnetic properties of a nano-graphene bilayer in a longitudinal magnetic field, Superlattices Microstruct. 98 (2016) 458–472. | spa |
dc.relation.references | X. Luo, W. Wang, D. Chen, S. Xu, Monte Carlo Study of internal energy and specific heat of a nano-graphene bilayer in a longitudinal magnetic field, Physica B 491 (2016) 51–58. | spa |
dc.relation.references | W. Jiang, Y.Y. Yang, A.B. Guo, Study on magnetic properties of a nanographene bilayer, Carbon 95 (2015) 190–198. | spa |
dc.relation.references | W. Jiang, Y. Wang, A.B. Guo, Y.Y. Yang, K.L. Shi, Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure, Carbon 110 (2016) 41–47. | spa |
dc.relation.references | Y. Yang, W. Wang, D. Lv, J. Liu, Z. Gao, Z. Wang, Monte Carlo Study of magnetic behaviors in a quadrangle ferrimagnetic Ising nanoisland, J. Phys. Chem. Solids 120 (2018) 109–122. | spa |
dc.relation.references | B. Ma, W. Jiang, Surface effects on phase diagram and magnetization of a mixed spin-3/2 and spin-5/2 Ising multilayers, IEEE Trans. Magn. 47 (2011) 3118–3121. | spa |
dc.relation.references | R. Masrour, L. Bahmad, A. Benyoussef, Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study, J. Magn. Magn. Mater. 324 (2012) 3991. | spa |
dc.relation.references | R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices, J. Magn. Magn. Mater. 410 (2016) 223–225. | spa |
dc.relation.references | } L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys. Rev. 76, 1232 (1949); B. Kaufman y L. Onsager, Phys. Rev. 76, 1244 (1949). | spa |
dc.relation.references | C. N. Yang, \emph{Phys. Rev.} 85, 809 (1952). | spa |
dc.relation.references | T. D. Schultz, D. C. Mattis y E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964). | spa |
dc.relation.references | H. Jia Wu et al, Magnetic properties in graphene-like nanoisland bilayer: Monte Carlo study, Physica E 112 (2019) 86–95. | spa |
dc.relation.references | M.H. Kryder et al, Heat assisted magnetic recording, Proc. IEEE 96 (2008) 11. | spa |
dc.relation.references | Kadanoff, L. P., \emph{Statistical Phyisics. Statics, Dynamics and Renormalization}, World Scientific (2000). | spa |
dc.relation.references | N.T. Trung et al, From single-to double-first-order magnetic phase transition in magnetocaloric Mn_{1-x}CrxCoGe compounds, Appl. Phys. Lett. 96(2010) 162507. | spa |
dc.relation.references | M. E. J. Newman and G. T. Barkema. \emph{Monte Carlo Methods in Statistical Physics}, Clarendon Press-Oxford, (2006). | spa |
dc.relation.references | D. Frenkel and B. Smit. Understanding Molecular Simulation. From Algorithms to Applications. Academic Press. A Division of Harcourt, Inc., (1998). | spa |
dc.relation.references | J. M. Yeomans. Statistical Mechanics of Phase Transitions. Clarendon Press. Oxford, (1992). | spa |
dc.relation.references | D. W. Heermann. Computer Simulation Methods in Theoretical Physics. Springer-Verlag, (1986). | spa |
dc.relation.references | B. A. Berg. Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientific Publishing, (2004). | spa |
dc.relation.references | C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, (1998). | spa |
dc.relation.references | N. Metropolis et al. J. Chem. Phys., 21:1087, (1953). | spa |
dc.relation.references | K. Binder and D.W. Heermann. Monte Carlo Simulation in Statistical Physics, Springer-Verlag, (1992). | spa |
dc.relation.references | http://cdigital.dgb.uanl.mx/la/1020082587/1020082587 \_ 009.pdf | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Compensation temperaturas | eng |
dc.subject.keywords | Critical temperatura | eng |
dc.subject.keywords | Hysteresis | eng |
dc.subject.keywords | Phase transitions | eng |
dc.subject.keywords | Monte Carlo simulations | eng |
dc.subject.keywords | Ising models of mixed | eng |
dc.subject.proposal | Temperatura de compensación | spa |
dc.subject.proposal | Temperatura crítica | spa |
dc.subject.proposal | Histéresis | spa |
dc.subject.proposal | Transición de fase | spa |
dc.subject.proposal | Simulación Monte Carlo | spa |
dc.subject.proposal | Modelo de Ising mixto | spa |
dc.title | Fenómenos críticos de un ferrimagneto de momentos magnéticos 3/2 y 5/2: tratamiento monte carlo | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: