Publicación: Estructuras híbridas para el modelado y pronóstico de series temporales: metodologías y aplicaciones.
dc.contributor.advisor | Cogollo Flórez, Myladis | spa |
dc.contributor.author | Ballesteros López, Fabiana | spa |
dc.date.accessioned | 2023-02-22T15:04:27Z | |
dc.date.available | 2023-02-22T15:04:27Z | |
dc.date.issued | 2023-02-21 | |
dc.description.abstract | Las estructuras híbridas han demostrado ser una buena alternativa para modelar y pronosticar algunas series temporales, en las cuales los modelos tradicionales no presentan un buen desempeño. En este trabajo se realiza una revisión bibliográfica de los estudios reportados en la literatura en el periodo 2000-2018, sobre las tres metodologías híbridas existentes: paralelo, serie, serie-paralelo. A partir de los resultados hallados, se establece la base conceptual de cada metodología, bajo un procedimiento estadístico matemático, y sus respectivos casos de aplicación. Adicionalmente, empleando datos reales se muestra la ganancia en términos de precisión del pronóstico que se obtiene con éstas metodologías, con respecto a los modelos tradicionales. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Estadístico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | Resumen I | spa |
dc.description.tableofcontents | Agradecimientos III | spa |
dc.description.tableofcontents | Introducción 1 | spa |
dc.description.tableofcontents | 1. Revisión de la literatura 4 | spa |
dc.description.tableofcontents | 1.1. Etapa 1: proceso de búsqueda . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 | spa |
dc.description.tableofcontents | 1.2. Etapa 2: criterios de inclusión y exclusión . . . . . . . . . . . . . . . . . . . . 5 | spa |
dc.description.tableofcontents | 1.3. Etapa 3: resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 | spa |
dc.description.tableofcontents | 1.3.1. Resultados del proceso de la búsqueda . . . . . . . . . . . . . . . . . 6 | spa |
dc.description.tableofcontents | 1.3.2. Análisis de los artículos seleccionados . . . . . . . . . . . . . . . . . . 7 | spa |
dc.description.tableofcontents | 2. Estructura híbrida en paralelo 10 | spa |
dc.description.tableofcontents | 2.1. Formulación matemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 | spa |
dc.description.tableofcontents | 2.2. Métodos de ponderación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 | spa |
dc.description.tableofcontents | 2.2.1. Enfoques de ponderación estáticos . . . . . . . . . . . . . . . . . . . . 13 | spa |
dc.description.tableofcontents | 2.2.2. Enfoques de ponderación dinámicos . . . . . . . . . . . . . . . . . . . 16 | spa |
dc.description.tableofcontents | 2.3. Aplicaciones reales reportadas en la literatura . . . . . . . . . . . . . . . . . . 19 | spa |
dc.description.tableofcontents | 3. Estructura híbrida en serie 24 | spa |
dc.description.tableofcontents | 3.1. Formulación matemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 | spa |
dc.description.tableofcontents | 3.2. Aplicaciones reales reportadas en la literatura . . . . . . . . . . . . . . . . . . 27 | spa |
dc.description.tableofcontents | 4. Estructura híbrida en serie-paralelo 32 | spa |
dc.description.tableofcontents | 4.1. Formulación matemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 | spa |
dc.description.tableofcontents | 4.2. Aplicaciones reales reportadas en la literatura . . . . . . . . . . . . . . . . . . 34 | spa |
dc.description.tableofcontents | 5. Aplicación de las metodologías híbridas 36 | spa |
dc.description.tableofcontents | 5.1. Metodología híbrida en paralelo . . . . . . . . . . . . . . . . . . . . . . . . . 37 | spa |
dc.description.tableofcontents | 5.2. Metodología híbrida en serie . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 | spa |
dc.description.tableofcontents | 5.2.1. Secuencia lineal-no lineal . . . . . . . . . . . . . . . . . . . . . . . . . 46 | spa |
dc.description.tableofcontents | 5.2.2. Secuencia no lineal-lineal . . . . . . . . . . . . . . . . . . . . . . . . . 47 | spa |
dc.description.tableofcontents | Conclusiones 50 | spa |
dc.description.tableofcontents | Bibliografía 53 | spa |
dc.description.tableofcontents | Apéndice 60 | spa |
dc.description.tableofcontents | A.1. Análisis de series temporales . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 | spa |
dc.description.tableofcontents | B.2. Metodología de Box-Jenkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 | spa |
dc.description.tableofcontents | B.2.1. Modelo Autoregresivo (AR) de orden p . . . . . . . . . . . . . . . . . 63 | spa |
dc.description.tableofcontents | B.2.2. Modelo de Medias Móviles (MA) de orden q . . . . . . . . . . . . . . 64 | spa |
dc.description.tableofcontents | B.2.3. Modelos Autorregresivos de Medias Móviles ARMA (p,q) . . . . . . 66 | spa |
dc.description.tableofcontents | B.2.4. Modelo Autorregresivo Integrado de Medias Móviles ARIMA de orden (p,d,q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 | spa |
dc.description.tableofcontents | B.2.5. Modelo SARIMA (p, d, q)(P, D,Q)S . . . . . . . . . . . . . . . . . . . 68 | spa |
dc.description.tableofcontents | C.3. Modelo Perceptrón Multicapa (MLP) . . . . . . . . . . . . . . . . . . . . . . . 68 | spa |
dc.description.tableofcontents | D.4. Regresión automática de redes neuronales . . . . . . . . . . . . . . . . . . . . 70 | spa |
dc.description.tableofcontents | E.5. Validación cruzada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 | spa |
dc.description.tableofcontents | F.6. Métricas de desempeño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 | spa |
dc.description.tableofcontents | G.7. Código R para las aplicaciones . . . . . . . . . . . . . . . . . . . . . . . . . . 73 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7179 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Estadística | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Hybrid structures | eng |
dc.subject.keywords | In time series | eng |
dc.subject.keywords | Forecasting | eng |
dc.subject.proposal | Estructuras híbridas | spa |
dc.subject.proposal | Pronóstico | spa |
dc.subject.proposal | Series temporales | spa |
dc.title | Estructuras híbridas para el modelado y pronóstico de series temporales: metodologías y aplicaciones. | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Adhikari, R., y Verma, G. (2016). Time series forecasting through a dynamic weighted ensemble approach. En Proceedings of 3rd international conference on advanced computing, networking and informatics (pp. 455–465). | spa |
dcterms.references | Ahmadi, M., y Khashei, M. (2021). Current status of hybrid structures in wind forecasting. Engineering applications of artificial intelligence, 99, 104133. | spa |
dcterms.references | Ahmed, D. M., Hassan, M. M., y Mstafa, R. J. (2022). A review on deep sequential models for forecasting time series data. Applied Computational Intelligence and Soft Computing, 2022. | spa |
dcterms.references | Ayala Castrejón, R. F., y Bucio Pacheco, C. (2020). Modelo ARIMA aplicado al tipo de cambio peso-dólar en el periodo 2016-2017 mediante ventanas temporales deslizantes. Revista mexicana de economía y finanzas, 15(3), 331–354. | spa |
dcterms.references | Banerjee, A., Chakrabarty, M., Bandyopadhyay, G., Roy, P. K., y Ray, S. (2020). Forecasting environmental factors and zooplankton of bakreswar reservoir in india using time series model. Ecological Informatics, 60, 101157. | spa |
dcterms.references | Bates, J. M., y Granger, C.W. (1969). The combination of forecasts. Journal of the operational research society, 20(4), 451–468. | spa |
dcterms.references | Borghi, P. H., Zakordonets, O., y Teixeira, J. P. (2021). A COVID-19 time series forecasting model based on MLP ANN. Procedia Computer Science, 181, 940–947. | spa |
dcterms.references | Box, G. E., y Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. | spa |
dcterms.references | Box, G. E., y Jenkins, G. M. (1976). Time series analysis: forecasting and control, Prentince Hall. Englewood Cliffs. | spa |
dcterms.references | Cerqueira, V., Torgo, L., y Mozetiˇc, I. (2020). Evaluating time series forecasting models: An empirical study on performance estimation methods. Machine Learning, 109, 1997– 2028. | spa |
dcterms.references | Chakraborty, T., Chattopadhyay, S., y Ghosh, I. (2019). Forecasting dengue epidemics using a hybrid methodology. Physica A: Statistical Mechanics and its Applications, 527, 121266. | spa |
dcterms.references | Chen, W., Xu, H., Chen, Z., y Jiang, M. (2021). A novel method for time series prediction based on error decomposition and nonlinear combination of forecasters. Neurocomputing, 426, 85–103. | spa |
dcterms.references | DasGupta, A. (2008). The trimmed mean. En Asymptotic theory of statistics and probability (pp. 271–278). | spa |
dcterms.references | De Oliveira, J. F. L., Pacífico, L. D. S., de Mattos Neto, P. S. G., Barreiros, E. F. S., de Oliveira Rodrigues, C. M., y de Almeida Filho, A. T. (2020). A hybrid optimized error correction system for time series forecasting. Applied soft computing, 87, 105970. | spa |
dcterms.references | Dos Santos, R. d. O. V., y Vellasco, M. M. (2015). Neural expert weighting: A new framework for dynamic forecast combination. Expert Systems with Applications, 42(22), 8625–8636. | spa |
dcterms.references | González Casimiro, M. P. (2009). Análisis de series temporales: Modelos ARIMA [consultado el 19 de mayo de 2022]. Descargado de https://addi.ehu.es/bitstream/handle/ 10810/12492/04-09gon.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2019a). Hybrid structures in time series modeling and forecasting: A review. Engineering Applications of Artificial Intelligence, 86, 83–106. | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2019b). Weighted sequential hybrid approaches for time series forecasting. Physica A: Statistical Mechanics and its Applications, 531, 121717. | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2020). Sequence in hybridization of statistical and intelligent models in time series forecasting. Neural Processing Letters, 1–21. | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2021). Parallel hybridization of series (PHOS) models for time series forecasting. Soft Computing, 25(1), 659–672. | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2022a). Hybridization of hybrid structures for time series forecasting: a review. Artificial Intelligence Review, 1–61. | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2022b). A novel parallel hybrid model based on series hybrid models of ARIMA and ANN models. Neural Processing Letters, 1–19. | spa |
dcterms.references | Hajirahimi, Z., y Khashei, M. (2022c). Series hybridization of parallel (SHOP) models for time series forecasting. Physica A: Statistical Mechanics and its Applications, 596, 127173. | spa |
dcterms.references | Hajirahimi, Z., Khashei, M., y Etemadi, S. (2022). A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting. Chaos, Solitons & Fractals, 156, 111880. | spa |
dcterms.references | Han, Y., Wang, L., Gao, J., Xing, Z., y Tao, T. (2017). Combination forecasting based on svm and neural network for urban rail vehicle spare parts demand. En 2017 36th chinese control conference (ccc) (pp. 4660–4665). | spa |
dcterms.references | Hibon, M., y Evgeniou, T. (2005). To combine or not to combine: selecting among forecasts and their combinations. International journal of forecasting, 21(1), 15–24. | spa |
dcterms.references | Hyndman, R. J., y Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. Descargado de https://otexts.com/fpp2/ | spa |
dcterms.references | Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., . . . Wang, E. (2020). Package ‘forecast’. Online] https://cran. r-project. org/web/packages/ forecast/forecast. pdf . | spa |
dcterms.references | Jose, V. R. R., yWinkler, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International journal of forecasting, 24(1), 163–169. | spa |
dcterms.references | Kajitani, Y., Hipel, K. W., y McLeod, A. I. (2005). Forecasting nonlinear time series with feed-forward neural networks: a case study of canadian lynx data. Journal of Forecasting, 24(2), 105–117. | spa |
dcterms.references | Khashei, M., y Chahkoutahi, F. (2021). A comprehensive low-risk and cost parallel hybrid method for electricity load forecasting. Computers & Industrial Engineering, 155, 107182. | spa |
dcterms.references | Marroquín Martínez, G., y Chalita Tovar, L. E. (2011). Aplicación de la metodología Box- Jenkins para pronóstico de precios en jitomate. Revista mexicana de ciencias agrícolas, 2(4), 573–577. | spa |
dcterms.references | Punyapornwithaya, V., Jampachaisri, K., Klaharn, K., y Sansamur, C. (2021). Forecasting of milk production in northern thailand using Seasonal Autoregressive Integrated Moving Average, error trend seasonality, and hybrid models. Frontiers in veterinary science, 8. | spa |
dcterms.references | Pérez Ruiz, D. A. (2009). Mapeo de series de tiempo en fractales [título profesional, universidad nacional autónoma de méxico]. Repositorio de Tesis DGBSDI. Descargado de http://132.248.9.195/ptd2009/octubre/0649704/Index.html | spa |
dcterms.references | Qin, Q., Huang, Z., Zhou, Z., Chen, Y., y Zhao, W. (2022). Hodrick-Prescott filter-based hybrid ARIMA–SLFNs model with residual decomposition scheme for carbon price forecasting. Applied Soft Computing, 119, 108560. | spa |
dcterms.references | Ribeiro, L. S., Wilhelm, V. E., Faria, É. F., Correa, J. M., y dos Santos, A. C. P. (2019). A comparative analysis of long-term concrete deformation models of a buttress dam. Engineering Structures, 193, 301–307. | spa |
dcterms.references | Safari, A., y Davallou, M. (2018). Oil price forecasting using a hybrid model. Energy, 148, 49–58. | spa |
dcterms.references | Sahai, A. K., Rath, N., Sood, V., y Singh, M. P. (2020). ARIMA modelling & forecasting of COVID-19 in top five affected countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1419–1427. | spa |
dcterms.references | Serin, F., Alisan, Y., y Kece, A. (2021). Hybrid time series forecasting methods for travel time prediction. Physica A: Statistical Mechanics and its Applications, 579, 126134. | spa |
dcterms.references | Shetty, D. K., y Ismail, B. (2021). Forecasting stock prices using hybrid non-stationary time series model with ERNN. Communications in Statistics-Simulation and Computation, 1–13. | spa |
dcterms.references | Subbanna, Y. B., Kumar, S., y Puttaraju, S. K. M. (2021). Forecasting buffalo milk production in india: Time series approach. Buffalo Bulletin, 40(2), 335–343. | spa |
dcterms.references | Wang, H., Huang, J., Zhou, H., Zhao, L., y Yuan, Y. (2019). An integrated variational mode decomposition and arima model to forecast air temperature. Sustainability, 11(15), 4018. | spa |
dcterms.references | Wang, J., Hu, J., Ma, K., y Zhang, Y. (2015). A self-adaptive hybrid approach for wind speed forecasting. Renewable Energy, 78, 374–385. | spa |
dcterms.references | Xuan, W., Shouxiang, W., Qianyu, Z., Shaomin, W., y Liwei, F. (2021). A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems. International Journal of Electrical Power & Energy Systems, 126, 106583. | spa |
dcterms.references | Yang, M., y Meng, L. (2019). Short-term photovoltaic power dynamic weighted combination forecasting based on least squares method. IEEJ Transactions on Electrical and Electronic Engineering, 14(12), 1739–1746. | spa |
dcterms.references | Yucesan, M., Pekel, E., Celik, E., Gul, M., y Serin, F. (2021). Forecasting daily natural gas consumption with regression, time series and machine learning based methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–16. | spa |
dcterms.references | Zeng, D., Xu, J., Gu, J., Liu, L., y Xu, G. (2008). Short term traffic flow prediction using hybrid arima and ann models. En 2008 workshop on power electronics and intelligent transportation system (pp. 621–625). | spa |
dcterms.references | Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: