Publicación: Efecto citotóxico de Deoxinivalenol sobre la proliferación de la línea celular HepG2
dc.contributor.author | Garzón-González, Harold Duván | spa |
dc.contributor.author | Jaimes-Mendez, Nancy | spa |
dc.contributor.author | Rojas-Contreras, Liliana | spa |
dc.contributor.author | Salmen-Halabi, Siham | spa |
dc.contributor.author | Gil-Durán, Manuel Alejandro | spa |
dc.date.accessioned | 2021-05-02 00:00:00 | |
dc.date.accessioned | 2022-07-01T21:01:39Z | |
dc.date.available | 2021-05-02 00:00:00 | |
dc.date.available | 2022-07-01T21:01:39Z | |
dc.date.issued | 2021-05-02 | |
dc.format.mimetype | application/pdf | spa |
dc.format.mimetype | application/pdf | spa |
dc.format.mimetype | application/zip | spa |
dc.format.mimetype | application/zip | spa |
dc.format.mimetype | application/xml | spa |
dc.format.mimetype | application/xml | spa |
dc.format.mimetype | audio/mpeg | spa |
dc.format.mimetype | audio/mpeg | spa |
dc.identifier.doi | 10.21897/rmvz.2080 | |
dc.identifier.eissn | 1909-0544 | |
dc.identifier.issn | 0122-0268 | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6091 | |
dc.identifier.url | https://doi.org/10.21897/rmvz.2080 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3406 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3407 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3539 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3541 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3540 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3542 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3408 | |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/e2080/3409 | |
dc.relation.citationedition | Núm. 3 , Año 2021 : Revista MVZ Córdoba Volumen 26(3) Septiembre-Diciembre 2021 | spa |
dc.relation.citationendpage | e2080 | |
dc.relation.citationissue | 3 | spa |
dc.relation.citationstartpage | e2080 | |
dc.relation.citationvolume | 26 | spa |
dc.relation.ispartofjournal | Revista MVZ Córdoba | spa |
dc.relation.references | Mayer E, Novak B, Springler A, Schwartz-Zimmermann H, Nagl V, Reisinger N, et al. Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Res. 2017; 33(4):297–308. https://link.springer.com/article/10.1007/s12550-017-0289-7 | spa |
dc.relation.references | Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 2010; 3(4):323–347. https://doi.org/10.3920/WMJ2010.1247 | spa |
dc.relation.references | Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junctions proteins and MAPKinases. Toxicol Sci. 2012; 130(1):180–190. https://www.ncbi.nlm.nih.gov/pubmed/22859312 | spa |
dc.relation.references | Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, et al. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ Toxicol Pharmacol. 2015; 39(1):339–346. https://www.ncbi.nlm.nih.gov/pubmed/25553575 | spa |
dc.relation.references | Arunachalam C, Doohan F. Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals. Toxicol Lett. 2013; 217(2):149– 158. https://www.ncbi.nlm.nih.gov/pubmed/23274714 | spa |
dc.relation.references | Wu F, Groopman F, Pestka J. Public Health Impacts of Foodborne Mycotoxins. Annu Rev Food Sci Technol. 2014; 5:351–372. https://www.ncbi.nlm.nih.gov/pubmed/24422587 | spa |
dc.relation.references | Liao Y, Peng Z, Chen L, Nüssler A, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food Chem Toxicol. 2018; 112:342–354. https://www.ncbi.nlm.nih.gov/pubmed/29331731 | spa |
dc.relation.references | Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016; 8(4):603–619. https://dx.doi.org/10.18632%2Faging.100934 | spa |
dc.relation.references | Gordeziani M, Adamia G, Khatisashvili G, Gigolashvili G. Programmed cell self-liquidation (apoptosis). Annals of Agrarian Science. 2017;15(1):148–154. https://www.sciencedirect.com/science/article/pii/S151218871630029X | spa |
dc.relation.references | Redza M, Averill D. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016; 1863(12):2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012 | spa |
dc.relation.references | Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 2010; 3(4):323–347. https://doi.org/10.3920/WMJ2010.1247 | spa |
dc.relation.references | Oshikata A, Takezawa, T. Development of an oxygenation culture method for activating the liver-specific functions of HepG2 cells utilizing a collagen vitrigel membrane chamber. Cytotechnology. 2015; 68(5):1801–1811. https://doi.org/10.1007/s10616-015-9934-1 | spa |
dc.relation.references | Pinton P, Oswald I. Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins. 2014; 6(5):1615-1643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052256/ | spa |
dc.relation.references | Juan A, Berrada H, Font G, Ruiz M. Evaluation of acute toxicity and genotoxicity of DON, 3-ADON and 15-ADON in HepG2 cells. Toxicology Letters. 2017; 280S: S254-S266. | spa |
dc.relation.references | Kupcsik L. Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. Mammalian Cell Viability. Methods Mol Biol. 2011; 740:13–19. https://doi.org/10.1007/978-1-61779-108-6_3 | spa |
dc.relation.references | Jaimes N, Salmen S, Colmenares M, Burgos A, Tamayo L, Mendoza V, et al. Efecto citotóxico de los compuestos de inclusión de paladio (II) en la beta-ciclodextrina. Biomédica. 2016; 36(4):603-611. https://doi.org/10.7705/biomedica.v36i4.2880 | spa |
dc.relation.references | Dinu D, Bodea G, Ceapa C, Munteanu M, Roming F, Serban A, et al. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon. 2011; 57(7-8):1023–1032. https://doi.org/10.1016/j.toxicon.2011.04.006 | spa |
dc.relation.references | Alassane I, Kolf M, Gauthier T, Abrami R, Abiola F, Oswald I. New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol. 2013; 272(1):191–198. https://doi.org/10.1016/j.taap.2013.05.023 | spa |
dc.relation.references | Fernández C, Elmo L, Waldner T, Ruiz M. Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food Chem Toxicol. 2018; 120:12–23. https://doi.org/10.1016/j.fct.2018.06.019 | spa |
dc.relation.references | Lei Y, Guanghui Z, Xi W, Yingting W, Xialu L, Fangfang Y, et al. Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Sci Rep. 2017; 7(2231):1-14. https://www.nature.com/articles/s41598-017-02568-5 | spa |
dc.relation.references | Mikami O, Yamaguchi H, Murata H, Nakajima Y, Miyazaki S. Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets. J Vet Sci. 2010; 11(2):107-113. https://dx.doi.org/10.4142%2Fjvs.2010.11.2.107 | spa |
dc.relation.references | Ma Y, Zhang A, Shi Z, He C, Ding J, Wang X, et al. A mitochondria-mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicol in Vitro. 2012; 26(3):414–420. https://doi.org/10.1016/j.tiv.2012.01.010 | spa |
dc.rights | Harold Duván Garzón-González, Nancy Jaimes-Mendez, Liliana Rojas-Contreras, Siham Salmen-Halabi, Manuel Alejandro Gil-Durán - 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://revistamvz.unicordoba.edu.co/article/view/e2080 | spa |
dc.subject | Fusarium spp | eng |
dc.subject | proliferation | eng |
dc.subject | toxicity | eng |
dc.subject | Fusarium spp | spa |
dc.subject | proliferación | spa |
dc.subject | toxicidad | spa |
dc.title | Efecto citotóxico de Deoxinivalenol sobre la proliferación de la línea celular HepG2 | spa |
dc.title.translated | Cytotoxic effect of Deoxynivalenol on the proliferation of the HepG2 cell line | eng |
dc.type | Artículo de revista | spa |
dc.type | Journal article | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |