Publicación: Análisis químico y actividad antimicrobiana de los extractos Etanólicos foliares de las especies Ficus elastica Roxb, ex Hornem y Ficus insipida willd, recolectadas en Planeta Rica, Córdoba-Colombia.
dc.audience | ||
dc.contributor.advisor | Angulo Ortiz, Alberto | |
dc.contributor.advisor | Contreras Martínez, Orfa Inés | |
dc.contributor.author | Furnieles Núñez, Héctor Javier | |
dc.contributor.jury | Santafe Patillo, Gilmar | |
dc.contributor.jury | Pérez Sotelo, Dairo Enrique | |
dc.date.accessioned | 2025-02-06T12:50:53Z | |
dc.date.available | 2026-12-31 | |
dc.date.available | 2025-02-06T12:50:53Z | |
dc.date.issued | 2025-04-05 | |
dc.description.abstract | La naturaleza proporciona gran variedad de especies vegetales que contienen metabolitos secundarios, estos, presentan muchas propiedades biológicas, que es el centro de atención de las investigaciones farmacológicas; un ejemplo de ello es el estudio de varias especies del género Ficus, las cuales son reconocidas a nivel mundial por sus propiedades antiinflamatorias, cicatrizantes y por actividades biológicas a partir de sus fitoconstituyentes (Gupta, 2012). En este estudio se logró determinar estructuralmente 72 compuestos por cromatografía liquida de ultra alta resolución acoplado a espectrometría de masas con detectores de tiempo de vuelo cuadrupolo e infusión de iones por electrospray (UHPL-Q-TOF-MS/MS-ESI), de las fracciones diclorometano y hexano, obtenidas a partir de los extractos etanólicos foliares de Ficus elastica y Ficus insipida, recolectadas en Planeta Rica - Córdoba. Destacando la identificación de 11 alcaloides, 9 flavonoides, 9 ácidos grasos, 7 fenoles, 5 terpenos, 4 cetonas, 3 antraquinonas y 2 catequinas, como compuestos mayoritarios. Por otro lado, la evaluación de la actividad antibacteriana frente a los aislados clínicos de las bacterias Staphylococcus aureus (CLI100), Klebsiella pneumoniae (CLI41), Acinetobacter baumannii (CLIACB) y Enterococcus faecium (CLI105), por el método de microdilución en caldo Mueller-Hinton, demostró que el extracto etanólico foliar de F. elastica inhibió el crecimiento bacteriano de los aislados clínicos mencionados, resaltándose la inhibición de E. faecium (CLI105) con un porcentaje de reducción de crecimiento de 92%, a la concentración máxima evaluada. Por su parte, el extracto etanólico foliar de F. insipida presentó una reducción significativa en el crecimiento bacteriano de todos los aislados clínicos tratados; Siendo mayor para el aislado clínico de la bacteria S. aureus (CLI100), con un porcentaje de reducción de crecimiento de 168.48%, a la concentración máxima evaluada (8000 ppm). | spa |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Químicas | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN 9 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN. 11 | spa |
dc.description.tableofcontents | 2. OBJETIVOS 13 | spa |
dc.description.tableofcontents | 2.1. Objetivo general. 13 | spa |
dc.description.tableofcontents | 2.2. Objetivos específicos. 13 | spa |
dc.description.tableofcontents | 3. MARCO REFERENCIAL 14 | spa |
dc.description.tableofcontents | 4. MARCO TEÓRICO 17 | spa |
dc.description.tableofcontents | 4.1. Familia Moraceae. 17 | spa |
dc.description.tableofcontents | 4.2. Género Ficus L. 18 | spa |
dc.description.tableofcontents | 4.3. Ecología y Biología reproductiva. 18 | spa |
dc.description.tableofcontents | 4.4. Fitoquímica del género Ficus L. 19 | spa |
dc.description.tableofcontents | 4.5. Taxonomía y descripción general de las especies de estudio. 24 | spa |
dc.description.tableofcontents | 4.5.1. Descripción Ficus insipida Willd 24 | spa |
dc.description.tableofcontents | 4.5.2. Taxonomía Ficus insipida Willd. 24 | spa |
dc.description.tableofcontents | 4.5.3. Descripción Ficus elastica Roxb. ex Hornem. 25 | spa |
dc.description.tableofcontents | 4.5.4. Taxonomía Ficus elastica Roxb. Ex Hornem. 25 | spa |
dc.description.tableofcontents | 4.6. Espectrometría de masas de alta resolución (HMRS) 26 | spa |
dc.description.tableofcontents | 4.6.1. Fuente de ionización: ionización por electrospray (ESI) 27 | spa |
dc.description.tableofcontents | 4.6.2. Analizadores de masas 28 | spa |
dc.description.tableofcontents | 4.6.3. Cuadrupolo 29 | spa |
dc.description.tableofcontents | 4.6.4. Tiempo de vuelo (TOF) 30 | spa |
dc.description.tableofcontents | 4.7. Resistencia microbiana. 30 | spa |
dc.description.tableofcontents | 4.8. Bacterias del grupo SKAPE. 33 | spa |
dc.description.tableofcontents | 4.8.1. Enterococcus faecium (Orla-Jensen 1919); Schleifer & Kilpper-Bälz 1984. 33 | spa |
dc.description.tableofcontents | 4.8.2. Staphylococcus aureus (Rosenbach 1884). 34 | spa |
dc.description.tableofcontents | 4.8.3. Klebsiella pneumoniae (Schroeter 1886); Trevisan 1887. 34 | spa |
dc.description.tableofcontents | 4.8.4. Acinetobacter baumannii Bouvet and Grimont 1986. 35 | spa |
dc.description.tableofcontents | 4.8.5. Pseudomonas aeruginosa (Schroeter 1872); Migula 1900. 36 | spa |
dc.description.tableofcontents | 4.8.6. Enterobacter spp. (Hormaeche y Edwards en 1960). 36 | spa |
dc.description.tableofcontents | 4.9. Hongos con resistencia a antimicóticos, género Candida. 37 | spa |
dc.description.tableofcontents | 4.9.1. Candida glabrata (Meyer y Yarrow, 1978). 37 | spa |
dc.description.tableofcontents | 4.9.2. Candida auris (Satoh, K, 2009). 38 | spa |
dc.description.tableofcontents | 4.9.3. Candida tropicalis (Berkhout, 1923). 39 | spa |
dc.description.tableofcontents | 4.9.4. Candida albicans (C.P.Robin) Berkhout, 1923. 39 | spa |
dc.description.tableofcontents | 5. METODOLOGÍA 44 | spa |
dc.description.tableofcontents | 5.1. Área de estudio. 44 | spa |
dc.description.tableofcontents | 5.2. Recolección del material biológico. 44 | spa |
dc.description.tableofcontents | 5.3. Fase de laboratorio 45 | spa |
dc.description.tableofcontents | 5.3.1. Preparación de los extractos etanólicos foliares. 45 | spa |
dc.description.tableofcontents | 5.3.2. Análisis fitoquímico cualitativo. 45 | spa |
dc.description.tableofcontents | 5.3.3. Reparto o partición química de los extractos etanólicos foliares 46 | spa |
dc.description.tableofcontents | 5.3.4. Análisis por UHPLC-QTOF-MS/MS. 48 | spa |
dc.description.tableofcontents | 5.4. Prueba de sensibilidad antibacteriana 50 | spa |
dc.description.tableofcontents | 5.5. Prueba de sensibilidad antifúngica 51 | spa |
dc.description.tableofcontents | 6. RESULTADOS 53 | spa |
dc.description.tableofcontents | 6.1. Obtención de extractos etanólicos foliares crudos. 53 | spa |
dc.description.tableofcontents | 6.2. Tamizaje Fitoquímico cualitativo. 53 | spa |
dc.description.tableofcontents | 6.3. Partición de los extractos etanólicos foliares. 55 | spa |
dc.description.tableofcontents | 6.4. Determinación de compuestos. 56 | spa |
dc.description.tableofcontents | 6.4.1. Ficus elastica Roxb. ex Hornem. 57 | spa |
dc.description.tableofcontents | 6.4.2. Ficus insipida Willd. 69 | spa |
dc.description.tableofcontents | 6.5. Ensayo de actividad antibacteriana. 81 | spa |
dc.description.tableofcontents | 6.5.1. Ficus elastica Roxb. ex Hornem. 81 | spa |
dc.description.tableofcontents | 6.5.2. Ficus insipida Willd. 84 | spa |
dc.description.tableofcontents | 6.6. Análisis estadísticos actividad antibacteriana. 87 | spa |
dc.description.tableofcontents | 6.6.1. Ficus elastica Roxb. ex Hornem. 87 | spa |
dc.description.tableofcontents | 6.6.2. Ficus insipida Willd. 88 | spa |
dc.description.tableofcontents | 6.7. Ensayo de actividad antifúngica. 89 | spa |
dc.description.tableofcontents | 6.7.1. Ficus elastica Roxb. ex Hornem. 90 | spa |
dc.description.tableofcontents | 6.7.2. Ficus insipida Willd. 93 | spa |
dc.description.tableofcontents | 6.8. Análisis estadísticos actividad antifúngica. 96 | spa |
dc.description.tableofcontents | 6.8.1. Ficus elastica Roxb. ex Hornem. 96 | spa |
dc.description.tableofcontents | 6.8.2. Ficus insipida Willd. 97 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES 99 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFÍA 101 | spa |
dc.description.tableofcontents | 9. ANEXOS 115 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9022 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Químicas | |
dc.relation.references | Abdolrasouli, A., Armstrong-James,, D., Ryan, L., & Schelenz, S. (2017). In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with Candida auris. Mycoses, 758-763. | |
dc.relation.references | Abián, J., Carrascal, M., & Gay, M. (2008). Introducción a la Espectrometría de Masas para la caracterización de péptidos y proteínas en Proteómica. Proteómica, 16-35. | |
dc.relation.references | Barker, J. (1999). Mass Spectrometry: Analytical Chemistry by Open Learning. England,: J Wiley & Sons Ltd. | |
dc.relation.references | Chiș , A. A., Rus, L. L., Morgovan, C., Arseniu, A. M., Frum, A., Vonica-Țincu, A. L., . . . Dobrea, C. M. (2022). Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines, 1121. | |
dc.relation.references | Dortet, L., Poirel, L., & Nordmann, P. (2012). Rapid Detection of Carbapenemase-Producing Pseudomonas spp. Journal of Clinical Microbiology, 3773-3776. | |
dc.relation.references | Du, Q., Ren, B., He, J., Peng, X., Guo, Q., Zheng, L., . . . Xu, X. (2020). Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. The ISME Journal, 894–908. | |
dc.relation.references | Ghai, I., & Ghai, S. (2018). Understanding antibiotic resistance via outer membrane permeability. Infection and Drug Resistance, 523-530. | |
dc.relation.references | Hassan, Y., Chew, S. Y., & Lung Than, L. T. (2021). Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J. Fungi, 667. | |
dc.relation.references | Khan, Z., & Ahmad, S. (2017). Candida auris: An emerging multidrug-resistant pathogen of global significance. Current Medicine Research and Practice, 240-248. | |
dc.relation.references | Kontoyiannis, D., & Lewis, R. (2002). Antifungal drug resistance of pathogenic fungi. The Lancet, 1135-1144. | |
dc.relation.references | LaFayette, S., Collins, C., Zaas, A., Schell, W., Betancourt-Quiroz,, M., Gunatilaka,, A., . . . Cowen, L. (2010). PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90. PLoS pathogens , e1001069. | |
dc.relation.references | Lee, A., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar,, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 1-23. | |
dc.relation.references | Lee, H., Eun-Rhan , W., & Lee, D. G. (2018). Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Research, foy003. | |
dc.relation.references | Moreira dos Santos, M., & Ishida, K. (2023). We need to talk about Candida tropicalis: Virulence factors and survival mechanisms. Medical Mycology, myad075. | |
dc.relation.references | Moyes, D., Wilson, D., Richardson, J., Mogavero, S., Tang, S., Wernecke, J., . . . Naglik , J. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 64–68. | |
dc.relation.references | Reygaert , W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol, 482–501. | |
dc.relation.references | Ward, T., Knights, D., & Gale, C. (2017). Infant fungal communities: current knowledge and research opportunities. BMC Medicine, 1-10. | |
dc.relation.references | Yumei , Y., Li , X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics, 318. | |
dc.relation.references | Zengin , H., & Baysal, A. (2014). Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules, 17773-17798. | |
dc.relation.references | Abad, H., Ramirez- Aguirre, B., & Looydith, L. (2019). IDENTIFICACION PRELIMINAR DE LOS METABOLITOSSECUNDARIOS DEL FRUTO DEFicus insípida“OJÉ”PROVENIENTE DE LAS CIUDADES DE TARAPOTO YJUANJUI DE LA SELVA DE PERÚ. Lima: Universidad Maria Auxiliadora. | |
dc.relation.references | Ademe, M., & Girma, F. (2020). Candida auris: From Multidrug Resistance to Pan-Resistant Strains. Infection and Drug Resistance, 1287-1294. | |
dc.relation.references | Ahmad, A., Husain, A., Khan, S. A., Mujeeb, M., & Bhandari, A. (2015). Design, synthesis, molecular properties and antimicrobial activities of some novel 2(3H) pyrrolone derivatives. Journal of Saudi Chemical Society, 340-346. | |
dc.relation.references | Ahmad, S., & Alfouzan, W. (2021). Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms, 807. | |
dc.relation.references | Al Aboody, M. S., & Mickymaray, S. (2020). Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics, 45. | |
dc.relation.references | Alcazar-Fuoli, L., & Mellado, E. (2013). Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Frontiers in microbiology , 439. | |
dc.relation.references | Almahyl, H. A. (2003). Investigation on the chemical constituents of the leaves of Ficus elastica Roxb. and their antimicrobial activity. Pertanika J Sci Tech, 57-63. | |
dc.relation.references | Al-Snafi, A. (2017). Pharmacology of Ficus religiosa- A review. IOSR Journal Of Pharmacy, 49-60. | |
dc.relation.references | Alvarez-Rivera, G., Ballesteros-Vivas, D., Parada-Alfonso, F., Ibañez, E., & Cifuentes, A. (2019). Recent applications of high resolution mass spectrometry for the characterization of plant natural products. TrAC Trends in Analytical Chemistry, 87-101. | |
dc.relation.references | Aly, H. I.-S. (2013). The value-added uses of Ficus retusa and Dalbergia sissoo grown in Egypt: GC/MS analysis of extracts. ournal of Forest Products and Industries , 34-41. | |
dc.relation.references | Aoife , H., O’Donoghue, M., Feeney, A., & Sleator, R. (2012). Acinetobacter baumannii An emerging opportunistic pathogen. Virulence, 243-250. | |
dc.relation.references | Arastehfar, A., Gabaldón, T., Garcia-Rubio, R., Jenks, J., Hoenigl, M., Salzer, H., . . . Perlin, D. (2020). Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics, 877. | |
dc.relation.references | Arsyad, A. S. (2022). Phytochemistry, traditional uses, and pharmacological activities of Ficus elastica Roxb. ex Hornem: A review. Journal of Herbmed Pharmacology, 41-53. | |
dc.relation.references | Avato, P. (2020). Natural Products and Drug Discovery. Molecules. | |
dc.relation.references | Aylate, A., Agize, M., Ekero, D., Kiros, A., Ayledo, G., & Gendiche, K. (2012). In-Vitro and In-Vivo Antibacterial Activities of Croton macrostachyus Methanol Extract against E. coli and S. aureus. Advances in Animal and Veterinary Sciences, 107-114. | |
dc.relation.references | Berman, J., & Krysan, D. (2020). Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 319-331. | |
dc.relation.references | Berrio Soto, R. J., Contreras Martínez, O. I., & Angulo Ortíz, A. A. (2023). COMPORTAMIENTO DE AISLAMIENTOS CLINICOS DE Candida tropicalis FRENTE AL ISOESPINTANOL OBTENIDO DE Oxandra xylopioides Diels. Montería: Universidad de Córdoba. | |
dc.relation.references | Bhawana, R., Kaur, J., Vig, A., Arora, S., & Kaur, R. (2018). Evaluation of antibacterial potential of Ficus species. Journal of Pharmaceutical Sciences and Research, 1251-1255. | |
dc.relation.references | Bojang, E., Ghuman, H., Kumwenda, P., & Hall, R. (2021). Immune Sensing of Candida albicans. J Fungi, 119. | |
dc.relation.references | Calderón Santiago, M. (2014). Espectrometría de masas para la identificación y cuantificación de biomarcadores metabolómicos en análisis clínico. Universidad de Córdoba (España). | |
dc.relation.references | Cantón , E., Martín , E., & Espinel-Ingroff , A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). En J. Pemán , E. Martín-Mazuelos , & M. Rubio-Calvo , Guía Práctica de Identificación y Diagnóstico en Micología Clínica. Bilbao. Obtenido de http://www.guia.reviberoammicol.com/Capitulo15.pdf | |
dc.relation.references | Cardona-Peña, V. F. (2005). Las moráceas de la región de Madidi, Bolivia. Ecología en Bolivia, 212-264. | |
dc.relation.references | Cavalheiro, M., & Teixeira, M. C. (2018). Candida Biofilms: Threats, Challenges, and Promising Strategies. Frontiers in medicine, 28. | |
dc.relation.references | Chantarasuwan, B. T. (2016). A natural population of Ficus elastica Roxb. ex Hornem., in Thailand. Ann. Mus. Bot. Lugd.-Bat, 287. | |
dc.relation.references | Chen, J., Tian, S., Han, X., Chu, Y., Wang, Q., Zhou, B., & Shang, H. (2020). Is the superbug fungus really so scary? A systematic review and meta-analysis of global epidemiology and mortality of Candida auris. BMC Infectious Diseases, 1-10. | |
dc.relation.references | Chiang, Y. M. (2005). Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry, 495-501. | |
dc.relation.references | Chowdhary, A., Sharma, C., & Meis, J. (2017). Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog, e1006290. | |
dc.relation.references | Ciurea, C. N., Kosovski, I.-B., Mare, A. D., Toma, F., Pintea-Simon, I. A., & Man, A. (2020). Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms, 857. | |
dc.relation.references | Clement, W. L. (2009). Morphological evolution in the mulberry family (Moraceae). Systematic Botany, 530-552. | |
dc.relation.references | Coculescu , B. (2009). Antimicrobial resistance induced by genetic changes. J Med Life, 114–123. | |
dc.relation.references | Cokera, M., & Adeniyi-Aogo, T. (2021). Antimicrobial Activity of Leaf Extracts and Fractions of Ficus vogelii and Ficus mucuso on Urinary Tract Isolates. Nigerian Journal of Pharmaceutical Research, 25-31. | |
dc.relation.references | Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 5808. | |
dc.relation.references | Contreras Martínez, O. I., Angulo Ortíz , A., & Santafé Patiño , G. (2022). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 8004. | |
dc.relation.references | Cook, J. M. (2003). Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology & Evolution, 241-248. | |
dc.relation.references | Coque, T., Baquero, F., & Cantón, R. (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance. | |
dc.relation.references | Cowen, L., Sanglard, D., Howard, S., Rogers, P., & Perlin, D. (2014). Mechanisms of Antifungal Drug Resistance. Cold Spring Harbor perspectives in medicine, a019752. | |
dc.relation.references | Cruaud, A. R. (2012). An extreme case of plant–insect codiversification: figs and fig-pollinating wasps. Systematic biology, 1029-1047. | |
dc.relation.references | David, M., & Daum, R. (2017). Treatment of Staphylococcus aureus Infections. En F. R. Bagnoli, Staphylococcus aureus. Current Topics in Microbiology and Immunology,. Springer. | |
dc.relation.references | Dayan, G., Mohamed, N., Scully, I., Cooper, D., Begier, E., Eiden, J., . . . Anderson, A. (2016). Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert review of vaccines, 1373-1392. | |
dc.relation.references | e Lima Silva, M. G., Ferreira de Lima, L., Alencar Fonseca, V. J., Santos da Silva, L. Y., Calixto Donelardy, A. C., Silva de Almeida, R., . . . Alencar de Menezes, I. R. (2023). Enhancing the Antifungal Efficacy of Fluconazole with a Diterpene: Abietic Acid as a Promising Adjuvant to Combat Antifungal Resistance in Candida spp. Antibiotics, 1565. | |
dc.relation.references | De Oliveira, D. M., Forde, B. M., Kidd, T. J., Harris, P. N., Schembri, M. A., Beatson, S. A., . . . Walker, M. J. (2020). Antimicrobial Resistance in ESKAPE Pathogens. ASM Journals Clinical Microbiology Reviews, 10-1128. | |
dc.relation.references | de Souza, C., dos Santos , M., Furlaneto-Maia, L., & Furlaneto, M. (2023). Adhesion and biofilm formation by the opportunistic pathogen Candida tropicalis: what do we know? Canadian Journal of Microbiology, 207-218. | |
dc.relation.references | Dhamgaye, S., Devaux, F., Vandeputte, P., Khandelwal, N. K., Sanglard, D., Mukhopadhyay, G., & Prasad, R. (2014). Molecular Mechanisms of Action of Herbal Antifungal Alkaloid Berberine, in Candida albicans. PLOS ONE, 0104554. | |
dc.relation.references | Díaz Pérez, M., Rodríguez Martínez, C., & Zhurbenko, R. (2010). Fundamental features on he Enterococcus genus as a very important pathogen at present time. Revista Cubana de Higiene y Epidemiología, 147-161. | |
dc.relation.references | Donlan, R., & Costerton, J. (2002). Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clinical Microbiology Reviews, 167-193. | |
dc.relation.references | Echeverri Toro, L. M., & Cataño Correa, J. C. (2010). Klebsiella pneumoniae as a nosocomial pathogen: epidemiology and drug resistance. Iatreia, 240-249. | |
dc.relation.references | El-Fishawy, A. Z. (2011). Phytochemical and pharmacological studies of Ficus auriculata Lour. Journal of Natural Products, 184-195. | |
dc.relation.references | Elisabetsky, E., & Costa-Campos, L. (2006). The Alkaloid Alstonine: A Review of Its Pharmacological Properties. Medicina complementaria y alternativa basada en la evidencia, 39-48. | |
dc.relation.references | Fernández, L., & Hancock, R. (2012). Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 661-681. | |
dc.relation.references | Furnieles-Núñez, H. J., Montaño-Castañeda, M. C., & Arias, J. (2020). Estudio quimiotaxonómico y evaluación de la actividad antioxidante de extractos etanólicos foliares de cuatro especies del género Ficus L. Monteria: Universidad de Córodoba. | |
dc.relation.references | Gao-Fei , D., Yao-Jin , L., Xuesong , S., Xiao-Yan , Y., & Qing-Yu, H. (2020). Proteomic investigation into the action mechanism of berberine against Streptococcus pyogenes. Journal of Proteomics, 103666. | |
dc.relation.references | Garcia , E. (2013). Infection structure-specificity of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of glucan-triggered immunity. Universitäts-und Landesbibliothek Sachsen-Anhalt. | |
dc.relation.references | Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina, 19. | |
dc.relation.references | Gill, A., & Holley, R. (2006). Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International Journal of Food Microbiology, 170-174. | |
dc.relation.references | Giraldo-Quintero, S. E. (2015). Uso tradicional de plantas medicinales en mercados de Bogotá, DC. Nova, 73-80. | |
dc.relation.references | Gómez, M., & Ballesteros González, M. (2010). Espectrometría de masas y análisis de biomarcadores. Monografías de la Real Academia Nacional de Farmacia. | |
dc.relation.references | Guevara Díaz, J. A., Maldonado, M. R., Valadez Padilla , D. E., Muro Díaz, R., & Matsumoto Palomares, I. R. (2021). Bacterial resistance: organisms of the eskape group. ENF INF MICROBIOL, 111-117. | |
dc.relation.references | Gupta, N. &. (2012). Prominent wound healing properties of indigenous medicines. ournal of Natural Pharmaceuticals, 2-2. | |
dc.relation.references | Gurung, A. B.-A. (2021). Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. Plos one, e0254035. | |
dc.relation.references | Guzman Prieto, A., van Schaik, W., Rogers, M., Coque, T., Baquero, F., Corander, J., & Willems, R. (2016). Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Frontiers in Microbiology. | |
dc.relation.references | Harrison, R. D. (2005). Figs and the diversity of tropical rainforests. Bioscience, 1053-1064. | |
dc.relation.references | Hayes, J., & Wolf, C. (1990). Molecular mechanisms of drug resistance. Biochemical Journal, 281–295. | |
dc.relation.references | He, L., Zhang, Z., Lu, L., Liu, Y., Li, S., Wang, J., . . . Miao, J. (2016). Rapid identification and quantitative analysis of the chemical constituents in Scutellaria indica L. by UHPLC–QTOF–MS and UHPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 125-139. | |
dc.relation.references | Hintz, T., Matthews, K., & Di, R. (2015). The Use of Plant Antimicrobial Compounds for Food Preservation. BioMed research international, 246264. | |
dc.relation.references | HMDB. (2024). The Human Metabolome Database. Recuperado el 12 de 10 de 2024, de The Human Metabolome Database: https://hmdb.ca/metabolites/HMDB0000673 | |
dc.relation.references | HMDB. (2024). The Human Metabolome Database. Recuperado el 12 de 10 de 2024, de The Human Metabolome Database: https://hmdb.ca/metabolites/HMDB0006294 | |
dc.relation.references | HMDB. (2024). The Human Metabolome Database. Recuperado el 29 de 10 de 2024, de The Human Metabolome Database: https://hmdb.ca/metabolites/HMDB0035833 | |
dc.relation.references | HMDB. (2024). The Human Metabolome Database . Recuperado el 12 de 10 de 2024, de The Human Metabolome Database : https://hmdb.ca/metabolites/HMDB0302992 | |
dc.relation.references | Hoffmann, E., & Stroobant, V. (2007). Mass Spectrometry: Principles and Application. England,: J Wiley & Sons Ltd. | |
dc.relation.references | Horcajada, J., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., . . . Grau, S. (2019). Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clinical microbiology reviews, 10-1128. | |
dc.relation.references | Hossain, C. M., Ryan, L. K., Gera, M., Choudhuri, S., Lyle, N., Ali, K. A., & Diamond, G. (2022). Antifungals and Drug Resistance. Encyclopedia, 1722-1737. | |
dc.relation.references | Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol., 12. | |
dc.relation.references | Iraji, A., Yazdanpanah, S., Alizadeh, F., Mirzamohammadi, S., Ghasemi, Y., Pakshir, K., . . . Zomorodian, K. (2020). Screening the antifungal activities of monoterpenes and their isomers against Candida species. Journal of Applied Microbiology, 1541–1551. | |
dc.relation.references | Iwasa, K., Moriyasu, M., Yamori, T., Turuo, T., Dong-Ung , L., & Wiegrebe, W. (2001). In Vitro Cytotoxicity of the Protoberberine-Type Alkaloids. Journal of Natural Products, 896-898. | |
dc.relation.references | Jian-ling, J., Guo-qiang, H., Zhen, M., & Pei-ji, G. (2010). Antibacterial Mechanisms of Berberine and Reasons for Little. Chinese Herbal Medicines, 27-35. | |
dc.relation.references | Jin, Y., Ma, Y., Xie, W., Hou, L., Xu, H., Zhang, K., . . . Du, Y. (2018). UHPLC-Q-TOF-MS/MS-oriented characteristic components dataset and multivariate statistical techniques for the holistic quality control of Usnea. RSC Advances, 15487. | |
dc.relation.references | KEGG. (2024). KEGG PATHWAY Database. Recuperado el 12 de 10 de 2024, de KEGG PATHWAY Database: https://www.genome.jp/dbget-bin/www_bget?C19614 | |
dc.relation.references | KEGG. (2024). KEGG PATHWAY Database. Recuperado el 29 de 10 de 2024, de KEGG PATHWAY Database: https://www.genome.jp/entry/C17073 | |
dc.relation.references | Kelley, C., Lu, S., Parhi , A., Kaul, M., Pilch, D., & LaVoie, E. (2013). Antimicrobial activity of various 4- and 5-substituted 1-phenylnaphthalenes. European Journal of Medicinal Chemistry, 395-409. | |
dc.relation.references | Konuk, H. B., & Ergüden, B. (2020). Phenolic –OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia Microbiologica, 775–783. | |
dc.relation.references | Kothavade, R., Kura, M., Valand, A., & Panthaki, M. (2010). Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. Journal of Medical Microbiology, 873-880. | |
dc.relation.references | Kounatidis, I., Ames, L., Mistry, R., Hsueh-lui , H., Haynes, K., & Ligoxygakis, P. (2018). A Host-Pathogen Interaction Screen Identifies ada2 as a Mediator of Candida glabrata Defenses Against Reactive Oxygen Species. G3 Genes, 1637–1647. | |
dc.relation.references | Kowalczyk, A. (2024). Essential Oils against Candida auris—A Promising Approach for Antifungal Activity. Antibiotics, 568. | |
dc.relation.references | Kumar, J., Eilertson , B., Cadnum , J., Whitlow, C., Jencson, A., Safdar , N., . . . Burro, C. (2019). Environmental Contamination with Candida Species in Multiple Hospitals Including a Tertiary Care Hospital with a Candida auris Outbreak. Pathogens and Immunity, 260–270. | |
dc.relation.references | Kurizaki, A. W. (2019). Chemical Constituents from the Flowers of Aloe arborescens. Natural Product Communications, 1934578X19844135. | |
dc.relation.references | Larghi, E., Bracca, A., Arroyo Aguilar, A., Heredia, D., Pergomet , J., Simonetti , S., & Kaufman, T. (2015). Neocryptolepine: A Promising Indoloisoquinoline Alkaloid with Interesting Biological Activity. Evaluation of the Drug and its Most Relevant Analogs. Current Topics in Medicinal Chemistry, 1683-1707. | |
dc.relation.references | Lee, S., Kwon, K. T., Hye-In , K., Chang, H. H., Lee, J.-M., Choe, P. G., . . . Kim, S.-W. (2014). Clinical Implications of Cefazolin Inoculum Effect and β-Lactamase Type on Methicillin-Susceptible Staphylococcus aureus Bacteremia. Microbial Drug Resistance, 568-574. | |
dc.relation.references | Lehmkuhl, J., Schneider, J. S., vom Werth, K. L., Scherff, N., Mellmann, A., & Kampmeier, S. (2024). Role of membrane vesicles in the transmission of vancomycin resistance in Enterococcus faecium. Scientific Reports, 1895. | |
dc.relation.references | Li, N., Sheng-nan, T., Cui, J., Guo, N., Wang, W., Yuan-gang , Z., . . . Yu-jie , F. (2014). PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. The Journal of Antibiotics, 689–696. | |
dc.relation.references | Lopardo, H. (2016). Resistance to vancomycin beyond enterococci. Med. infant , 303-307. | |
dc.relation.references | López Vargas, J. A., & Echeverri Toro, L. M. (2010). K. pneumoniae:¿ The new''superbacteria''? Pathogenicity, epidemiology and resistance mechanisms. Iatreia, 157-165. | |
dc.relation.references | Machado, D. G. (2013). Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chemistry, 999-1005. | |
dc.relation.references | Magalhães, B., Valot, B., Abdelbary, M., Prod'hom, G., Greub, G., Senn, L., & Blanc, D. (2020). Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Frontiers in public health, 3. | |
dc.relation.references | Mahizan , N. A., Shun-Kai , Y., Chew-Li , M., Ai-Lian , A. S., Chou-Min , C., Chun-Wie , C., . . . Kok-Song , L. (2019). Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules, 2631. | |
dc.relation.references | Makoshi, M., Arowolo , R., Olayemi , F., Oridupa, O., Azeez , O., Saba, A., & Habila , J. (2023). In Vitro Trypanocidal Effect of the Extract and Isolated Compound of Corymbia torelliana Stem Bark against Trypanosoma brucei brucei. International Journal of Biochemistry Research & Review, 1-10. | |
dc.relation.references | Malinovská, Z., Čonková, E., & Váczi, P. (2023). Biofilm Formation in Medically Important Candida Species. J. Fungi, 955. | |
dc.relation.references | Mavridou, E., Brüggemann, R., Melchers, W., Mouton, J., & Verweij , P. (2010). Efficacy of Posaconazole against Three Clinical Aspergillus fumigatus Isolates with Mutations in the cyp51A Gene. Antimicrobial Agents and Chemotherapy, 860-865. | |
dc.relation.references | McCarty, T., & Pappas, P. (2016). Invasive Candidiasis. Infectious Disease Clinics, 103-124. | |
dc.relation.references | Mellado , E., Garcia-Effron, G., Alcázar-Fuoli, L., Melchers, W., Verweij, P., Cuenca-Estrella, M., & Rodríguez-Tudela, J. (2007). A New Aspergillus fumigatus Resistance Mechanism Conferring In Vitro Cross-Resistance to Azole Antifungals Involves a Combination of cyp51A Alterations. Antimicrobial Agents and Chemotherapy, 1897-1904. | |
dc.relation.references | Mohamed, A. E.-S. (2010). Chemical constituents and biological activities of Artemisia herba-alba. Records of Natural Products, 1. | |
dc.relation.references | Moreno, S., Scheyer, T., Romano, C., & Vojnov, A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 223-231. | |
dc.relation.references | Morschhäuser, J. (2016). The development of fluconazole resistance in Candida albicans – an example of microevolution of a fungal pathogen. Journal of Microbiology, 192–201. | |
dc.relation.references | Munita, J., Bayer, A., & Arias, C. (2015). Evolving Resistance Among Gram-positive Pathogens. Clinical Infectious Diseases, 48–57. | |
dc.relation.references | Munita, J., & Arias, C. (2016). Mechanisms of Antibiotic Resistance. Virulence Mechanisms of Bacterial Pathogens. | |
dc.relation.references | Navarro , F. (2024). La salud como sinergia: Desafíos globales y datos para la reflexión. Universidad de Huelva. | |
dc.relation.references | Nawaz, H. W. (2020). Phytochemical composition, antioxidant potential, and medicinal significance of Ficus. Modern Fruit Industry, 20. | |
dc.relation.references | OECD. (2019). Antimicrobial resistance: A frightening and complex public health challenge. En Stemming the Superbug Tide (págs. 43 - 72). Paris: OECD Publishing. | |
dc.relation.references | Ogechukwu, O. C., & Salt, A. P. (2023). In Vivo Antimalarial Activity and Phytochemical Screening of Tree Bark Extract of Ficus Elastica. Journal of Science and Technology Research, 21-30. | |
dc.relation.references | Othman, L., Sleiman, A., & Abdel-Massih, R. (2019). Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in microbiology, 911. | |
dc.relation.references | Pana, Z. D., & Zaoutis , T. (2018). Treatment of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBLs) infections: what have we learned until now? F1000Research. | |
dc.relation.references | Pappas, P., Lionakis, M., Cavling Arendrup, M., Ostrosky-Zeichner, L., & Kullberg , B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers. | |
dc.relation.references | Pelozo, R. E. (2005). Las especies de las familias Moraceae y Cecropiaceae del Parque Nacional Mburucuyá. Congresos y reuniones científicas. Corrientes: Universidad Nacional del Nordeste. | |
dc.relation.references | Pfaller, M., & Diekema, D. (2007). Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clinical Microbiology Reviews, 133-163. | |
dc.relation.references | Pommier, Y., Leo, E., Zhang , H., & Marchand, C. (2010). DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chemistry & biology, 421-433. | |
dc.relation.references | Poudel, A. S. (2015). Composition and bioactivities of the leaf essential oil of Ficus religiosa Linn. American Journal of Essential Oils and Natural Products, 16-17. | |
dc.relation.references | Poumale, H. M. (2008). Pentacyclic triterpenes and other constituents from Ficus cordata (Moraceae). Zeitschrift fuer Naturforschung B, 1335-1338. | |
dc.relation.references | Prematunge, C., MacDougall, C., Johnstone, J., Adomako, K., Lam, F., Robertson, J., & Garber, G. (2016). VRE and VSE Bacteremia Outcomes in the Era of Effective VRE Therapy: A Systematic Review and Meta-analysis. Control de infecciones y epidemiología hospitalaria, 26–35. | |
dc.relation.references | Quan-zhen , L., Yan, L., & Yuan-ying, J. (2016). The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn. Virulence, 649-659 . | |
dc.relation.references | Rajiv, P. &. (2012). Screening for phytochemicals and antimicrobial activity of aqueous extract of Ficus religiosa Linn. International Journal of Pharmacy and Pharmaceutical Sciences, 207-209. | |
dc.relation.references | Rangel-Ch, J. O. (2015). Biodiversity of Colombia: significance and regional distribution. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 176-200. | |
dc.relation.references | Riethmüller, E., Tóth, G., Alberti, Á., Végh, K., Burlini, I., Könczöl, Á., . . . Kéry, Á. (2015). First characterisation of flavonoid- and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS. Journal of Pharmaceutical and Biomedical Analysis, 159-167. | |
dc.relation.references | Robbins, N., Caplan, T., & Cowen, L. (2017). Molecular Evolution of Antifungal Drug Resistance. Annual Review of Microbiology, 753-775. | |
dc.relation.references | Roberts , S. (2007). Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology, 387–395. | |
dc.relation.references | Rodríguez-Cerdeira, C., Carnero Gregorio, M., Molares-Vila, A., López-Barcenas, A., Fabbrocini, G., Sinani, A., . . . Hernandez-Castro, R. (2019). Biofilms and vulvovaginal candidiasis. Colloids and Surfaces B: Biointerfaces, 110-125. | |
dc.relation.references | Rodríguez-Tudela, J., Barchiesi, F., Bille, J., Chryssanthou, E., Cuenca-Estrella, M., Denning, D., . . . Verweij, P. (2003). Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clinical Microbiology and Infection, 1-8. | |
dc.relation.references | Saibabu , V., Fatima, Z., Singh, S., Khan, L., & Hameed, S. (2020). Vanillin confers antifungal drug synergism in Candida albicans by impeding CaCdr2p driven efflux. Journal de Mycologie Médicale, 100921. | |
dc.relation.references | Sanitá, P. V., Zago, C. E., Garcia de Oliveira, E. M., Pavarina, A. C., Janaina Habib , J., Machado, A. L., & Vergani, C. E. (2014). In vitro evaluation of the enzymatic activity profile of non-albicans Candida species isolated from patients with oral candidiasis with or without diabetes. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 84-91. | |
dc.relation.references | Santajit, S., & Indrawattana, N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed research international, 2475067. | |
dc.relation.references | Saris , K., Meis , J., & Voss, A. (2018). Candida auris. Current Opinion in Infectious Diseases, 334-340. | |
dc.relation.references | Satoh, K., Makimura, K., Hasumi, Y., Nishiyama, Y., Uchida, K., & Yamaguchi, H. (2009). Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiology and immunology, 41-44. | |
dc.relation.references | Serpa, R., França, E., Furlaneto-Maia, L., Andrade, C., Diniz, A., & Furlaneto, M. (2012). In vitro antifungal activity of the flavonoid baicalein against Candida species. | |
dc.relation.references | Sfeir, M., Jiménez-Ortigosa, C., Gamaletsou, M., Schuetz, A., Soave, R., Van Besien, K., . . . Walsh, T. (2020). Breakthrough Bloodstream Infections Caused by Echinocandin-Resistant Candida tropicalis: An Emerging Threat to Immunocompromised Patients with Hematological Malignancies. J. Fung, 20. | |
dc.relation.references | Shanahan, M. S. (2001). Fig-eating by vertebrate frugivores: a global review. Biological reviews, 529-572. | |
dc.relation.references | Shao, J., Zhang, M., Wang, T., Li, Y., & Wang, C. (2016). The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharmaceutical Biology, 984-992. | |
dc.relation.references | Shapira, S., Pleban, S., Kazanov, D., Tirosh, P., & Arber, N. (2016). Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS One, e0156540. | |
dc.relation.references | Shi , Q., Hui , S., Ai-Hua , Z., Hong-Ying , X., Guang-Li , Y., Ying, H., & Xi-Jun , W. (2014). Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines, 401-406. | |
dc.relation.references | Si, W., Yang, W., Guo, D., Wu, J., Zhang, J., Qiu, S., . . . Wu, W. (2016). Selective ion monitoring of quinochalcone C-glycoside markers for the simultaneous identification of Carthamus tinctorius L. in eleven Chinese patent medicines by UHPLC/QTOF MS. Journal of Pharmaceutical and Biomedical Analysis, 510-521. | |
dc.relation.references | Silva-Beltrán, N. P., Boon, S., Ijaz, M., McKinney, J., & Gerba, C. (2023). Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. Journal of Industrial Microbiology and Biotechnology, kuad036. | |
dc.relation.references | Singh, S., Fatima, Z., Ahmad, K., & Hameed, S. (2018). Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism. PLOS ONE, 0203079. | |
dc.relation.references | Sobti, M., Ishmukhametov , R., & Stewart, A. (2019). ATP Synthase: Expression, Purification, and Function. Protein Nanotechnology, 73–84. | |
dc.relation.references | Soto Rodríguez, L. D. (2020). Identificación de metabolitos en mosto y mezcal de Agave potatorum Zucc., mediante UHPLC-QTOF. Huajuapan de León, Oaxaca: Universidad Tecnológica de la Mixteca. | |
dc.relation.references | Sytsma, K. J. (2002). Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL‐F, and ndhF sequences. American Journal of Botany, 1531-1546.1531-1546. | |
dc.relation.references | Tacconelli , E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D., . . . Magrini, N. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 318-327. | |
dc.relation.references | Tang, S., Hass, C., & Knapp, S. (2006). Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) proWles in sunXower. Theor Appl Genet, 783–799. | |
dc.relation.references | Teinkela Mbosso , E. J., Assob Nguedia , J. C., Meyer , F., Ndjakou Lenta, B., Ngouela, S., Lallemand, B., . . . Wintjens, R. (2012). Ceramide, cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). Phytochemistry, 95-103. | |
dc.relation.references | Teinkela Mbosso, E. J., Baptiste, H. J., & Dakam, W. (2024). Phytochemical analysis, evaluation of the antioxidant and antiplasmodial activities of the ethanolic extract of Ficus elastica Roxb. ex Hornem. (Moraceae) lianas. Mediterranean Journal of Chemistry, 42-49. | |
dc.relation.references | Teinkela, J. M. (2017). In vitro antimicrobial activity of the methanol extract and compounds from the wood of Ficus elastica Roxb. ex Hornem. aerial roots. South African journal of botany, 302-306. | |
dc.relation.references | Thaden, J., Pogue, J., & Kaye, K. (2017). Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence, 403-416. | |
dc.relation.references | Timmermans, B., De Las Peñas, A., Castaño, I., & Van Dijck, P. (2018). Adhesins in Candida glabrata. J. Fungi, 60. | |
dc.relation.references | Tkachenko, H., Pękala-Safińska, A., Buyun, L., Honcharenko, V., Prokopiv, A., & Kurhaluk, N. (2023). Antibacterial Activity of Extracts Derived from Leaves of Ficus elastica Roxb. ex Hornem. (Moraceae) and its Cultivars against Three Aeromonas spp. Strains. Agrobiodiversity for Improving Nutrition, Health and Life Quality. | |
dc.relation.references | Van Noort, S. &. (21 de 10 de 2024). Figweb: figs and fig wasps of the world. Obtenido de Figweb: figs and fig wasps of the world: URL: www. figweb. org. za | |
dc.relation.references | Veberic, R. &.-P. (2016). Phytochemical composition of common fig (Ficus carica L.) cultivars. In Nutritional composition of fruit cultivars. Academic Press., 235-255. | |
dc.relation.references | Vejarano Jara, P., & Guerrero Vejarano, T. (2011). OJE” (Ficus insípida)” - Universidad Nacional Agraria de la Selva. (U. N. Selva, Ed.) Recuperado el 30 de 10 de 2024, de OJE” (Ficus insípida)” - Universidad Nacional Agraria de la Selva: https://studylib.es/doc/137549/oje%E2%80%9D--ficus-ins%C3%ADpida-%E2%80%9D---universidad-nacional-agraria-de-... | |
dc.relation.references | Ventola, C. (2015). The Antibiotic Resistance Crisis : part 1: causes and threats. Pharmacy and therapeutics, 277. | |
dc.relation.references | Wagle , B., Shrestha , S., Arsi , K., Upadhyaya, I., Donoghue, A., & Donoghue, D. (2019). Pectin or chitosan coating fortified with eugenol reduces Campylobacter jejunion chicken wingettes and modulates expression of critical survival genes. Poultry Science, 1461-1471. | |
dc.relation.references | Wan Tso, G. H., Reales-Calderon, J. A., & Pavelka, N. (2018). The Elusive Anti-Candida Vaccine: Lessons From the Past and Opportunities for the Future. Frontiers in Immunology, 897. | |
dc.relation.references | Wang, Y., Hao , H., Wang, G., Tu, P., Jiang , Y., Liang, Y., . . . Liu, Y. (2009). An approach to identifying sequential metabolites of a typical phenylethanoid glycoside, echinacoside, based on liquid chromatography–ion trap-time of flight mass spectrometry analysis. Talanta, 572-580. | |
dc.relation.references | Welsh, R., Bentz, M., Shams, A., Houston, H., Lyons, A., Rose, L., & Litvintseva, A. (2017). Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. Journal of Clinical Microbiology, 2996-3005. | |
dc.relation.references | Wright , G. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews Microbiology, 175–186. | |
dc.relation.references | Wright, G. (2010). The antibiotic resistome. Expert Opinion on Drug Discovery, 779-788. | |
dc.relation.references | Yi, L., Ouyang, Y., Sun, X., Xu, N., Linhardt, R., & Zhang, Z. (2015). Qualitative and quantitative analysis of branches in dextran using high-performance anion exchange chromatography coupled to quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 79-85. | |
dc.relation.references | Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 559. | |
dc.relation.references | Zhang, A., Sun, H., Yan, G., & Wang, X. (2017). Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis. TrAC Trends in Analytical Chemistry, 70-76. | |
dc.relation.references | Zhang, Q., Lyu, Y., Huang, J., Zhang, X., Yu, N., Wen, Z., & Chen, S. (2020). Actividad antibacteriana y mecanismo de acción de la sanguinarina frente a Providencia rettgeri in vitro. PeerJ, e9543. | |
dc.relation.references | Zhang-ShuDong, Z. S. (2011). Multi-gene analysis provides a well-supported phylogeny of Rosales. | |
dc.relation.references | Zhu, W., & Filler, S. (2010). Interactions of Candida albicans with epithelial cells. Cellular microbiology, 273-282. | |
dc.relation.references | Zuza-Alves, D., Silva-Rocha, W., & Chaves, G. (2017). An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front. Microbiol, 1927. | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Genus Ficus | |
dc.subject.keywords | Antifungal activity | |
dc.subject.keywords | Antibacterial activity | |
dc.subject.keywords | ESKAPE group bacteria | |
dc.subject.keywords | Mass spectrometry | |
dc.subject.keywords | Electrospray ionization | |
dc.subject.proposal | Género Ficus | |
dc.subject.proposal | Actividad antifúngica | |
dc.subject.proposal | Actividad antibacteriana | |
dc.subject.proposal | Bacterias del grupo ESKAPE | |
dc.subject.proposal | Espectrometría de masas | |
dc.subject.proposal | Ionización por electrospray | |
dc.title | Análisis químico y actividad antimicrobiana de los extractos Etanólicos foliares de las especies Ficus elastica Roxb, ex Hornem y Ficus insipida willd, recolectadas en Planeta Rica, Córdoba-Colombia. | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: