Publicación:
Fenómenos críticos de un ferrimagneto de momentos magnéticos 3/2 y 5/2: tratamiento monte carlo

dc.contributor.advisorEspriella Vélez, Nicolás De la
dc.contributor.authorFerrer Bettín, Francisco Javier
dc.coverage.spatialMontería, Córdoba
dc.date.accessioned2020-11-13T15:09:41Zspa
dc.date.available2020-11-13T15:09:41Zspa
dc.date.issued2020-11-12spa
dc.description.abstractEn este trabajo han sido estudiados por simulaciones Monte Carlo (MC) los comportamientos críticos de primer orden y de compensación de espín en un sistema de Ising ferrimagnético que consta de espines S = 3/2 y Q = 5/2 alternados en una red cuadrada. El sistema está definido por un Hamiltoniano (Ɦ) que contiene interacciones ferromagnéticas a segundos vecinos de la red entre espines S (J'2) y espines Q (J'3), así como también campos de anisotropía iónica (D'1, D'2) y un campo magnético externo (h'). Se analizan en detalle los efectos de los campo cristalinos D'1 y magnético (h') sobre los fenómenos críticos, de doble transición de primer orden y de compensación. Encontramos que la existencia de una doble transición de fase de primer orden depende de la temperatura y la intensidad de h'.spa
dc.description.degreelevelPregradospa
dc.description.degreenameFísico(a)spa
dc.description.modalityTrabajo de Investigación/Extensiónspa
dc.description.tableofcontentsIntroducción ................................................................................................................ 1spa
dc.description.tableofcontents2. Sistemas magnéticos y modelo de Ising de espines mixtos S = 3=2 y Q = 5=2 ……………………………………………………...............................................................…………… 4spa
dc.description.tableofcontents2.1. Momentos magnéticos de los átomos ..............................................….………… 4 spa
dc.description.tableofcontents2.1.1. Magnetización ........................................................................….…………..…….... 7spa
dc.description.tableofcontents2.1.2. Inducción Magnética. ....................................................................................... 7spa
dc.description.tableofcontents2.1.3. Permeabilidad y Susceptibilidad Magnética. ...…………................................. 7spa
dc.description.tableofcontents2.2. Materiales Magnéticos. .…………………................................................................ 7spa
dc.description.tableofcontents2.2.1. Tipos de magnetismo en materiales .……………….......................................... 8spa
dc.description.tableofcontents2.2.2. Ferromagnetismo..………………………….............................................................. 8spa
dc.description.tableofcontents2.2.3. Antiferromagnetismo. ………………..………........................................................ 9spa
dc.description.tableofcontents2.2.4. Ferrimagnetismo .…………………….……............................................................... 9spa
dc.description.tableofcontents2.3. Ciclo de histéresis ……………….…........................................................................... 9spa
dc.description.tableofcontents2.3.1. Ciclos de histéresis magnética para materiales blandos y duros ............. 10spa
dc.description.tableofcontents2.4. Modelo de Ising .…………………….......................................................................... 11spa
dc.description.tableofcontents2.4.1. Modelo de Ising en una dimensión: solución exacta …............................... 11spa
dc.description.tableofcontents2.4.2. Modelo de Ising en dos dimensiones. ...............................……….…………...... 12spa
dc.description.tableofcontents2.5. Modelo de espines mixtos ...................................................................…...……... 14spa
dc.description.tableofcontents3. Resultados y análisis ...................................................................…...……............... 15spa
dc.description.tableofcontents3.1. Descripción del Hamiltoniano de interacción en la red de momentos 3=2 y 5=2 ................................................................................................................................ 15spa
dc.description.tableofcontents3.2. Magnetizaciones de las subredes mS, mQ y la total MT ………..................... 16spa
dc.description.tableofcontents3.3. Efectos del campo cristalino D .....…………………………………………………………... 16spa
dc.description.tableofcontents3.4. Efectos del campo magnético h’ .......................................…………................... 18spa
dc.description.tableofcontents4. Conclusiones ..……………………………….……............................................………….…. 23spa
dc.description.tableofcontentsBibliografía ……………………...............................................………………………………….. 24spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3596spa
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programFísicaspa
dc.relation.referencesJ.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer, J. Magn. Magn. Mater. 429 (2017)34.spa
dc.relation.references} N. De La Espriella, J.C. Madera, G.M. Buendí a, Critical phenomena in a mixed spin-3/2 and spin-5/2 Ising ferro-ferrimagnetic system in a longitudinal magnetic field, J. Magn. Magn. Mater. 442 (2017) 350–359.spa
dc.relation.referencesA. Feraoun, S. Amraoui, M. Kerouad, Critical and compensation behaviors of an Ising mixed spin-(5/2, 3/2) on a nanographene layer, Appl. Phys. A 124 (2018) 329.spa
dc.relation.referencesB. Deviren, M. Keskin, Dynamic phase transitions and compensation temperatures in a mixed spin 3/2 and spin 5/2 Ising system, J. Stat. Phys. 140 (2010) 934–947.spa
dc.relation.referencesM. Keskin, M. Ertaş, Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins, Physica A 496 (2018) 79–89.spa
dc.relation.referencesH.K. Mohamad, Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet, J. Magn. Magn. Mater. 323 (2011) 61–66.spa
dc.relation.referencesJ.A. Reyes, N. De La Espriella, G.M. Buendí a, Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: a Monte Carlo study, Phys. Stat. Sol. B 252 (2015) 2268–2274.spa
dc.relation.referencesM. Ertaş, A. Yilmaz, Dynamic magnetic properties of mixed half-integer Q = 3/2 and half-integer (S= 5/2) spins: Dynamic effectice-field theory, Comput. Cond. Matt. 14 (2018)1–7.spa
dc.relation.referencesM. Reis, Fundamentals of Magnetism, Academic Press, Oxford, 2013.spa
dc.relation.referencesM. Ertaş, M. Keskin, Dynamic hysteresis features in a two-dimensional mixed Ising system, Phys. Lett. A 379 (2015) 1576–1583.spa
dc.relation.referencesM. Ertaş, Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field, Superlattices Microstruct. 85 (2015) 734–742.spa
dc.relation.referencesM. Batı, M. Ertaş, Effect of the hamiltonian parameters on the hysteresis properties of the kinetic mixed spin (1/2, 1) Ising ferrimagnetic model on a hexagonal lattice, Physica B 513 (2017) 40–47.spa
dc.relation.referencesM. Batı, M. Ertaş, Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (s=5/2) and low-spin (s=1/2), Phase Transit. 90 (2016) 863.spa
dc.relation.referencesB. Deviren, M. Ertaş, M. Keskin, The effective-field theory studies of critical phenomena in a mixed spin-1 and spin-2 Ising model on honeycomb and square lattices, Physica A 389 (2010) 2036.spa
dc.relation.referencesM. Ertaş, M. Keskin, Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice, Chin. Phys. B 22 (2013) 120507.spa
dc.relation.referencesM. Batı, Mixed spin (1, 5/2) Ising ferromagnetic blume–Capel model under time-dependent sinusoidal magnetic field: an effective-field theory analysis, J. Supercond. Nov. Magn. 31 (2018) 821.spa
dc.relation.referencesN. De La Espriella, G.M. Buendí a, Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model, J. Phys.: Condens. Matter 23 (2011) 176003.spa
dc.relation.referencesB. Boughazi, M. Boughrara, M. Kerouad, Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film: Monte Carlo treatment, Chin. Phys. B 28 (2019) 027501.spa
dc.relation.referencesN. De La Espriella, J.C. Madera, A. Sánchez-Caraballo, Reentrant and spin compensation phenomena in an Ising type ferrimagnetic system, Physica A 511 (2018) 289–301.spa
dc.relation.referencesD.P. Landau, K. Binder, A Guide Monte Carlo Simulations in Statistical Physics, second ed., University Press, Cambridge, 2005.spa
dc.relation.referencesR. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of cluster dendrimers of core/shell with mixed spins Q = 3/2 and S=2: A Monte Carlo study, Chem. Phys. Lett. 691 (2018) 199–205.spa
dc.relation.referencesR. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice, J. Magn. Magn. Mater. 393 (2015) 151–156.spa
dc.relation.referencesR. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure, Physica B 472 (2015) 19–24.spa
dc.relation.referencesA. Jabar, R. Masrour, N. Tahiri, Ground state phase diagrams and magnetic properties of a bilayer hexagonal structure, Physica A 490 (2018) 1019–1027.spa
dc.relation.referencesR. Masrour, A. Jabar, Magnetic properties in stacked triangular lattice: Monte Carlo approach, Physica A 491 (2018) 926–934.spa
dc.relation.referencesR. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of the Ising system on alternate layers of a hexagonal lattice, Physica A 491 (2018) 1028–1039.spa
dc.relation.referencesR. Masrour, A. Jabar, L. Bahmad, M. Hamedoun, A. Benyoussef, Magnetic properties of mixed integer and half-integer spins in a Blume–Capel model: A Monte Carlo study, J. Magn. Magn. Mater. 421 (2017) 76–81.spa
dc.relation.referencesA. Jabar, R. Masrour, Magnetic properties of mixed spin-5/2 and spin-2 Ising model on a decorated square lattice: A Monte Carlo simulation, Physica A 515 (2019) 270–278.spa
dc.relation.referencesA. Jabar, R. Masrour, Magnetic properties of a graphene with alternate layers, Superlattices Microstruct. 112 (2017) 541–553.spa
dc.relation.referencesA. Jabar, R. Masrour, Effect of surface and interface couplings in thin film system: Monte Carlo simulation, Comput. Condens. Matter 13 (2017) 91–95.spa
dc.relation.referencesA. Jabar, R. Masrour, A. Benyoussef, M. Hamedoun, Magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice: A Monte Carlo study, Chem. Phys. Lett. 670 (2017) 16–21.spa
dc.relation.referencesL.N. Néel, Ann. Phys. 3 (1948) 137.spa
dc.relation.referencesM. Mansuripur, J. Appl. Phys. 61 (1987) 1580.spa
dc.relation.referencesG.M. Buendí a, E. Machado, Phys. Rev. B 61 (2000) 14686.spa
dc.relation.referencesS. Ohkoshi, A. Yukinori, F. Akira, K. Hashimoto, Phys. Rev. Lett. 82 (1999) 1285.spa
dc.relation.referencesH.P. Shieh, M.H. Kryder, Appl. Phys. Lett. 49 (1986) 473.spa
dc.relation.referencesT.A. Ostler, J. Barker, R.F.L. Evans, et al., Ultrafast heating as a suffcient stimulus for magnetization reversal in a ferrimagnet, Nat. Commun. (2012) 1–6.spa
dc.relation.referencesJ. Barker, U. Atxitia, T.A. Ostler, O. Hovorka, O. Chubykalo-Fesenko, R.W. Chantrell, Two-magnon bound state causes ultrafast thermally induced magnetisation switching, Sci. Rep. 3 (2013) 1–6.spa
dc.relation.referencesS. Dutz, R. Hergt, J. Mürbe, Hysteresis losses of magnetic nanoparticle powders in the single domain size range, J. Magn. Magn. Mater. 308 (2007) 305–312.spa
dc.relation.referencesN. Lupu, M. Lostun, H. Chiriac, Surface magnetization processes in soft magnetic nanowires, J. Appl. Phys. 107 (2010) 09E315.spa
dc.relation.referencesS. Bouhou, I. Essaoudi et al, J. Magn. Magn. Mater. 324 (2012) 2434.spa
dc.relation.referencesR. Weiss, A. Gold, J. Tener, Cytochromes c': biological model for the S=3/2, 5/2 admixture, Chem. Rev. 106 (2006) 2550–2579.spa
dc.relation.referencesW. Wang, R. Liu, D. Lv, X. Luo, Monte Carlo Simulation of magnetic properties of a nano-graphene bilayer in a longitudinal magnetic field, Superlattices Microstruct. 98 (2016) 458–472.spa
dc.relation.referencesX. Luo, W. Wang, D. Chen, S. Xu, Monte Carlo Study of internal energy and specific heat of a nano-graphene bilayer in a longitudinal magnetic field, Physica B 491 (2016) 51–58.spa
dc.relation.referencesW. Jiang, Y.Y. Yang, A.B. Guo, Study on magnetic properties of a nanographene bilayer, Carbon 95 (2015) 190–198.spa
dc.relation.referencesW. Jiang, Y. Wang, A.B. Guo, Y.Y. Yang, K.L. Shi, Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure, Carbon 110 (2016) 41–47.spa
dc.relation.referencesY. Yang, W. Wang, D. Lv, J. Liu, Z. Gao, Z. Wang, Monte Carlo Study of magnetic behaviors in a quadrangle ferrimagnetic Ising nanoisland, J. Phys. Chem. Solids 120 (2018) 109–122.spa
dc.relation.referencesB. Ma, W. Jiang, Surface effects on phase diagram and magnetization of a mixed spin-3/2 and spin-5/2 Ising multilayers, IEEE Trans. Magn. 47 (2011) 3118–3121.spa
dc.relation.referencesR. Masrour, L. Bahmad, A. Benyoussef, Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study, J. Magn. Magn. Mater. 324 (2012) 3991.spa
dc.relation.referencesR. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices, J. Magn. Magn. Mater. 410 (2016) 223–225.spa
dc.relation.references} L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys. Rev. 76, 1232 (1949); B. Kaufman y L. Onsager, Phys. Rev. 76, 1244 (1949).spa
dc.relation.referencesC. N. Yang, \emph{Phys. Rev.} 85, 809 (1952).spa
dc.relation.referencesT. D. Schultz, D. C. Mattis y E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964).spa
dc.relation.referencesH. Jia Wu et al, Magnetic properties in graphene-like nanoisland bilayer: Monte Carlo study, Physica E 112 (2019) 86–95.spa
dc.relation.referencesM.H. Kryder et al, Heat assisted magnetic recording, Proc. IEEE 96 (2008) 11.spa
dc.relation.referencesKadanoff, L. P., \emph{Statistical Phyisics. Statics, Dynamics and Renormalization}, World Scientific (2000).spa
dc.relation.referencesN.T. Trung et al, From single-to double-first-order magnetic phase transition in magnetocaloric Mn_{1-x}CrxCoGe compounds, Appl. Phys. Lett. 96(2010) 162507.spa
dc.relation.referencesM. E. J. Newman and G. T. Barkema. \emph{Monte Carlo Methods in Statistical Physics}, Clarendon Press-Oxford, (2006).spa
dc.relation.referencesD. Frenkel and B. Smit. Understanding Molecular Simulation. From Algorithms to Applications. Academic Press. A Division of Harcourt, Inc., (1998).spa
dc.relation.referencesJ. M. Yeomans. Statistical Mechanics of Phase Transitions. Clarendon Press. Oxford, (1992).spa
dc.relation.referencesD. W. Heermann. Computer Simulation Methods in Theoretical Physics. Springer-Verlag, (1986).spa
dc.relation.referencesB. A. Berg. Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientific Publishing, (2004).spa
dc.relation.referencesC. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, (1998).spa
dc.relation.referencesN. Metropolis et al. J. Chem. Phys., 21:1087, (1953).spa
dc.relation.referencesK. Binder and D.W. Heermann. Monte Carlo Simulation in Statistical Physics, Springer-Verlag, (1992).spa
dc.relation.referenceshttp://cdigital.dgb.uanl.mx/la/1020082587/1020082587 \_ 009.pdfspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsCompensation temperaturaseng
dc.subject.keywordsCritical temperaturaeng
dc.subject.keywordsHysteresiseng
dc.subject.keywordsPhase transitionseng
dc.subject.keywordsMonte Carlo simulationseng
dc.subject.keywordsIsing models of mixedeng
dc.subject.proposalTemperatura de compensaciónspa
dc.subject.proposalTemperatura críticaspa
dc.subject.proposalHistéresisspa
dc.subject.proposalTransición de fasespa
dc.subject.proposalSimulación Monte Carlospa
dc.subject.proposalModelo de Ising mixtospa
dc.titleFenómenos críticos de un ferrimagneto de momentos magnéticos 3/2 y 5/2: tratamiento monte carlospa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
FranciscoJavierFerrerBettín.pdf
Tamaño:
939.03 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato_Autorización .pdf
Tamaño:
184.36 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: