Publicación: Efecto del cambio climático en la biodisponibilidad de elementos potencialmente tóxicos en el cultivo de arroz (Oryza Sativa l.) desarrollados en suelos mineros en el departamento de Córdoba
dc.audience | ||
dc.contributor.advisor | Marrugo-Negrete, José | |
dc.contributor.advisor | Urango Cárdenas, Iván David | |
dc.contributor.author | Laza Durante, Marisol | |
dc.contributor.jury | Diaz Uribe, Carlos Enrique | |
dc.contributor.jury | Mendoza Guerra, Yoma Isabel | |
dc.date.accessioned | 2024-08-21T15:09:06Z | |
dc.date.available | 2028-08-16 | |
dc.date.available | 2024-08-21T15:09:06Z | |
dc.date.issued | 2024-08-16 | |
dc.description.abstract | La biodisponibilidad y movilidad del mercurio (Hg) y cadmio (Cd) en el suelo estuvieron influenciadas por factores como la temperatura, la precipitación, la absorción, la difusión y la formación de complejos con materiales orgánicos, entre otros. Es importante destacar que la aplicación de enmiendas orgánicas puede reducir la biodisponibilidad del Hg. El objetivo de este estudio fue evaluar el efecto del cambio climático en la biodisponibilidad de los elementos potencialmente tóxicos (Hg y Cd) en el cultivo de arroz (Oryza sativa L.) desarrollado en suelos mineros del departamento de Córdoba. El área de estudio comprendió la cuenca del río San Jorge, ubicada en el departamento de Córdoba, donde se tomaron muestras de suelos afectados por la minería aurífera. El ensayo se llevó a cabo en un invernadero de la Universidad de Córdoba. Para ello, se utilizó compost elaborado con tres diferentes proporciones de material contaminado (25, 50 y 75%). Este compost se mezcló en una proporción de 1:10 con el suelo, obteniendo cuatro tratamientos: S (control), SC 25%, SC 50% y SC 75%. Posteriormente, los tratamientos fueron sometidos a un proceso de tratamiento térmico mediante la metodología de solarización durante un mes, lo que generó diferentes temperaturas según las coberturas plásticas utilizadas. Luego de este tratamiento térmico, se procedió a la siembra de plantas de arroz. A partir de este experimento, se evaluaron las concentraciones totales y biodisponibles de Hg y Cd en los suelos, así como las concentraciones de estos elementos en los granos de arroz, lo que proporcionó un indicativo de la disponibilidad de Hg y Cd en el suelo. Los resultados obtenidos indicaron que la biodisponibilidad de Hg mostró una mayor dependencia de la temperatura, es decir, se volvió más disponible a medida que la temperatura del suelo aumentó. En cuanto al Cd, solo se observaron ligeros incrementos que no fueron estadísticamente significativos. Por su parte, la adición de compost tuvo un efecto positivo al reducir la disponibilidad de estos elementos en el suelo; sin embargo, este efecto fue inverso cuando se sometió a altas temperaturas. | spa |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Ambientales | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN | spa |
dc.description.tableofcontents | 1 INTRODUCCIÓN..............................................13 | spa |
dc.description.tableofcontents | 2 MARCO REFERENCIAL............................16 | spa |
dc.description.tableofcontents | 2.1 ANTECEDENTES..............................................16 | spa |
dc.description.tableofcontents | 2.2 MARCO TEÓRICO................................17 | spa |
dc.description.tableofcontents | 2.2.1 Mercurio............................................17 | spa |
dc.description.tableofcontents | 2.2.2 Cadmio.............................18 | spa |
dc.description.tableofcontents | 2.2.3 Suelos contaminados por mercurio..............................19 | spa |
dc.description.tableofcontents | 2.2.4 Suelos contaminados por cadmio.........................19 | spa |
dc.description.tableofcontents | 2.2.5 Toxicidad de mercurio en la salud humana........................19 | spa |
dc.description.tableofcontents | 2.2.6 Toxicidad de cadmio en la salud humana...........................20 | spa |
dc.description.tableofcontents | 2.2.7 Mercurio en el cultivo de arroz............................................21 | spa |
dc.description.tableofcontents | 2.2.8 Cadmio en el cultivo de arroz..............................22 | spa |
dc.description.tableofcontents | 2.3 CAMBIO CLIMÁTICO.....................................................23 | spa |
dc.description.tableofcontents | 2.4 COMPOST COMO ENMIENDA ORGÁNICA...............................24 | spa |
dc.description.tableofcontents | 2.5 Marco normativo.......................................25 | spa |
dc.description.tableofcontents | 2.5.1 Mercurio.....................................25 | spa |
dc.description.tableofcontents | 2.5.2 Cadmio...............................26 | spa |
dc.description.tableofcontents | 3 OBJETIVOS........................................27 | spa |
dc.description.tableofcontents | 3.1 OBJETIVO GENERAL.........................................27 | spa |
dc.description.tableofcontents | 3.2 OBJETIVO ESPECÍFICO...........................................27 | spa |
dc.description.tableofcontents | 4 MARCO METODOLÓGICO.....................................28 | spa |
dc.description.tableofcontents | 4.1 FASES DE LA INVESTIGACIÓN.............................................28 | spa |
dc.description.tableofcontents | 4.1.1 Muestreo y preparación de suelos........................28 | spa |
dc.description.tableofcontents | 4.1.2 Tratamiento térmico del suelo.......................................30 | spa |
dc.description.tableofcontents | 4.2 DISEÑO EXPERIMENTAL...........................................31 | spa |
dc.description.tableofcontents | 4.3 ANÁLISIS FISICOQUÍMICO DEL SUELO....................................32 | spa |
dc.description.tableofcontents | 4.4 DETERMINACIÓN DE Hg Y Cd..................................33 | spa |
dc.description.tableofcontents | 4.4.1 Análisis de Hg para suelos y plantas.....................................33 | spa |
dc.description.tableofcontents | 4.4.2 Análisis de Cd para suelos y plantas...............................33 | spa |
dc.description.tableofcontents | 4.4.3 Biodisponibilidad de Hg....................................34 | spa |
dc.description.tableofcontents | 4.4.4 Biodisponibilidad de Cd.......................................34 | spa |
dc.description.tableofcontents | 4.4.5 Control de calidad analítico.................................................34 | spa |
dc.description.tableofcontents | 4.5 ESPECIE VEGETAL Y SEGUIMIENTO DEL CULTIVO............................35 | spa |
dc.description.tableofcontents | 4.6 FACTOR DE TRANSLOCACIÓN Y BIOCONCENTRACIÓN.........................................35 | spa |
dc.description.tableofcontents | 4.7 RIESGO A LA SALUD DEBIDO POR LA EXPOSICIÓN DE Hg Y Cd...........................36 | spa |
dc.description.tableofcontents | 4.8 ANÁLISIS ESTADÍSTICO.................................37 | spa |
dc.description.tableofcontents | 5 RESULTADOS Y DISCUSIÓN...................................................38 | spa |
dc.description.tableofcontents | 5.1 PROPIEDADES FÍSICO – QUÍMICAS DE LOS SUELOS..........................38 | spa |
dc.description.tableofcontents | 5.1.1 Caracterización del compost elaborado bajo tres proporciones de biomasa vegetal contaminada.............................40 | spa |
dc.description.tableofcontents | 5.2 CONCENTRACIONES TOTALES DE ELEMENTOS POTENCIALMENTE TÓXICOS (Hg y Cd) EN LOS SUELOS..............................41 | spa |
dc.description.tableofcontents | 5.2.1 Concentraciones de elementos potencialmente tóxicos (Hg y Cd) en los suelos bajo tratamiento térmico.................42 | spa |
dc.description.tableofcontents | 5.3 BIODISPONIBILIDAD DE ELEMENTOS POTENCIALMENTE TÓXICOS EN SUELOS MINEROS ENMENDADOS CON COMPOST BAJO EL EFECTO DE AUMENTO DE TEMPERATURA... 44 | spa |
dc.description.tableofcontents | 5.3.1 Biodisponibilidad de elementos potencialmente tóxicos (Hg y Cd) en los suelos bajo tratamiento térmico...........45 | spa |
dc.description.tableofcontents | 5.4 COMPONENTE FISIOLÓGICO.......................................48 | spa |
dc.description.tableofcontents | 5.5 CONCENTRACIONES DE ELEMENTOS POTENCIALMENTE TÓXICOS (Hg y Cd) EN LA PLANTA................................................52 | spa |
dc.description.tableofcontents | 5.5.1 Concentraciones de HgT en raíz y hojas...............................52 | spa |
dc.description.tableofcontents | 5.5.2 Concentraciones de CdT en raíz y hojas....................... 54 | spa |
dc.description.tableofcontents | 5.6 CONCENTRACIÓN DE ELEMENTOS POTENCIALMENTE TÓXICOS (Hg y Cd) EN LOS GRANOS...............................................56 | spa |
dc.description.tableofcontents | 5.7 FACTORES DE TRANSLOCACIÓN Y BIOCONCENTRACIÓN..........................59 | spa |
dc.description.tableofcontents | 5.8 RIESGO A LA SALUD DEBIDO POR LA EXPOSICIÓN DE Hg Y Cd.....................60 | spa |
dc.description.tableofcontents | 6 CONCLUSIONES..........................................62 | spa |
dc.description.tableofcontents | 7 RECOMENDACIONES....................... 63 | spa |
dc.description.tableofcontents | 8 REFERENCIAS.......................................64 | spa |
dc.description.tableofcontents | 9 ANEXOS..............................................91 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8577 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Ambientales | |
dc.relation.references | Addai, P., Mensah, A. K., Sekyi-Annan, E., & Adjei, E. O. (2023). Biochar, compost and/or NPK fertilizer affect the uptake of potentially toxic elements and promote the yield of lettuce grown in an abandoned gold mine tailing. Journal of Trace Elements and Minerals, 4, 100066. https://doi.org/10.1016/j.jtemin.2023.100066 | |
dc.relation.references | Adekunle, I. M. (2009). Temperature Effect on Water Extractability of Cadmium, Copper, Lead and Zinc from Composted Organic Solid Wastes of South-West Nigeria. International Journal of Environmental Research and Public Health, 6(9), Article 9. https://doi.org/10.3390/ijerph6092397 | |
dc.relation.references | Ali, A., Guo, D., Li, Y., Shaheen, S. M., Wahid, F., Antoniadis, V., Abdelrahman, H., Al-Solaimani, S. G., Li, R., Tsang, D. C. W., Rinklebe, J., & Zhang, Z. (2021). Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere, 273, 129692. https://doi.org/10.1016/j.chemosphere.2021.129692 | |
dc.relation.references | Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 127, 819-847. https://doi.org/10.1016/j.envint.2019.03.039 | |
dc.relation.references | Araméndiz-Tatis, H., Cardona-Ayala, C. E., & Combatt-Caballero, E. M. (2016). Contenido Nutricional de Líneas de Fríjol Caupí (Vigna unguiculata L. Walp.) Seleccionadas de una Población Criolla. Información Tecnológica, 27(2), 53-60. https://doi.org/10.4067/S0718-07642016000200007 | |
dc.relation.references | Arena, C., Figlioli, F., Sorrentino, M. C., Izzo, L. G., Capozzi, F., Giordano, S., & Spagnuolo, V. (2017). Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotoxicology and Environmental Safety, 145, 83-89. https://doi.org/10.1016/j.ecoenv.2017.07.015 | |
dc.relation.references | Ari, I., & Yikmaz, R. F. (2019). Greening of industry in a resource- and environment-constrained world. En Handbook of Green Economics (pp. 53-68). Elsevier. https://doi.org/10.1016/B978-0-12-816635-2.00004-3 | |
dc.relation.references | Attiogbe, F. K., Ayim, N. Y. K., & Martey, J. (2019). Effectiveness of black soldier fly larvae in composting mercury contaminated organic waste. Scientific African, 6, e00205. https://doi.org/10.1016/j.sciaf.2019.e00205 | |
dc.relation.references | Basu, N., Abass, K., Dietz, R., Krümmel, E., Rautio, A., & Weihe, P. (2022). The impact of mercury contamination on human health in the Arctic: A state of the science review. Science of The Total Environment, 831, 154793. https://doi.org/10.1016/j.scitotenv.2022.154793 | |
dc.relation.references | Beltrán-Morales, F. A., García-Hernández, J. L., Ruiz-Espinoza, F. H., Valdez-Cepeda, R. D., Preciado-Rangel, P., Fortis-Hernández, M., & González-Zamora, A. (2016). Efecto de sustratos orgánicos en el crecimiento de seis variedades de chile jalapeño (Capsicum annuum L.). Ecosistemas y recursos agropecuarios, 3(7), 143-149. | |
dc.relation.references | Berg, T., & Licht, D. (2002). International legislation on trace elements as contaminants in food: A review. Food Additives and Contaminants, 19(10), 916-927. https://doi.org/10.1080/02652030210156359 | |
dc.relation.references | Bhandari, U., Gajurel, A., Khadka, B., Thapa, I., Chand, I., Bhatta, D., Poudel, A., Pandey, M., Shrestha, S., & Shrestha, J. (2023). Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon, 9(3), e13744. https://doi.org/10.1016/j.heliyon.2023.e13744 | |
dc.relation.references | Biswas, T., Parveen, O., Pandey, V. P., Mathur, A., & Dwivedi, U. N. (2020). Heavy metal accumulation efficiency, growth and centelloside production in the medicinal herb Centella asiatica (L.) urban under different soil concentrations of cadmium and lead. Industrial Crops and Products, 157, 112948. https://doi.org/10.1016/j.indcrop.2020.112948 | |
dc.relation.references | Bolognesi, S., Bernardi, G., Callegari, A., Dondi, D., & Capodaglio, A. G. (2021). Biochar production from sewage sludge and microalgae mixtures: Properties, sustainability and possible role in circular economy. Biomass Conversion and Biorefinery, 11(2), 289-299. https://doi.org/10.1007/s13399-019-00572-5 | |
dc.relation.references | Budnik, L. T., & Casteleyn, L. (2019). Mercury pollution in modern times and its socio-medical consequences. Science of The Total Environment, 654, 720-734. https://doi.org/10.1016/j.scitotenv.2018.10.408 | |
dc.relation.references | Caraballo-Laza, M. J., Ossa-Henao, D., & Marrugo Negrete, J. L. (2023). Compostaje como alternativa de manejo de biomasa contaminada con mercurio. | |
dc.relation.references | Carne, G., Leconte, S., Sirot, V., Breysse, N., Badot, P.-M., Bispo, A., Deportes, I. Z., Dumat, C., Rivière, G., & Crépet, A. (2021a). Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. Science of The Total Environment, 760, 143374. https://doi.org/10.1016/j.scitotenv.2020.143374 | |
dc.relation.references | Chau, T. P., Samdani, M. S., Fathima H, A., Jhanani, G. K., Sathiyamoorthi, E., & Lee, J. (2024). Metal accumulation and genetic adaptation of Oryza sativa to Cadmiun and Chromium heavy metal stress: A hydroponic and RAPD analyses. Environmental Research, 242, 117793. https://doi.org/10.1016/j.envres.2023.117793 | |
dc.relation.references | Chauhan, B. S., Prabhjyot-Kaur, Mahajan, G., Randhawa, R. K., Singh, H., & Kang, M. S. (2014). Chapter Two—Global Warming and Its Possible Impact on Agriculture in India. En D. L. Sparks (Ed.), Advances in Agronomy (Vol. 123, pp. 65-121). Academic Press. https://doi.org/10.1016/B978-0-12-420225-2.00002-9 | |
dc.relation.references | Chen, H., Yang, X., Wang, P., Wang, Z., Li, M., & Zhao, F.-J. (2018). Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Science of The Total Environment, 639, 271-277. https://doi.org/10.1016/j.scitotenv.2018.05.050 | |
dc.relation.references | Chen, Z., Li, Y., Peng, Y., Mironov, V., Chen, J., Jin, H., & Zhang, S. (2022). Feasibility of sewage sludge and food waste aerobic co-composting: Physicochemical properties, microbial community structures, and contradiction between microbial metabolic activity and safety risks. Science of The Total Environment, 825, 154047. https://doi.org/10.1016/j.scitotenv.2022.154047 | |
dc.relation.references | Cheng, Z., He, T., Yin, D., Tian, X., Ran, S., & Zhou, X. (2023). Effects of Composted Agricultural Organic Materials on Mercury Methylation in Paddy Soil and Mercury Enrichment in Rice. Bulletin of Environmental Contamination and Toxicology, 110(1), 38. https://doi.org/10.1007/s00128-022-03671-8 | |
dc.relation.references | Cherian, N., V, A., & Mohan, M. (2024). Assessment of mercury accumulation in various tissues of rice plant (Oryza sativa L.) from a Ramsar site in India. Environmental Nanotechnology, Monitoring & Management, 21, 100916. https://doi.org/10.1016/j.enmm.2024.100916 | |
dc.relation.references | Chiarelotto, M., Restrepo, J. C. P. S., Lorin, H. E. F., & Damaceno, F. M. (2021). Composting organic waste from the broiler production chain: A perspective for the circular economy. Journal of Cleaner Production, 329, 129717. https://doi.org/10.1016/j.jclepro.2021.129717 | |
dc.relation.references | Choque Paricahua, M. P. (2021). CAMBIO CLIMATICO Y DESARROLLO SOSTENIBLE. Revista Latinoamericana Ogmios, 1(1), Article 1. | |
dc.relation.references | Contraloría General del departamento de Córdoba. (2010). Auditoría específica. Queja N° 037 -2010. Informe final. [Informe Final]. https://contraloriadecordoba.gov.co/apc-aa-files/91fa1a67f254ccb11974daed2c4ce204/informe_final_oro_ayapel.pdf | |
dc.relation.references | Costella, C., van Aalst, M., Georgiadou, Y., Slater, R., Reilly, R., McCord, A., Holmes, R., Ammoun, J., & Barca, V. (2023). Can social protection tackle emerging risks from climate change, and how? A framework and a critical review. Climate Risk Management, 40, 100501. https://doi.org/10.1016/j.crm.2023.100501 | |
dc.relation.references | Cuéllar Ramírez, C. A., & Pacito Mora, W. A. (2021). La generación de problemas sociales como consecuencia de la minería ilegal: Caso municipio de Ayapel en el período 2015-2018 [Trabajo de grado - Pregrado, Universidad Cooperativa de Colombia]. https://repository.ucc.edu.co/handle/20.500.12494/36049 | |
dc.relation.references | Cui, H., Ou, Y., Wang, L., Yan, B., Li, Y., & Bao, M. (2021). Additive grain-size: An innovative perspective to investigate the transformation among heavy metal and phosphorus fractions during aerobic composting. Journal of Environmental Management, 292, 112768. https://doi.org/10.1016/j.jenvman.2021.112768 | |
dc.relation.references | DaMatta, F. M., Grandis, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43(7), 1814-1823. https://doi.org/10.1016/j.foodres.2009.11.001 | |
dc.relation.references | DANE. (2022). Encuesta nacional de arroz mecanizado (ENAM), I Semestre 2022. https://www.dane.gov.co/files/investigaciones/boletines/arroz/boletin_ENAM_Isem22.pdf | |
dc.relation.references | Degiovanni Beltramo, V., Gómez, J., & Sierra, J. (2004). Análisis de crecimiento y etapas de desarrollo de tres variedades de arroz (Oryza sativa L.) en Montería, Córdoba. Temas Agrarios, 9(1), 21-29. https://doi.org/10.21897/rta.v9i1.620 | |
dc.relation.references | Deng, M., Wang, S., Huang, H., Ye, D., Zhang, X., Wang, Y., Zheng, Z., Liu, T., Li, T., & Yu, H. (2023). Hydrogen peroxide mediates cadmium accumulation in the root of a high cadmium-accumulating rice (Oryza sativa L.) line. Journal of Hazardous Materials, 448, 130969. https://doi.org/10.1016/j.jhazmat.2023.130969 | |
dc.relation.references | Du, S., Wang, X., Zhou, Z., Zhang, T., & Ding, C. (2023). Kinetic characteristics of and critical stages for mercury accumulation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 258, 114968. https://doi.org/10.1016/j.ecoenv.2023.114968 | |
dc.relation.references | Enamorado-Montes, G., Reino-Causil, B., Urango-Cardenas, I., Marrugo-Madrid, S., & Marrugo-Negrete, J. (2021). Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. Toxics, 9(11), Article 11. https://doi.org/10.3390/toxics9110304 | |
dc.relation.references | Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of The Total Environment, 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001 | |
dc.relation.references | FAO, O. de las N. U. para la A. y la A. (2013). Manual de compostaje del agricultor: Experiencias en America Latina (P. Roman, M. M. Martinez, & A. Pantoja, Eds.). FAO. | |
dc.relation.references | FEDEARROZ. (2022). Semilla Certificada. Fedearroz. https://fedearroz.com.co/es/nuestros-productos/semilla-certificada/ | |
dc.relation.references | Feng, X., Han, L., Chao, D., Liu, Y., Zhang, Y., Wang, R., Guo, J., Feng, R., Xu, Y., Ding, Y., Huang, B., & Zhang, G. (2017). Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. Journal of Hazardous Materials, 331, 246-256. https://doi.org/10.1016/j.jhazmat.2017.02.041 | |
dc.relation.references | Gallagher, C. M., Kovach, J. S., & Meliker, J. R. (2008). Urinary Cadmium and Osteoporosis in U.S. Women ≥50 Years of Age: NHANES 1988–1994 and 1999–2004. Environmental Health Perspectives, 116(10), 1338-1343. https://doi.org/10.1289/ehp.11452 | |
dc.relation.references | Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Enmiendas orgánicas para la inmovilización in situ de metales pesados en el suelo: Una revisión. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088 | |
dc.relation.references | Gao, J., Ye, X., Wang, X., Jiang, Y., Li, D., Ma, Y., & Sun, B. (2021). Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in paddy soil. Ecotoxicology and Environmental Safety, 220, 112404. https://doi.org/10.1016/j.ecoenv.2021.112404 | |
dc.relation.references | García Villalobos, C. (2023). Evaluación de la influencia de compost ecológico, cubiertas vegetales y ganado en la calidad del suelo en el contexto de la agricultura ecológica. http://dspace.umh.es/handle/11000/29921 | |
dc.relation.references | Ghosh, S., Bhattacharya, J., Nitnavare, R., & Webster, T. J. (2022). Chapter 7—Microbial remediation of metals by marine bacteria. En S. Rodriguez-Couto & M. P. Shah (Eds.), Development in Wastewater Treatment Research and Processes (pp. 131-158). Elsevier. https://doi.org/10.1016/B978-0-323-85839-7.00011-6 | |
dc.relation.references | Gobernación de Córdoba. (2012). Plan Departamental para la Gestión del Riesgo de Córdoba (Colombia). Reponame:Repositorio Institucional Unidad Nacional Para La Gestión Del Riesgo de Desastres. http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/367 | |
dc.relation.references | Gomez Mamani, K. V. (2023). Determinación del tiempo de compostaje y el contenido de Nitrógeno, Fósforo y Potasio del compost elaborado con residuos hidrobiológicos de trucha Arcoiris en la región de Puno. Universidad Privada San Carlos. http://repositorio.upsc.edu.pe/handle/UPSC/474 | |
dc.relation.references | González-Flores, E., Tornero-Campante, M. A., Sandoval-Castro, E., Pérez-Magaña, A., & Gordillo-Martínez, A. J. (2011). Biodisponibilidad y fraccionamiento de metales pesados en suelos agrícolas enmendados con biosólidos de origen municipal. Revista internacional de contaminación ambiental, 27(4), 290-301. | |
dc.relation.references | Gracia, L., Chams, L., Hoyos, W., & Marrugo, J. (2016). RELACIÓN DE CONSUMO DE PESCADO Y NIVELES DE MERCURIO EN POBLADORES ALEDAÑOS AL RÍO SAN JORGE, COLOMBIA. https://repositorio.unicordoba.edu.co/handle/ucordoba/614 | |
dc.relation.references | Grifoni, M., Pedron, F., Barbafieri, M., Rosellini, I., Petruzzelli, G., & Franchi, E. (2021). Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production. En Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology (1.a ed., pp. 29-51). Wiley. https://doi.org/10.1002/9781119670391.ch2 | |
dc.relation.references | Hamid, Y., Liu, L., Usman, M., Tang, L., Lin, Q., Saqib Rashid, M., Ulhassan, Z., Hussain, M. I., & Yang, X. (2022). Organic/inorganic amendments for the remediation of a red paddy soil artificially contaminated with different cadmium levels: Leaching, speciation, and phytoavailability tests. Journal of Environmental Management, 303, 114148. https://doi.org/10.1016/j.jenvman.2021.114148 | |
dc.relation.references | Hernández Burgos, J. L., Cabrales Herrera, E., Mercado, L. C., Barrerra, J. L., Romero, J., Caro, J. D., Acosta, L. F., Salcedo, S., Jarma, A., Rosero, E. A., Narvaez, L., Cardona, C. E., Pastrana, F. E., & Salcedo, J. (2019). Sistema de siembra y uso eficiente de recursos. CORPORACIÓN UNIVERSITARIA DEL CARIBE CECAR. https://doi.org/10.21892/9789585547155 | |
dc.relation.references | Hu, H., Li, Z., Xi, B., Xu, Q., & Tan, W. (2022). Responses of bacterial taxonomic attributes to mercury species in rhizosphere paddy soil under natural sulphur-rich biochar amendment. Ecotoxicology and Environmental Safety, 229, 113058. https://doi.org/10.1016/j.ecoenv.2021.113058 | |
dc.relation.references | Hu, H., Xi, B., & Tan, W. (2021). Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice. Environmental Pollution, 286, 117290. https://doi.org/10.1016/j.envpol.2021.117290 | |
dc.relation.references | Hu, X., Yang, Y. chen, Zhou, K., Tian, G., Liu, B., He, H., Zhang, L., Cao, Y., & Bian, B. (2022). Verification of agricultural cleaner production through rice-duck farming system and two-stage aerobic composting of typical organic waste. Journal of Cleaner Production, 337, 130576. https://doi.org/10.1016/j.jclepro.2022.130576 | |
dc.relation.references | Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S., & Feng, Y. (2020). Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis. Environmental Pollution, 264, 114677. https://doi.org/10.1016/j.envpol.2020.114677 | |
dc.relation.references | Huang, X., Li, X., Zheng, L., Zhang, Y., Sun, L., Feng, Y., Du, J., Lu, X., & Wang, G. (2024). Comprehensive assessment of health and ecological risk of cadmium in agricultural soils across China: A tiered framework. Journal of Hazardous Materials, 465, 133111. https://doi.org/10.1016/j.jhazmat.2023.133111 | |
dc.relation.references | Huang, Y., Zhao, B., Liu, G., Liu, K., Dang, B., Lyu, H., & Tang, J. (2024). Effective reducing the mobility and health risk of mercury in soil under thiol-modified biochar amendment. Journal of Hazardous Materials, 462, 132712. https://doi.org/10.1016/j.jhazmat.2023.132712 | |
dc.relation.references | Huaraca-Fernandez, J. N., Pérez-Sosa, L., Bustinza-Cabala, L. S., Pampa-Quispe, N. B., Huaraca-Fernandez, J. N., Pérez-Sosa, L., Bustinza-Cabala, L. S., & Pampa-Quispe, N. B. (2020). Enmiendas orgánicas en la inmovilización de cadmio en suelos agrícolas contaminados: Una revisión. Información tecnológica, 31(4), 139-152. https://doi.org/10.4067/S0718-07642020000400139 | |
dc.relation.references | Hussain, B., Ashraf, M. N., Shafeeq-ur-Rahman, Abbas, A., Li, J., & Farooq, M. (2021). Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science of The Total Environment, 754, 142188. https://doi.org/10.1016/j.scitotenv.2020.142188 | |
dc.relation.references | Huybrechts, M., Hendrix, S., Kyndt, T., Demeestere, K., Vandamme, D., & Cuypers, A. (2021). Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Science, 313, 111054. https://doi.org/10.1016/j.plantsci.2021.111054 | |
dc.relation.references | IDEAM, I. de H., Meteorología y Estudios Ambientales. (2016). Conocer: El primer paso para adaptarse. Guía básica de conceptos sobre el cambio climático. Zetta Comunicadores S.A. | |
dc.relation.references | IDEAM, I. de H., Meteorología y Estudios Ambientales. (2022). CONCEPTOS BÁSICOS DE CAMBIO CLIMÁTICO - IDEAM. CAMBIO CLIMATICO/CONCEPTOS BÁSICOS DE CAMBIO CLIMÁTICO. http://www.cambioclimatico.gov.co/otras-iniciativas | |
dc.relation.references | IGAC, I. G. A. C. (2006). Métodos Analíticos del Laboratorio de Suelos. IGAC: p648. Bogotá, Colombia. | |
dc.relation.references | Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H., & Nogawa, K. (2005). Estimation of cumulative cadmium intake causing Itai–itai disease. Toxicology Letters, 159(2), 192-201. https://doi.org/10.1016/j.toxlet.2005.05.011 | |
dc.relation.references | Insuasty, L., Burbano, H., & Menjivar, J. C. (2008). Dinámica del cadmio en suelos cultivados con papa en Nariño, Colombia. Acta Agronómica, 57(1), 51-54. | |
dc.relation.references | Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1-10. https://doi.org/10.1016/j.sjbs.2012.11.004 | |
dc.relation.references | JECFA. (2015). Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives. | |
dc.relation.references | JECFA, O. F. E. C. O. F. A. (2021). Ninety-first meeting (Safety evaluation of certain food additives and contaminants). | |
dc.relation.references | Jemal, F., Didierjean, L., Ghrir, R., Ghorbal, M. H., & Burkard, G. (1998). Characterization of cadmium binding peptides from pepper (Capsicum annuum). Plant Science, 137(2), 143-154. https://doi.org/10.1016/S0168-9452(98)00120-4 | |
dc.relation.references | Joint FAO/WHO Expert Committee on Food Additives, Organization, W. H., & Nations, F. and A. O. of the U. (2011). Safety evaluation of certain contaminants in food: Prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). World Health Organization. https://iris.who.int/handle/10665/44520 | |
dc.relation.references | Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979 | |
dc.relation.references | Kapoor, D., Singh, S., Ramamurthy, P. C., Jan, S., Bhardwaj, S., Gill, S. S., Prasad, R., & Singh, J. (2021). Molecular consequences of cadmium toxicity and its regulatory networks in plants. Plant Gene, 28, 100342. https://doi.org/10.1016/j.plgene.2021.100342 | |
dc.relation.references | Khairy, M., El-Safty, S. A., & Shenashen, M. A. (2014). Environmental remediation and monitoring of cadmium. TrAC Trends in Analytical Chemistry, 62, 56-68. https://doi.org/10.1016/j.trac.2014.06.013 | |
dc.relation.references | Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of The Total Environment, 601-602, 1591-1605. https://doi.org/10.1016/j.scitotenv.2017.06.030 | |
dc.relation.references | Kong, F., Chen, Y., Huang, L., Yang, Z., & Zhu, K. (2021). Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. Ecotoxicology and Environmental Safety, 211, 111922. https://doi.org/10.1016/j.ecoenv.2021.111922 | |
dc.relation.references | Lazăr, N.-N., Simionov, I.-A., Petrea, Ștefan-M., Iticescu, C., Georgescu, P.-L., Dima, F., & Antache, A. (2024). La influencia de los cambios climáticos en la acumulación de metales pesados en Alosa immaculata de la cuenca del río Danubio. Marine Pollution Bulletin, 200, 116145. https://doi.org/10.1016/j.marpolbul.2024.116145 | |
dc.relation.references | Lei, D., Xiaohui, S., Yao, L., Baoyu, D., Qiong, W., Kaiyun, L., Jiawei, Z., Qingru, W., & Shuxiao, W. (2021). Soil-atmosphere exchange of gaseous elemental mercury in three subtropical forests with different substrate Hg concentrations. Atmospheric Environment, 244, 117869. https://doi.org/10.1016/j.atmosenv.2020.117869 | |
dc.relation.references | Li, C., Luo, X., Li, Y., Wang, N., Zhang, T., Dong, Q., Feng, H., Zhang, W., & Siddique, K. H. M. (2023). Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area. Agricultural Water Management, 280, 108230. https://doi.org/10.1016/j.agwat.2023.108230 | |
dc.relation.references | Li, H., Luo, N., Li, Y. W., Cai, Q. Y., Li, H. Y., Mo, C. H., & Wong, M. H. (2017). Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 224, 622-630. https://doi.org/10.1016/j.envpol.2017.01.087 | |
dc.relation.references | Li, P., Du, B., Chan, H. M., & Feng, X. (2015). Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environmental Research, 140, 198-204. https://doi.org/10.1016/j.envres.2015.03.033 | |
dc.relation.references | Li, R., Zhang, X., Wang, G., Kong, L., Guan, Q., Yang, R., Jin, Y., Liu, X., & Qu, J. (2022). Remediation of Cadmium Contaminated Soil by Composite Spent Mushroom Substrate Organic Amendment under High Nitrogen Level. Journal of Hazardous Materials, 128345. https://doi.org/10.1016/j.jhazmat.2022.128345 | |
dc.relation.references | Li, Y., & Tao, F. (2023). Rice yield response to climate variability diverges strongly among climate zones across China and is sensitive to trait variation. Field Crops Research, 301, 109034. https://doi.org/10.1016/j.fcr.2023.109034 | |
dc.relation.references | Li, Z., Liang, Y., Hu, H., Shaheen, S. M., Zhong, H., Tack, F. M. G., Wu, M., Li, Y.-F., Gao, Y., Rinklebe, J., & Zhao, J. (2021). Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 156, 106749. https://doi.org/10.1016/j.envint.2021.106749 | |
dc.relation.references | Lien, K.-W., Pan, M.-H., & Ling, M.-P. (2021). Levels of heavy metal cadmium in rice (Oryza sativa L.) produced in Taiwan and probabilistic risk assessment for the Taiwanese population. Environmental Science and Pollution Research International, 28(22), 28381-28390. https://doi.org/10.1007/s11356-020-11902-w | |
dc.relation.references | Liu, B., Wu, C., Pan, P., Fu, Y., He, Z., Wu, L., & Li, Q. (2019). Remediation effectiveness of vermicompost for a potentially toxic metal-contaminated tropical acidic soil in China. Ecotoxicology and Environmental Safety, 182, 109394. https://doi.org/10.1016/j.ecoenv.2019.109394 | |
dc.relation.references | Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment, 633, 206-219. https://doi.org/10.1016/j.scitotenv.2018.03.161 | |
dc.relation.references | Liu, M., Zhang, Q., Cheng, M., He, Y., Chen, L., Zhang, H., Cao, H., Shen, H., Zhang, W., Tao, S., & Wang, X. (2019). Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-13221-2 | |
dc.relation.references | Liu, Q., Chen, Z., Huang, L., Mujtaba Munir, M. A., Wu, Y., Wang, Q., Ma, L., Xu, S., Wen, Z., & Feng, Y. (2021). The effects of a combined amendment on growth, cadmium adsorption by five fruit vegetables, and soil fertility in contaminated greenhouse under rotation system. Chemosphere, 285, 131499. https://doi.org/10.1016/j.chemosphere.2021.131499 | |
dc.relation.references | Liu, S., Liu, J., Zhao, J., Xia, D., Pan, F., Liu, C., Kyzas, G. Z., & Fu, J. (2015). Palygorskite changes heavy metal bioavailability and microbial functional diversity in sewage sludge composting. Environmental Technology, 36(22), 2855-2862. https://doi.org/10.1080/09593330.2015.1050071 | |
dc.relation.references | Liu, W., Hu, T., Mao, Y., Shi, M., Cheng, C., Zhang, J., Qi, S., Chen, W., & Xing, X. (2022). The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter. Environmental Pollution, 306, 119391. https://doi.org/10.1016/j.envpol.2022.119391 | |
dc.relation.references | Liu, W., Wang, K., Hao, H., Yan, Y., Zhang, H., Zhang, H., & Peng, C. (2023). Predicting potential climate change impacts of bioenergy from perennial grasses in 2050. Resources, Conservation and Recycling, 190, 106818. https://doi.org/10.1016/j.resconrec.2022.106818 | |
dc.relation.references | Londoño, D. M. D. (2017). Aplicación de enmiendas orgánicas para la recuperación de propiedades físicas del suelo asociadas a la erosión hídrica. Lámpsakos, 17, 77-83. | |
dc.relation.references | Lüders, K., Dahmke, A., Fiedler, M., & Köber, R. (2020). Temperature influence on mobilisation and (re)fixation of trace elements and heavy metals in column tests with aquifer sediments from 10 to 70 °C. Water Research, 169, 115266. https://doi.org/10.1016/j.watres.2019.115266 | |
dc.relation.references | Lungarska, A., & Chakir, R. (2024). Projections of climate change impacts on ecosystem services and the role of land use adaptation in France. Environmental and Sustainability Indicators, 22, 100369. https://doi.org/10.1016/j.indic.2024.100369 | |
dc.relation.references | Luo, Q., Bai, B., Xie, Y., Yao, D., Zhang, D., Chen, Z., Zhuang, W., Deng, Q., Xiao, Y., & Wu, J. (2022). Effects of Cd uptake, translocation and redistribution in different hybrid rice varieties on grain Cd concentration. Ecotoxicology and Environmental Safety, 240, 113683. https://doi.org/10.1016/j.ecoenv.2022.113683 | |
dc.relation.references | Ma, T., Perrot, V., Baeyens, W., Li, G., Lievens, S., Ngo, H. T. T., Nguyen, T. T. T., Leermakers, M., & Gao, Y. (2024). Mercury distribution, mobilization and bioavailability in polluted sediments of Scheldt Estuary and Belgian Coastal Zone. Journal of Hazardous Materials, 465, 133209. https://doi.org/10.1016/j.jhazmat.2023.133209 | |
dc.relation.references | Ma, Y., Zheng, W., An, Y., Chen, L., Xu, Q., & Jiang, A. (2021). Mercury contamination in terrestrial predatory birds from Northeast China: Implications for species and feather type selection for biomonitoring. Ecological Indicators, 130, 108108. https://doi.org/10.1016/j.ecolind.2021.108108 | |
dc.relation.references | Madero G, A., & Marrugo N, J. (2011). Detección de metales pesados en bovinos, en los valles de los rios Sinú y San Jorge, departamento de Córdoba, Colombia. Revista MVZ Córdoba, 16(1), 2391-2401. | |
dc.relation.references | Madrid, G. L. (2017). Genotoxicidad de metales pesados (Hg, Zn, Cu, Pb Y Cd) Asociado a explotaciones mineras en pobladores de la cuenca del río san Jorge del departamento de Córdoba, Colombia. https://revistaaccb.org/r/index.php/accb/article/view/37 | |
dc.relation.references | Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111-121. https://doi.org/10.1016/j.ecoenv.2015.12.023 | |
dc.relation.references | Marín-Garza, T., Gómez-Merino, F. C., Trejo-Téllez, L. I., Muñoz-Orozco, A., Tavitas-Fuentes, L., Hernández-Aragón, L., & Santacruz-Varela, A. (2010). Respuestas fisiológicas y nutrimentales de variedades de arroz a la concentración de aluminio. Revista fitotecnia mexicana, 33(1), 37-44. | |
dc.relation.references | Marrugo, J., Lans, E., & Benítez, L. (2007). Hallazgo de mercurio en peces de la Ciénaga de Ayapel, Córdoba, Colombia. Revista MVZ Córdoba, 12(1), Article 1. https://doi.org/10.21897/rmvz.432 | |
dc.relation.references | Marrugo-Madrid, S., Turull, M., Montes, G. E., Pico, M. V., Marrugo-Negrete, J. L., & Díez, S. (2021). Chapter 7—Phytoremediation of mercury in soils impacted by gold mining: A case-study of Colombia. En G. Saxena, V. Kumar, & M. P. Shah (Eds.), Bioremediation for Environmental Sustainability (pp. 145-160). Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00007-9 | |
dc.relation.references | Mehdikhanmahaleh, M. M., & Tabatabaei-Malazy, O. (2024). Enfermedad de itai itai. En P. Wexler (Ed.), Encyclopedia of Toxicology (Fourth Edition) (pp. 725-729). Academic Press. https://doi.org/10.1016/B978-0-12-824315-2.00924-6 | |
dc.relation.references | Miao, F., Zhang, Y., Li, Y., Liang, X., Lin, Q., & Zhou, Y. (2021). Establishing a weighted methodology for human health risk assessment of cadmium based on its equilibrium speciation in groundwater. Journal of Cleaner Production, 322, 129053. https://doi.org/10.1016/j.jclepro.2021.129053 | |
dc.relation.references | Ministerio de Agricultura, Pesca y Alimentación. (1990). Real Decreto 1310/1990, de 29 de octubre, por el que se regula la utilización de los lodos de depuración en el sector agrario. https://www.boe.es/buscar/act.php?id=BOE-A-1990-26490 | |
dc.relation.references | Ministerio de Salud de la república popular china. (2013). Norma Nacional de la República popular de China. | |
dc.relation.references | Moore, S. E. (2018). Climate Change. En B. Würsig, J. G. M. Thewissen, & K. M. Kovacs (Eds.), Encyclopedia of Marine Mammals (Third Edition) (pp. 194-197). Academic Press. https://doi.org/10.1016/B978-0-12-804327-1.00092-3 | |
dc.relation.references | Mosquera, A. T., Melo, M. M., Quiroga, C. G., Avendaño, D. M., Barahona, M., Galindo, F. D., Lancheros, J. J., Prieto, S. A., Rodriguez, A., & Sosa, D. N. (2016). Evaluación de fertilización orgánica en cafeto (Coffea arabica) con pequeños productores de Santander, Colombia. Temas agrarios, 21(1), 90-101. | |
dc.relation.references | Mosquera Martínez, Y. (2017). Concentración de mercurio total (hg-t) de trachemys c. Callirostris en las cuencas de los ríos sinú y san jorge, en el departamento de Córdoba, Colombia. https://repositorio.unal.edu.co/handle/unal/62245 | |
dc.relation.references | Muehe, E. M., Wang, T., Kerl, C. F., Planer-Friedrich, B., & Fendorf, S. (2019). Rice production threatened by coupled stresses of climate and soil arsenic. Nature Communications, 10(1), 4985. https://doi.org/10.1038/s41467-019-12946-4 | |
dc.relation.references | Munera-Echeverri, J. L., Martinsen, V., Strand, L. T., Zivanovic, V., Cornelissen, G., & Mulder, J. (2018). Cation exchange capacity of biochar: An urgent method modification. Science of The Total Environment, 642, 190-197. https://doi.org/10.1016/j.scitotenv.2018.06.017 | |
dc.relation.references | Naija, A., & Yalcin, H. C. (2023). Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicology Reports, 10, 498-508. https://doi.org/10.1016/j.toxrep.2023.04.009 | |
dc.relation.references | Nakbanpote, W., Meesungnoen, O., & Prasad, M. N. V. (2016). Potential of Ornamental Plants for Phytoremediation of Heavy Metals and Income Generation. En Bioremediation and Bioeconomy (pp. 179-217). Elsevier. https://doi.org/10.1016/B978-0-12-802830-8.00009-5 | |
dc.relation.references | Nayar, N. M. (2014). Chapter 6—The Origin of Asian Rice. En N. M. Nayar (Ed.), Origin and Phylogeny of Rices (pp. 169-253). Academic Press. https://doi.org/10.1016/B978-0-12-417177-0.00006-1 | |
dc.relation.references | Neumann, R. B., Seyfferth, A. L., Teshera‐Levye, J., & Ellingson, J. (2017). Soil Warming Increases Arsenic Availability in the Rice Rhizosphere. Agricultural & Environmental Letters, 2(1), 170006. https://doi.org/10.2134/ael2017.02.0006 | |
dc.relation.references | Nogara, P. A., Oliveira, C. S., Schmitz, G. L., Piquini, P. C., Farina, M., Aschner, M., & Rocha, J. B. T. (2019). Methylmercury’s chemistry: From the environment to the mammalian brain. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(12), 129284. https://doi.org/10.1016/j.bbagen.2019.01.006 | |
dc.relation.references | O’Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747-761. https://doi.org/10.1016/j.envint.2019.03.019 | |
dc.relation.references | O’Connor, D., Peng, T., Zhang, J., Tsang, D. C. W., Alessi, D. S., Shen, Z., Bolan, N. S., & Hou, D. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of The Total Environment, 619-620, 815-826. https://doi.org/10.1016/j.scitotenv.2017.11.132 | |
dc.relation.references | Oladoye, P. O., Olowe, O. M., & Asemoloye, M. D. (2022). Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288, 132555. https://doi.org/10.1016/j.chemosphere.2021.13255 | |
dc.relation.references | OMS. (2017). Mercury and health. Organizacion Mundial de la Salud. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health | |
dc.relation.references | Ondrasek, G. (2013). The Responses of Salt-Affected Plants to Cadmium. En P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Salt Stress in Plants (pp. 439-463). Springer New York. https://doi.org/10.1007/978-1-4614-6108-1_17 | |
dc.relation.references | Oyewo, O. A., Adeniyi, A., Bopape, M. F., & Onyango, M. S. (2020). Heavy metal mobility in surface water and soil, climate change, and soil interactions. En Climate Change and Soil Interactions (pp. 51-88). Elsevier. https://doi.org/10.1016/B978-0-12-818032-7.00004-7 | |
dc.relation.references | Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D., Bolan, N. S., Rinklebe, J., & Ok, Y. S. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134, 105046. https://doi.org/10.1016/j.envint.2019.105046 | |
dc.relation.references | Palomares-Bolaños, J., Alvarez-Ortega, N., Fortich-Vega, J., Olivero-Verbel, J., & Caballero-Gallardo, K. (2022). P07-56 Hematological characterization and its relationship with total mercury levels in hair and blood of children from an agricultural and mining area of the Colombian Caribbean. Toxicology Letters, 368, S140-S141. https://doi.org/10.1016/j.toxlet.2022.07.399 | |
dc.relation.references | Pastorelli, A. A., Angeletti, R., Binato, G., Mariani, M. B., Cibin, V., Morelli, S., Ciardullo, S., & Stacchini, P. (2018). Exposición al cadmio a través del arroz italiano ( Oryza sativa L.): Consumo e implicaciones para la salud humana. Journal of Food Composition and Analysis, 69, 115-121. https://doi.org/10.1016/j.jfca.2018.02.005 | |
dc.relation.references | Pearce-Higgins, J. W., Antão, L. H., Bates, R. E., Bowgen, K. M., Bradshaw, C. D., Duffield, S. J., Ffoulkes, C., Franco, A. M. A., Geschke, J., Gregory, R. D., Harley, M. J., Hodgson, J. A., Jenkins, R. L. M., Kapos, V., Maltby, K. M., Watts, O., Willis, S. G., & Morecroft, M. D. (2022). A framework for climate change adaptation indicators for the natural environment. Ecological Indicators, 136, 108690. https://doi.org/10.1016/j.ecolind.2022.108690 | |
dc.relation.references | Peláez-Peláez, M. J., Bustamante Cano, J. J., & Gómez López, E. D. (2016). Presencia de cadmio y plomo en suelos y su bioacumulación en tejidos vegetales en especies de brachiaria en el magdalena medio Colombiano. Luna Azul, 43, 82-101. https://doi.org/10.17151/luaz.2016.43.5 | |
dc.relation.references | Pereira de Araújo, R., Furtado de Almeida, A.-A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148-157. https://doi.org/10.1016/j.ecoenv.2017.06.006 | |
dc.relation.references | Pérez Vargas, H. M., Vidal Durango, J. V., & Marrugo, J. L. (2015). Evaluación de la capacidad acumuladora de mercurio del ají (Capsicum annuum). Revista de Salud Pública, 16(6), 897-909. https://doi.org/10.15446/rsap.v16n6.31466 | |
dc.relation.references | PNUMA, P. (2002). EVALUACIÓN MUNDIAL SOBRE EL MERCURIO (11-13; CH-1219). PNUMA Productos Químicos. | |
dc.relation.references | Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205. https://doi.org/10.1016/j.chemosphere.2020.129205 | |
dc.relation.references | Quinto-Mosquera, H., Ayala-Vivas, G., & Gutiérrez, H. (2022). Contenido de nutrientes, acidez y textura del suelo en áreas degradadas por la minería en el Chocó biogeográfico. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(179), 514-528. https://doi.org/10.18257/raccefyn.1615 | |
dc.relation.references | Rehman, M. Z. ur, Zafar, M., Waris, A. A., Rizwan, M., Ali, S., Sabir, M., Usman, M., Ayub, M. A., & Ahmad, Z. (2020). Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere, 244, 125548. https://doi.org/10.1016/j.chemosphere.2019.125548 | |
dc.relation.references | Restrepo Jiménez, C., Muñoz Hernández*, H., Zúñiga Pérez, L. M., & Castillo Osorio, B. (2018). Minería ilegal y sus implicaciones en el conflicto armado en el departamento de Córdoba y bajo cauca Antioqueño. En ANÁLISIS JURIDICO E INSTITUCIONAL DE LA MINERÍA EN COLOMBIA (Nuevo derecho, Vol. 13, pp. 147-175). | |
dc.relation.references | Riaz, M., Kamran, M., Rizwan, M., Ali, S., Parveen, A., Malik, Z., & Wang, X. (2021). Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 273, 129690. https://doi.org/10.1016/j.chemosphere.2021.129690 | |
dc.relation.references | Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76-88. https://doi.org/10.1016/j.envint.2019.02.011 | |
dc.relation.references | Różański, S. Ł., Castejón, J. M. P., & Fernández, G. G. (2016). Bioavailability and mobility of mercury in selected soil profiles. Environmental Earth Sciences, 75(13), 1065. https://doi.org/10.1007/s12665-016-5863-3 | |
dc.relation.references | Rueda Saa, G., Rodríguez Victoria, J. A., & Madriñán Molina, R. (2011). Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas: Perspectivas para Colombia. Acta Agronómica, 60(3), 203-217. | |
dc.relation.references | Scott, D., & Gössling, S. (2022). A review of research into tourism and climate change—Launching the annals of tourism research curated collection on tourism and climate change. Annals of Tourism Research, 95, 103409. https://doi.org/10.1016/j.annals.2022.103409 | |
dc.relation.references | Scotti, A., Silvani, V., Milia, S., Cappai, G., Ubaldini, S., Ortega, V., Colombo, R., Godeas, A., & Gómez, M. (2021). Scale-up of Mycorrhizal-Assisted Phytoremediation system from Technology Readiness Level 6 (Relevant Environment) to 7 (Operational Environment): Cost-benefits within a Circular Economy Context. IntechOpen. https://doi.org/10.5772/intechopen.101584 | |
dc.relation.references | Shahkolaie, S. S., Baranimotlagh, M., Dordipour, E., & Khormali, F. (2020). Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany, 128, 132-140. https://doi.org/10.1016/j.sajb.2019.10.007 | |
dc.relation.references | Sierra, M. J., Millán, R., & Esteban, E. (2008). Potential use of Solanum melongena in agricultural areas with high mercury background concentrations. Food and Chemical Toxicology, 46(6), 2143-2149. https://doi.org/10.1016/j.fct.2008.02.009 | |
dc.relation.references | Singh, B. S. M., Singh, D., & Dhal, N. K. (2022). Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides. Case Studies in Chemical and Environmental Engineering, 5, 100176. https://doi.org/10.1016/j.cscee.2021.100176 | |
dc.relation.references | Strickman, R. J., Larson, S., Huang, H., Kakouros, E., Marvin-DiPasquale, M., Mitchell, C. P. J., & Neumann, R. B. (2022). The relative importance of mercury methylation and demethylation in rice paddy soil varies depending on the presence of rice plants. Ecotoxicology and Environmental Safety, 230, 113143. https://doi.org/10.1016/j.ecoenv.2021.113143 | |
dc.relation.references | Subrahmaniyan, K., Veeramani, P., & Harisudan, C. (2018). Heat accumulation and soil properties as affected by transparent plastic mulch in Blackgram (Vigna mungo) doubled cropped with Groundnut (Arachis hypogaea) in sequence under rainfed conditions in Tamil Nadu, India. Field Crops Research, 219, 43-54. https://doi.org/10.1016/j.fcr.2018.01.024 | |
dc.relation.references | Suchithra, M. S., & Pai, M. L. (2020). Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Information Processing in Agriculture, 7(1), 72-82. https://doi.org/10.1016/j.inpa.2019.05.003 | |
dc.relation.references | Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004 | |
dc.relation.references | Tang, B., Chen, J., Wang, Z., Qin, P., & Zhang, X. (2021). Mercury accumulation response of rice plant (Oryza sativa L.) to elevated atmospheric mercury and carbon dioxide. Ecotoxicology and Environmental Safety, 224, 112628. https://doi.org/10.1016/j.ecoenv.2021.112628 | |
dc.relation.references | Tang, Z., Fan, F., Deng, S., & Wang, D. (2020). Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury—A critical review. Ecotoxicology and Environmental Safety, 202, 110950. https://doi.org/10.1016/j.ecoenv.2020.110950 | |
dc.relation.references | Teng, H., & Altaf, A. R. (2022). Elemental mercury (Hg0) emission, hazards, and control: A brief review. Journal of Hazardous Materials Advances, 5, 100049. https://doi.org/10.1016/j.hazadv.2022.100049 | |
dc.relation.references | Tomalá Torres, F. M. (2023). Importancia de la materia orgánica M.O. en plantaciones comerciales de banano en Ecuador [bachelorThesis, BABAHOYO: UTB, 2023]. http://dspace.utb.edu.ec/handle/49000/14896 | |
dc.relation.references | Turull, M., Fontàs, C., & Díez, S. (2019). Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. Science of The Total Environment, 668, 40-46. https://doi.org/10.1016/j.scitotenv.2019.02.244 | |
dc.relation.references | U.S. EPA. (1998). Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry,. Washington, DC. | |
dc.relation.references | Villalba, J., Jarma, A., & Combatt, E. M. (2016). Respuesta fisiológica de cultivares de arroz a diferentes épocas de siembra en en Córdoba, Colombia. TEMAS AGRARIOS, 22. | |
dc.relation.references | Wang, J., Xia, J., & Feng, X. (2017). Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. Journal of Environmental Management, 186, 233-239. https://doi.org/10.1016/j.jenvman.2016.05.031 | |
dc.relation.references | Wang, Q., Shaheen, S. M., Jiang, Y., Li, R., Slaný, M., Abdelrahman, H., Kwon, E., Bolan, N., Rinklebe, J., & Zhang, Z. (2021). Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. Journal of Hazardous Materials, 403, 123628. https://doi.org/10.1016/j.jhazmat.2020.123628 | |
dc.relation.references | Wang, S., Wu, W., Liu, F., Liao, R., & Hu, Y. (2017). Accumulation of heavy metals in soil-crop systems: A review for wheat and corn. Environmental Science and Pollution Research, 24(18), 15209-15225. https://doi.org/10.1007/s11356-017-8909-5 | |
dc.relation.references | Wang, Y., Chen, L., Chen, Y., Xue, Y., Liu, G., Zheng, X., Zhou, L., & Zhong, H. (2023). Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.). Science of The Total Environment, 874, 162459. https://doi.org/10.1016/j.scitotenv.2023.162459 | |
dc.relation.references | Wang, Y., Tang, D., Yuan, X., Uchimiya, M., Li, J., Li, Z., Luo, Z., Xu, Z., & Sun, S. (2020). Effect of amendments on soil Cd sorption and trophic transfer of Cd and mineral nutrition along the food chain. Ecotoxicology and Environmental Safety, 189, 110045. https://doi.org/10.1016/j.ecoenv.2019.110045 | |
dc.relation.references | Welikala, D., Hucker, C., Hartland, A., Robinson, B. H., & Lehto, N. J. (2018). Trace metal mobilization by organic soil amendments: Insights gained from analyses of solid and solution phase complexation of cadmium, nickel and zinc. Chemosphere, 199, 684-693. https://doi.org/10.1016/j.chemosphere.2018.02.069 | |
dc.relation.references | Welikala, D., Robinson, B. H., Moltchanova, E., Hartland, A., & Lehto, N. J. (2021). Soil cadmium mobilisation by dissolved organic matter from soil amendments. Chemosphere, 271, 129536. https://doi.org/10.1016/j.chemosphere.2021.129536 | |
dc.relation.references | Wielgusz, K., Praczyk, M., Irzykowska, L., & Świerk, D. (2022). Fertilization and soil pH affect seed and biomass yield, plant morphology, and cadmium uptake in hemp (Cannabis sativa L.). Industrial Crops and Products, 175, 114245. https://doi.org/10.1016/j.indcrop.2021.114245 | |
dc.relation.references | World Health Organization. (2023). Mercury and health. World Healt Organization. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health | |
dc.relation.references | Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 | |
dc.relation.references | Wu, Q., Qi, J., & Xia, X. (2017). Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change. Science of The Total Environment, 609, 242-250. https://doi.org/10.1016/j.scitotenv.2017.04.041 | |
dc.relation.references | Wu, X., Yin, S., Liu, Y., Zhu, Y., Jiang, T., Liang, S., Bian, S., Cao, Y., Wang, G., & Yang, J. (2024). Molecular mechanisms and physiological responses of rice leaves co-exposed to submicron-plastics and cadmium: Implication for food quality and security. Journal of Hazardous Materials, 463, 132957. https://doi.org/10.1016/j.jhazmat.2023.132957 | |
dc.relation.references | Xiao, R., Wang, P., Mi, S., Ali, A., Liu, X., Li, Y., Guan, W., Li, R., & Zhang, Z. (2019). Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicology and Environmental Safety, 181, 155-163. https://doi.org/10.1016/j.ecoenv.2019.06.005 | |
dc.relation.references | Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141, 17-24. https://doi.org/10.1016/j.ecoenv.2017.03.002 | |
dc.relation.references | Xie, L., Hao, P., Cheng, Y., Ahmed, I. M., & Cao, F. (2018). Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety, 162, 71-76. https://doi.org/10.1016/j.ecoenv.2018.06.072 | |
dc.relation.references | Xing, Y., Wang, J., Kinder, C. E. S., Yang, X., Slaný, M., Wang, B., Song, H., Shaheen, S. M., Leinweber, P., & Rinklebe, J. (2022). Rice hull biochar enhances the mobilization and methylation of mercury in a soil under changing redox conditions: Implication for Hg risks management in paddy fields. Environment International, 168, 107484. https://doi.org/10.1016/j.envint.2022.107484 | |
dc.relation.references | Xu, W., Li, Y., He, J., Ma, Q., Zhang, X., Chen, G., Wang, H., & Zhang, H. (2010). Cd uptake in rice cultivars treated with organic acids and EDTA. Journal of Environmental Sciences, 22(3), 441-447. https://doi.org/10.1016/S1001-0742(09)60127-3 | |
dc.relation.references | Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.0035 | |
dc.relation.references | Yang, Y., Chen, W., Wang, M., Li, Y., & Peng, C. (2017). Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. Science of The Total Environment, 584-585, 942-949. https://doi.org/10.1016/j.scitotenv.2017.01.143 | |
dc.relation.references | Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International, 31(5), 755-762. https://doi.org/10.1016/j.envint.2005.02.004 | |
dc.relation.references | Yin, D., Wang, X., Peng, B., Tan, C., & Ma, L. Q. (2017). Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere, 186, 928-937. https://doi.org/10.1016/j.chemosphere.2017.07.126 | |
dc.relation.references | Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2), 456-464. https://doi.org/10.1016/j.scitotenv.2006.01.016 | |
dc.relation.references | Yu, Y., Wan, Y., Camara, A. Y., & Li, H. (2018). Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice. Chemosphere, 196, 303-310. https://doi.org/10.1016/j.chemosphere.2018.01.002 | |
dc.relation.references | Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84-91. https://doi.org/10.1016/j.envpol.2010.09.019 | |
dc.relation.references | Zhang, F., Xu, Z., Xu, X., Liang, L., Chen, Z., Dong, X., Luo, K., Dinis, F., & Qiu, G. (2022). Terrestrial mercury and methylmercury bioaccumulation and trophic transfer in subtropical urban forest food webs. Chemosphere, 299, 134424. https://doi.org/10.1016/j.chemosphere.2022.134424 | |
dc.relation.references | Zhang, Y., Zhang, Y., Akakuru, O. U., Xu, X., & Wu, A. (2021). Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. Journal of Environmental Sciences, 104, 351-364. https://doi.org/10.1016/j.jes.2020.12.021 | |
dc.relation.references | Zhao, K., Fu, W., Ye, Z., & Zhang, C. (2015). Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China. International Journal of Environmental Research and Public Health, 12(2), Article 2. https://doi.org/10.3390/ijerph120201577 | |
dc.relation.references | Zhao, L., Meng, B., & Feng, X. (2020). Mercury methylation in rice paddy and accumulation in rice plant: A review. Ecotoxicology and Environmental Safety, 195, 110462. https://doi.org/10.1016/j.ecoenv.2020.110462 | |
dc.relation.references | Zheng, S., Wang, Q., Yu, H., Huang, X., & Li, F. (2020). Interactive effects of multiple heavy metal(loid)s on their bioavailability in cocontaminated paddy soils in a large region. Science of The Total Environment, 708, 135126. https://doi.org/10.1016/j.scitotenv.2019.135126 | |
dc.relation.references | Zhou, W., Lu, X., Xie, S., Huang, C., Wang, J., Guo, K., & Bao, Z. (2024). A study on the classification of geological background source cadmium migration phases in Zhejiang Province, China. Applied Geochemistry, 162, 105924. https://doi.org/10.1016/j.apgeochem.2024.105924 | |
dc.relation.references | Zhou, X., Lei, B., Yin, D., Kang, J., He, Z., He, T., & Xu, X. (2023). Application potential of biofertilizer-assisted Pennisetum giganteum in safe utilization of mercury-contaminated paddy fields. Journal of Environmental Management, 348, 119291. https://doi.org/10.1016/j.jenvman.2023.119291 | |
dc.relation.references | Zhou, X.-Q., Hao, Y.-Y., Gu, B., Feng, J., Liu, Y.-R., & Huang, Q. (2020). Microbial Communities Associated with Methylmercury Degradation in Paddy Soils. Environmental Science & Technology, 54(13), 7952-7960. https://doi.org/10.1021/acs.est.0c00181 | |
dc.relation.references | Zou, M., Zhou, S., Zhou, Y., Jia, Z., Guo, T., & Wang, J. (2021). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environmental Pollution, 280, 116965. https://doi.org/10.1016/j.envpol.2021.116965 | |
dc.relation.references | Zribi, W., Faci, J., & Aragüés, R. (2011). Efectos del acolchado sobre la humedad, temperatura, estructura y salinidad de suelos agrícolas. Información técnica económica agraria, 107, 148-162. | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Universidad de Córdoba | |
dc.subject.keywords | Bioavailability | |
dc.subject.keywords | Temperature rise | |
dc.subject.keywords | Composting | |
dc.subject.keywords | Amendment | |
dc.subject.keywords | Mercury | |
dc.subject.keywords | Rice | |
dc.subject.proposal | Biodisponibilidad | |
dc.subject.proposal | Aumento de temperatura | |
dc.subject.proposal | Compostaje | |
dc.subject.proposal | Enmienda | |
dc.subject.proposal | Mercurio | |
dc.subject.proposal | Arroz | |
dc.title | Efecto del cambio climático en la biodisponibilidad de elementos potencialmente tóxicos en el cultivo de arroz (Oryza Sativa l.) desarrollados en suelos mineros en el departamento de Córdoba | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: