Publicación:
Aplicaciones de las nanopartículas metálicas en las ciencias veterinarias

dc.contributor.authorOrtiz-Arana, Giovanyspa
dc.contributor.authorTalavera-Rojas, Martinspa
dc.contributor.authorVelazquez-Ordoñez, Valentespa
dc.contributor.authorAcosta-Dibarrat, Jorge Pablospa
dc.date.accessioned2021-05-02 00:00:00
dc.date.accessioned2022-07-01T21:01:41Z
dc.date.available2021-05-02 00:00:00
dc.date.available2022-07-01T21:01:41Z
dc.date.issued2021-05-02
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/zipspa
dc.format.mimetypeapplication/zipspa
dc.format.mimetypeapplication/xmlspa
dc.format.mimetypeapplication/xmlspa
dc.format.mimetypespa
dc.format.mimetypeaudio/mpegspa
dc.format.mimetypeaudio/mpegspa
dc.identifier.doi10.21897/rmvz.2123
dc.identifier.eissn1909-0544
dc.identifier.issn0122-0268
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6097
dc.identifier.urlhttps://doi.org/10.21897/rmvz.2123
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3158
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3160
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3568
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3570
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3569
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3571
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3148
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3162
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2123/3161
dc.relation.citationeditionNúm. 3 , Año 2021 : Revista MVZ Córdoba Volumen 26(3) Septiembre-Diciembre 2021spa
dc.relation.citationendpagee2123
dc.relation.citationissue3spa
dc.relation.citationstartpagee2123
dc.relation.citationvolume26spa
dc.relation.ispartofjournalRevista MVZ Córdobaspa
dc.relation.referencesBuzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4):MR17–MR71. https://doi.org/10.1116/1.2815690spa
dc.relation.referencesAppasani K. BioNanoMedicine: A nanotechnology platform for the 21st century. Expert Rev Mol Diagn 2005; 5(6):839–840. https://doi.org/10.1586/14737159.5.6.839spa
dc.relation.referencesVazquez-Muñoz R, Huerta-Saquero A. Nanomateriales con actividad microbicida: una alternativa al uso de antibióticos. Mundo Nano 2014; 7(13):37–47. https://doi.org/10.22201/ceiich.24485691e.2014.13.48707spa
dc.relation.referencesMohanraj VJ, Chen Y. Nanoparticles – A Review. Trop J Pharm Res 2006; 5(1):561–573. https://doi.org/10.4314/tjpr.v5i1.14634spa
dc.relation.referencesKim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007; 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001spa
dc.relation.referencesRoduner E. Size matters : why nanomaterials are different. Chem Soc Rev 2006; 35(7)583–592. https://doi.org/10.1039/B502142Cspa
dc.relation.referencesFrejo M, Díaz M, Lobo M, García J, Capó M. Nanotoxicología ambiental: retos actuales. Med Balear 2011; 26(2):36–46. http://ibdigital.uib.es/greenstone/collect/medicinaBalear/index/assoc/Medicina/_Balear_/2011v26n/2p036.dir/Medicina_Balear_2011v26n2p036.pdfspa
dc.relation.referencesZhang XF, Liu ZG., Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9):1534. https://doi.org/10.3390/ijms17091534spa
dc.relation.referencesDakal TC, Kumar A, Majumar, RS, Yadav V. Mechanism basis of antimicrobial action of silver nanoparticles. Front Microbiol 2016; 7:1831. https://doi.org/10.3389/fchem.2020.00341spa
dc.relation.referencesBai DP, Lin XY, Huang YF, Zhang XF. Theranostics aspects of various nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19(11):3299. https://doi.org/10.3390/ijms19113299spa
dc.relation.referencesElemike EE, Onwudiwe, Ekennia AC, Sonde CU, Ehiri RC. Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activies. Molecules 2017; 22(5):674. https://doi.org/10.3390/molecules22050674spa
dc.relation.referencesHamdy ME, Del Carlo M, Hussein HA, Salah TA, El-Deeb AH, et al. “Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J Nanobiotechnology 2018; 16(1):48. https://doi.org/10.1186/s12951-018-0374-xspa
dc.relation.referencesWernicki A, Puchalski A, Urban-Chmiel R, Dec M, Stęgierska D, Dudzic A, et al. Antimicrobial properties of gold, silver, copper and platinum nanoparticles against selected microorganisms isolated from cases of mastitis in cattle. Med Weter 2014; 70(9):564–567. http://www.medycynawet.edu.pl/images/stories/pdf/pdf2014/092014/201409564567.pdfspa
dc.relation.referencesKojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: A preliminary study. Res Vet Sci 2012; 93(1):275–278. https://doi.org/10.1016/j.rvsc.2011.07.029spa
dc.relation.referencesHassan AA, Oraby NH, El-Dahshan EME, Ali M. Antimicrobial potential of iron oxide nanoparticles in control of some causes of microbial skin affection in cattle. Eur J Acad Essays 2015; 2(6):20–31. https://www.semanticscholar.org/paper/Antimicrobial-Potential-of-Iron-Oxide-Nanoparticles-Atef Oraby/3a22cb5c68f2ac0f2a732eda03d657ca01bfe8bespa
dc.relation.referencesVelayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimathu S, Javaseelan C, et al. “Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 2012; 111(6):2329–2337. https://doi.org/10.1007/s00436-011-2676-xspa
dc.relation.referencesNoori A, Karimi F, Fatahian S, Yazdani F. Effects of zinc oxide nanoparticles on renal function in mice. Int J Biosci 2014; 5(9):140–146. http://doi.org/10.12692/ijb/5.9.140-146spa
dc.relation.referencesMody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4):282–289. https://doi.org/10.4103/0975-7406.72127spa
dc.relation.referencesSondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012spa
dc.relation.referencesBanumathi B, Malaikozhundan B, Vaseeharan B. In vitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus. Vet Parasitol 2016; 30(216):93–100. https://doi.org/10.1016/j.vetpar.2015.12.003spa
dc.relation.referencesBogdanchikova N, Vázquez-Muñoz R, Huerta-Saquero A. Silver nanoparticles composition for treatment of distemper in dogs. Int J Nanotecnology 2016; 13(1–3):225–235. https://tpu.pure.elsevier.com/en/publications/silver-nanoparticles-composition-for-treatment-of-distemper-in-dospa
dc.relation.referencesWójcik M, Lewandowwski W, Król M, Pawlowski K, Mieczkowski J, Lechowski R, et al. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles-In vitro studies on feline fibrosarcoma cell lines. PLoSOne 2015; 10(4):e0129639. https://doi.org/10.1371/journal.pone.0124955spa
dc.relation.referencesWong KKY, Cheung SO, Huang L, Niu J, Tao C, Ho CM, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem 2009; 4(7):1129–1135. https://doi.org/10.1002/cmdc.200900049spa
dc.relation.referencesYaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, etal. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem 2020; 8(341):1-23. https://doi.org/10.3389/fchem.2020.00341spa
dc.relation.referencesKuswandi B, Futra D, Heng LY. Chapter 15-Nanosensors for the detection of contaminants. In: Nanotechnology Application in Food; FLavor Stability, Nutrion and Safety 2017. https://doi.org/10.1016/B978-0-12-811942-6.00015-7spa
dc.relation.referencesTomar RS, Preet S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J Helminthol. 2016;91(4):454–461. https://doi.org/10.1017/S0022149X16000444spa
dc.relation.referencesSaleh M, Kumar G, Abdel-Baki AA, Al-quraishy S, El-matbouli M. In vitro antimicrosporidial activity of gold nanoparticles against Heterosporis saurida. BMC Vet Res 2016;12(44):1–6. https://doi.org/10.1186/s12917-016-0668-xspa
dc.relation.referencesPimentel-Acosta CA, Morales-Serna FN, Chávez-Sánchez Mc, Lara HH, Pestryakov A, Bogfanchikova N, et al. Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish. Parasitol Res 2019; 118(6):1741–1749. https://doi.org/10.1007/s00436-019-06315-9spa
dc.relation.referencesSaleh M, Abdel-Baki AA, Dkhil MA. El-Matbouli M, Al-Quraishy S. Antiprotozoal effects of metal nanoparticles against Ichthyophthirius ultifiliis. Parasitology 2017; 44(13):1802–1810. https://doi.org/10.1017/S0031182017001184spa
dc.relation.referencesMiraballes C, Riet-Correa F. A review of the history of research and control of Rhicephalus (Boophilus) microplus, babebiosis and anaplasmosis in Uruguay. Exp Appl Acarol. 2018; 75(4):383-398 https://doi.org/10.1007/s10493-018-0278-3spa
dc.relation.referencesBenelli G. Mode of action nanoparticles against insects. Environ Sci Pollut Res. 2018; 25(13):12329-12341. https://doi.org/10.1007/s11356-018-1850-4spa
dc.relation.referencesMarimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, et al. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. 2011; 108(6):1541–1549. https://doi.org/10.1007/s00436-010-2212-4spa
dc.relation.referencesBanumathi B, Vaseeharan B, Malaikozhundan B, Ramasamy P, Govindarajan M. Alharbi NS, et al., Green larvacides aganist blowflies, Lucilia sericata (Diptera Calliphoridae): Screening of seven plants used in Indian ethno-veterinary medicine and production of green-coated zinc oxide nanoparticles. Physiol Mol Plant Pathol. 2018; 101:214–218. https://doi.org/10.1016/j.pmpp.2017.02.003spa
dc.relation.referencesMarimuthu S, Rahuman AA, Santhoshkumar T, Jayaseelan C, Kirhi AV Bagavan A, et al. Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis. Parasitol Res. 2012; 111(5):2023–2033. https://doi.org/10.1007/s00436-011-2667-yspa
dc.relation.referencesEl-Diasty EM, Ahmed MA, Okasha N, Mansour S, El-Dek SI, El-Khalek HMABD Youssif MH. Antifungal activity of zinc oxide nanoparticles against dermatophytic lesions of cattle. Rom J Biophys. 2013; 23(3):191–202. https://doi.org/10.5897/AJB11.1499spa
dc.relation.referencesYuan Y, Peng Q, Gurunathan S. Effects of Silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int J Mol Sci. 2017; 18(3):2–22. https://doi.org/10.3390/ijms18030569spa
dc.relation.referencesGurunathan S, Choi. YJ, Kim JH. Antibacterial efficacy of silver nanoparticles endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle. Int J Mol Sci 2018; 19(4):1210. https://doi.org/10.3390/ijms19041210spa
dc.relation.referencesMohamed MM, Fouad SA Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med. 2017; 5(1):23–29. https://doi.org/10.1016/j.ijvsm.2017.02.003spa
dc.relation.referencesOrtiz-Arana G. Evaluación del efecto bactericida in vitro de las nanopartículas de plata en cepas de Moraxella spp multirresistentes aisladas en ovinos en el Estado de México [Tesis de maestría]. Toluca, México: Universidad Autónoma del Estado de México; 2019. http://hdl.handle.net/20.500.11799/105338spa
dc.relation.referencesBansod SD, Bawaskar MS, Gade AK., Rai MK. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: Treatment and prevention strategies. IET Nanobiotechnology 2015; 9(4):165–171. http://doi.org/10.1049/iet-nbt.2014.0042spa
dc.relation.referencesFlores-González M, Talavera-Rojas M, Soriano-Vargas E, Rodríguez-González V. Practical mediated-assembly synthesis of silver nanowires using commercial: Camellia sinensis extracts and their antibacterial properties. New J Chem 2019;42(3):2133-2139. https://doi.org/10.1039/C7NJ03812Gspa
dc.relation.referencesSoltani M, Ghodratnema M, Ahari H, Mousavi EH, Atee M, Dastmalchi F, Rahmanya J, et al. The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila. Int J Vet Res. 2009; 3(2):137–142. https://pdfs.semanticscholar.org/8c29/f52e713f347c4630f59b134b62fdc0f56d0.pdfspa
dc.relation.referencesShaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand. 2017; 59(1):1–11. https://doi.org/10.1186/s13028-017-0317-9spa
dc.relation.referencesRafiei S, Rezatofighi SE, Ardakani MR, Madadgar O. In vitro anti-foot-and-mouth disease virus activity of magnesium oxide nanoparticles. IET Nanobiotechnol. 2015; 9(5):247–251. http://dx.doi.org/10.1049/iet-nbt.2014.0028spa
dc.relation.referencesWójcik M, Lewandowski W, Król M, Pawlowski K, Mieczkowski J, Lechowski R, et al. Correction: Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles- In vitro studies on feline fibrosarcoma cell lines. PLoS One 2015; 10(6):e0129639. https://doi.org/10.1371/journal.pone.0129639spa
dc.relation.referencesZabielska-Koczywąs K, Wojtalewicz A,Uzarowska E, Klejman A, Wojtkowska A, et al. Distribution of glutathione-stabilized gold nanoparticles in feline fibrosarcomas and their role as a drug delivery system for doxorubicin—preclinical studies in a murine model. Int J Mol Sci. 2018; 19(4):1–19. https://doi.org/10.3390/ijms19041021spa
dc.relation.referencesSincai M, Ganga D, Ganga M, Argherie D, Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. J Magn Magn Mater. 2005; 293(1):438–441. https://doi.org/10.1016/j.jmmm.2005.02.074spa
dc.relation.referencesGurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, et al. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticáncer nanotherapy. Int J Nanomedicine 2015; 10(6):6257-6276. https://doi.org/10.2147/IJN.S92449spa
dc.relation.referencesScott NR. Nanotechnology and animal health. Rev Sci Tech. 2005; 24(1):425–432. http://doi.org/10.20506/rst.24.1.1579spa
dc.relation.referencesKuswandi B, Futra D, Heng LY. Chapter 15-Nanosensors for the detection of contaminants. In: Nanotechnology Application in Food; FLavor Stability, Nutrion and Safety. 2017:307-333. https://doi.org/10.1016/B978-0-12-811942-6.00015-7spa
dc.relation.referencesPineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012; 66(5):416–429. https://doi.org/10.1080/1745039X.2012.710081spa
dc.relation.referencesBhanja SK, Hotowt A, Mehra M, Sawosz E, Pineda L, Vadalasetty KP, et al. In ovo administracion of silver nanoparticles and/or amino acids influence metabolism and immune gene expresion in chicken embryos. Int J Mol Sci. 2015; 16(5):9484-9503. https://doi.org/10.3390/ijms16059484spa
dc.relation.referencesRomero-Pérez A, García-García E, Zavaleta-Mancera A, Ramírez-Bribiesca J, Revilla-Vázquez A, Hernández-Calva, et al. Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Vet Res Commun. 2010; 34(1):71–79. https://doi.org/10.1007/s11259-009-9335-zspa
dc.relation.referencesTayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, et al., Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf. 2010; 31(2):211–218. https://doi.org/10.1111/j.1745-4565.2010.00287.xspa
dc.relation.referencesAshraf AAET, Ahmed MA, Diasty EM, Fatma IEH, Ahmed Youssef MM. A comparative study on antifungal activity of FE2O3, and FE3O4 nanoparticles. Int J Adv Res. 2018; 6(1):189-194. http://doi.org/10.21474/IJAR01/6204spa
dc.relation.referencesHassan AR, de la Escosura- Muñiz A, Merkoçi A, Highly sensitive and rapid determination of Escherichia coli 0157:H7 in minced beef and wáter using electrocatalytic gold nanoparticle tags. Biosens Biolectron 2015; 67:511-515. https://doi.org/10.1016/j.bios.2014.09.019spa
dc.relation.referencesGiovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossi AM. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Food Chem. 2014; 159:250–256. https://doi.org/10.1016/j.foodchem.2014.03.013spa
dc.relation.referencesKim HJ, Kim SH, Lee JK, Choi CU, Lee HS, Kang HG, et al. A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. J Vet Sci. 2012; 13(4):363–369. http://doi.org/10.4142/jvs.2012.13.4.363spa
dc.relation.referencesCao Y, Ma Y, Zhang M, Wang H, Tu X, Shen H, et al. Ultrasmall graphene oxide supported gold nanoparticles as adjuvants improve humoral and cellular immunity in mice. Adv Funct Mater. 2014; 24(44):6963-6971. https://doi.org/10.1002/adfm.201401358spa
dc.relation.referencesAsgary V, Shoari A, Baghbani-Arani F, Sadat Shandiz SA, Khosravy MS, Janani A, et al. Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. Int J Nanomedicine 2016; 11:3597–3605. https://doi.org/10.2147/IJN.S109098spa
dc.relation.referencesStaroverov SA, Volkov AA, Larionov SV, Mezhennyy PV, Kozlov S, Fomin AS, et al. Study of transmissible-gastroenteritis-virus-antigen-conjugated immnunogenic properties of selenium nanoparticles and gold. Life Sci J 2014; 11(11):456–460. http://www.lifesciencesite.com/lsj/life1111/078_25876life111114_456_460.pdfspa
dc.relation.referencesNing P, Wu Z, Li X, Zhou Y, Hu A, Gong X, et al. Development of functionalized gold nanoparticles as nanoflare probes for rapid detection of classical swine fever virus. Colloids Surfaces B Biointerfaces. 2018; 1(171):110–114. https://doi.org/10.1016/j.colsurfb.2018.07.024spa
dc.relation.referencesStringer RC, Schommer S, Hoehn D, Grant SA. Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of Porcine Reproductive and Respiratory Syndrome Virus. Sens Actuator B-Chem. 2008; 134(2):427–431. https://doi.org/10.1016/j.snb.2008.05.018spa
dc.relation.referencesSattarahmady N, Tondro GH., Gholchin M, Heli H. Gold nanoparticles biosensor of Brucella spp. genomic DNA: Visual and spectrophotometric detections. Biochem Eng J. 2015;97(15):1-7. https://doi.org/10.1016/j.bej.2015.01.010spa
dc.relation.referencesSaleh M, Soliman H, Haenen O, El-Matbouli M. Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis. 2011;34(11):845–852. https://doi.org/10.1111/j.1365-2761.2011.01302.xspa
dc.rightsJorge Pablo Acosta Dibarrat, Martin Talavera Rojas, Valente Velazquez Ordoñez, Giovany Ortiz Arana - 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistamvz.unicordoba.edu.co/article/view/e2123spa
dc.subjectFood safetyeng
dc.subjectnanobiotechnologyeng
dc.subjectnanomaterialseng
dc.subjectanimal healtheng
dc.subjectInocuidad alimentariaspa
dc.subjectnanobiotecnologíaspa
dc.subjectnanomaterialesspa
dc.subjectsalud animalspa
dc.titleAplicaciones de las nanopartículas metálicas en las ciencias veterinariasspa
dc.title.translatedApplications of metal nanoparticles in veterinary scienceseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos
Colecciones