Publicación:
Produccion in vitro de gas metano por gramineas forrajeras tropicales

dc.contributor.authorLey de Coss, Alejandrospa
dc.contributor.authorGuerra-Medina, Enriquespa
dc.contributor.authorMontañez-Valdez, Ozielspa
dc.contributor.authorGuevara H, Franciscospa
dc.contributor.authorPinto R, Renéspa
dc.contributor.authorReyes-Gutiérrez, José Andrésspa
dc.date.accessioned2018-09-01 00:00:00
dc.date.accessioned2022-07-01T21:00:58Z
dc.date.available2018-09-01 00:00:00
dc.date.available2022-07-01T21:00:58Z
dc.date.issued2018-09-01
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/epub+zipspa
dc.format.mimetypeapplication/xmlspa
dc.identifier.doi10.21897/rmvz.1368
dc.identifier.eissn1909-0544
dc.identifier.issn0122-0268
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/5957
dc.identifier.urlhttps://doi.org/10.21897/rmvz.1368
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/1368/pdf
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/1368/epub
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/1368/2503
dc.relation.citationeditionNúm. 3 , Año 2018 : Revista MVZ Córdoba Volumen 23(3) Septiembre-Diciembre 2018spa
dc.relation.citationendpage6798
dc.relation.citationissue3spa
dc.relation.citationstartpage6788
dc.relation.citationvolume23spa
dc.relation.ispartofjournalRevista MVZ Córdobaspa
dc.relation.referencesDong LF, Yan T, Ferris CP, Mcdowell DA, Gordon A. Is there a relationship between genetic merit and enteric methane emission rate of lactating Holstein-Friesian dairy cows? Animal 2015; 9(11):1807-1812. https://doi.org/10.1017/S1751731115001445spa
dc.relation.referencesHynes DN, Stergiadis S, Gordon A, Yan T. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J Dairy Sci 2016; 99(11):8858–8866. https://doi.org/10.3168/jds.2016-11509spa
dc.relation.referencesZheng Z, Liu J, Yuan X, Wang X, Zhu W, Yang F, et al. Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Appl Energy 2015; 151:249–57. https://doi.org/10.1016/j.apenergy.2015.04.078spa
dc.relation.referencesI-amagua-Uyaguari JP, Jenet A, Alarcón-Guerra LG, Vilchez-Mendoza SJ, Casasola-Coto F, Wattiaux MA. Impactos económicos y ambientales de las estrategias de alimentación en lecherías de Costa Rica. Agron Mesoam 2016; 1(27):1–17.spa
dc.relation.referencesChaokaur A, Nishida T, Phaowphaisal I, Sommart K. Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics. Agric Ecosyst Environ 2015; 199:225–230. https://doi.org/10.1016/j.agee.2014.09.014spa
dc.relation.referencesHill J, McSweeney C, Wright ADG, Bishop-Hurley G, Kalantar-zadeh K. Measuring methane production from ruminants. Trends in biotechnol 2016; 34(1):26-35. https://doi.org/10.1016/j.tibtech.2015.10.004spa
dc.relation.referencesStewart C, Paniagua C, Dinsdale D. Selective isolation and characteristics of Bacteriodes succinogenes from the rumen of a cow. Appl Environ Microbiol 1981; 4(2):504-510.spa
dc.relation.referencesGalindo J, Marrero Y, González N, Sosa A. Efecto de preparados con levaduras Saccharomyces cerevisiae y LEVICA-25 viables en los metanógenos y metanogénesis ruminal in vitro. Rev Cuba 2010; 44(3):273-279.spa
dc.relation.referencesAppuhamy JADRN, France J, Kebreab E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob Chang Biol 2016; 22(9):3039–3056. https://doi.org/10.1111/gcb.13339spa
dc.relation.referencesAOAC. Official Methods of Analysis (19th) Association of Official Analytical Chemists. Arligton (VA), Washington DC: AOAC; 2012.spa
dc.relation.referencesVan Soest P, Robertson J, Lewis B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2spa
dc.relation.referencesWilliams B. Cumulative gas-production techniques for forage evaluation. En: Givens DI, Owen E, Axford RFE, Omed HM, editors. Forage Evaluation in Ruminant Nutrition; 2000. p. 189-213. https://doi.org/10.1079/9780851993447.0189spa
dc.relation.referencesCobos M, Yokoyama M. Clostridium paraputrificum var. Ruminantium: Colonisation and degradation of shrimp carapaces. En: Workshop on Rumen Ecology Research Planning, Addis Ababa, Ethiopia; 1995. p.151-162.spa
dc.relation.referencesStolaroff JK, Keith DW, Lowry G V. Carbon Dioxide Capture from Atmospheric Air using Sodium Hydroxide Spray. Environ Sci Technol 2008; 42(8):2728–35. https://doi.org/10.1021/es702607wspa
dc.relation.referencesLin C, Chen B. Carbon dioxide absorption into NaOH solution in a cross-flow rotating packed bed. J Ind Eng Chem 2007; 13(7):1083-1090.spa
dc.relation.referencesLey de Coss A, Peralta MC. Formulación de un medio de cultivo anaerobio para protozoarios ruminales y evaluación in vitro en la capacidad desfaunante del extracto de plantas. Rev Cient FCV-LUZ 2011; 21(1):43-49.spa
dc.relation.referencesLey de Coss A, Arce-Espino C, Cobos-Peralta M. Estudio comparativo entre la cepa de Pediococcus acidilactici aislada del rumen de borregos y un consorcio de bacteria ruminales. Agrociencia 2013; 47(6):567-568.spa
dc.relation.referencesCobos M, Pérez-Sato M, Piloni-Martini J. Evaluation of diets containing shrimp shell waste and an inoculum of Streptococcus milleri on rumen bacteria and performance of lambs. Anim Feed Sci Tech 2007; 132(3):324-330. https://doi.org/10.1016/j.anifeedsci.2006.03.019spa
dc.relation.referencesSAS. Statistical Analisys Software, SAS/STAT. Versión 9.3 Edition. Cary (NC): SAS institute Inc; 2011.spa
dc.relation.referencesTheodorou M, France J. Rumen microorganisms and their interactions. En: Forbes JM, France J, editors. Quantitative Aspects of Ruminant Digestion and Metabolism. CAB International, Wallingford, U.K Quant Asp Rumin. 2005; p.145-162. https://doi.org/10.1079/9780851998145.0207spa
dc.relation.referencesAvellaneda CJH, Monta-ez-Valdez OD, González-Mu-oz S, Pinos-Rodríguez J, Bárcena-Gama R, Hernández-Garay A. Effect of exogenous fibrolytic enzymes on dry matter and cell wall in vitro digestibility of Guinea grass hay. J Appl Ani Res 2009; 36(2):199-202. https://doi.org/10.1080/09712119.2009.9707059spa
dc.relation.referencesDijkstra J, Ellis JL, Kebreab E, Strathe AB, López S, France J, Bannink A. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Tech 2012; 172(1):22-33. https://doi.org/10.1016/j.anifeedsci.2011.12.005spa
dc.relation.referencesRussell JB, Murk RE, Weimer PJ. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen FEMS Microbiol Ecol 2009;67(2):183-197. https://doi.org/10.1111/j.1574-6941.2008.00633.xspa
dc.relation.referencesFriggens NC, Oldham JD, Dewhurst RJ, Horgan G. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J Dairy Sci 1998; 81(5):1331–44. https://doi.org/10.3168/jds.S0022-0302(98)75696-6spa
dc.relation.referencesDanielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 2017; 8:A-226. https://doi.org/10.3389/fmicb.2017.00226spa
dc.relation.referencesRico DE, Chouinard PY, Hassanat F, Benchaar C, Gervais R. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. animal, 2016;10(2):203-211. https://doi.org/10.1017/S1751731115001949spa
dc.relation.referencesCalsamiglia S, Cardozo PW, Ferret a, Bach a. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J Anim Sci 2008; 86(3):702–711. https://doi.org/10.2527/jas.2007-0146spa
dc.relation.referencesMcAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Anim Prod Scie 2008; 48(2):7-13. https://doi.org/10.1071/EA07218spa
dc.relation.referencesMorgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal 2010;4(7):1024-1036. https://doi.org/10.1017/S1751731110000546spa
dc.relation.referencesGidlund H, Hetta M, Krizsan SJ, Lemosquet S, Huhtanen P. (2015). Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets. J Anim Sci 2015;98(11):8093-8106. https://doi.org/10.3168/jds.2015-9757spa
dc.relation.referencesRanilla MJ, Jouany JP, Morgavi DP. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett Appl Microbiol 2007;45(6):675-680. https://doi.org/10.1111/j.1472-765X.2007.02251.xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistamvz.unicordoba.edu.co/article/view/1368spa
dc.subjectgrasseseng
dc.subjectmethaneeng
dc.subjectin vitro digestibilityeng
dc.subjectgramíneasspa
dc.subjectmetanospa
dc.subjectdigestibilidad in vitrospa
dc.titleProduccion in vitro de gas metano por gramineas forrajeras tropicalesspa
dc.title.translatedIn vitro production of gas methane by tropical grasseseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos
Colecciones