Publicación: Sustituciones de aluminio y nitrógeno por oxígeno y manganeso en la monocapa nitruro de aluminio (ALN).
dc.audience | ||
dc.contributor.advisor | Casiano Jimenez, Gladys Rocio | |
dc.contributor.author | Gamboa Ruiz, William Alexander | |
dc.contributor.jury | Ortega López, César | |
dc.contributor.jury | Alcalá Varilla, Luis Arturo | |
dc.date.accessioned | 2025-01-31T14:06:28Z | |
dc.date.available | 2025-01-31T14:06:28Z | |
dc.date.issued | 2025-01-30 | |
dc.description.abstract | El trabajo estudia cómo la sustitución de aluminio (Al) por manganeso (Mn) y de nitrógeno (N) por oxígeno (O) afecta las propiedades de una monocapa de AlN (h-AlN) en una estructura hexagonal plana. Se realizan cálculos utilizando la Teoría del Funcional de la Densidad (DFT) para analizar las propiedades estructurales y energéticas de la monocapa prístina y dopada. Los resultados indican que las sustituciones son exotérmicas y termodinámicamente estables. En términos de propiedades electrónicas, la monocapa original de AlN es un semiconductor, pero al sustituir N por O se convierte en un material metálico sin propiedades magnéticas. Sin embargo, al reemplazar Al por Mn, la monocapa se convierte en un semimetálico con propiedades magnéticas, lo que podría ser útil para aplicaciones en espintrónica. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introducción | spa |
dc.description.tableofcontents | Marco Teórico | spa |
dc.description.tableofcontents | Fundamentación teórica | spa |
dc.description.tableofcontents | Aproximación adiabática (Born-Oppenheimer) | spa |
dc.description.tableofcontents | Enfoques químicos | spa |
dc.description.tableofcontents | Teoría funcional de la densidad (DFT) | spa |
dc.description.tableofcontents | Aproximación densidad local (LDA) | spa |
dc.description.tableofcontents | Aproximación gradiente generalizado (GGA) | spa |
dc.description.tableofcontents | Teoría de pseudopotenciales | spa |
dc.description.tableofcontents | Detalles computacionales | spa |
dc.description.tableofcontents | Análisis y resultados | spa |
dc.description.tableofcontents | Conclusiones | spa |
dc.description.tableofcontents | Referencias | spa |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8967 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | I. Vurgaftman, J. Meyer, L. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, *Journal of Applied Physics*, 89 (2001) 5815–5875. | |
dc.relation.references | F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices, *Nature*, 386 (1997) 351. | |
dc.relation.references | J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, Design of High-Efficiency Visible-Light Photocatalysts for Water Splitting: MoS2/AlN(GaN) Heterostructures, *The Journal of Physical Chemistry C*, 118 (2014) 17594–17599. | |
dc.relation.references | ] Y. Mei, D.J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, O.G. Schmidt, Fabrication, Self-Assembly, and Properties of Ultrathin AlN/GaN Porous Crystalline Nanomembranes: Tubes, Spirals, and Curved Sheets, *ACS Nano*, 3 (2009) 1663–1668. | |
dc.relation.references | C.-W. Zhang, First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons, *Journal of Applied Physics*, 111 (2012) 043702. | |
dc.relation.references | Q. Wu, Z. Hu, X. Wang, Y. Hu, Y. Tian, Y. Chen, A simple route to aligned AlN nanowires, *Diamond and Related Materials*, 13 (2004) 38–41. | |
dc.relation.references | Z. Zhou, J. Zhao, Y. Chen, P. von Ragué Schleyer, Z. Chen, Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors, *Nanotechnology*, 18 (2007) 424023. | |
dc.relation.references | D. Ehrentraut, Z. Sitar, *MRS Bulletin*, 34, 259 (2009). | |
dc.relation.references | R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, *J. Electrochem. Soc.*, 158, H530 (2011). | |
dc.relation.references | A. Kakanakova-Georgieva, R.R. Ciechonski, U. Forsberg, A. Lundskog, E. Janzén, *Cryst. Growth Design*, 9, 880 (2009). | |
dc.relation.references | T. Oto, R.G. Banal, K. Kataoka, M. Funato, Y. Kawakami, *Nat. Photon.*, 4, 767 (2010). | |
dc.relation.references | Y. Taniyasu, M. Kasu, T. Makimoto, *Nature*, 441, 325 (2006). | |
dc.relation.references | A. Khan, K. Balakrishnan, T. Katona, *Nat. Photon.*, 2, 77 (2008). | |
dc.relation.references | F. Nichele, S. Chesi, S. Hennel, A. Wittmann, C. Gerl, W. Wegscheider, D. Loss, T. Ihn, K. Ensslin, *Phys. Rev. Lett.*, 113 (2014) 046801. | |
dc.relation.references | S.G. Lu, Y.H. Lu, Z.K. Xu, K.W. Cheah, *J. Am. Ceram. Soc.*, 90 (2004) 4002. | |
dc.relation.references | M. Tchernycheva, A. Messanvi, A.L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F.H. Julien, J. Eymery, C. Durand, *Nano Lett.*, 14 (2014) 3515. | |
dc.relation.references | Y.B. Tang, X.H. Bo, J. Xu, Y.L. Cao, Z.H. Chen, H.S. Song, C.P. Liu, T.F. Hung, W.J. Zhang, H.M. Cheng, I. Bello, S.T. Lee, C.S. Lee, *ACS Nano*, 5 (2011) 3591. | |
dc.relation.references | J. Zhou, M. DeMiguel-Ramos, L. Garcia-Gancedo, E. Iborra, J. Olivares, H. Jin, J.K. Luo, A.S. Elhady, S.R. Dong, D.M. Wang, Y.Q. Fu, *Sens. Actuators, B*, 202 (2014) 984. | |
dc.relation.references | T. Xie, Y. Lin, G. Wu, X. Yuan, Z. Jiang, C. Ye, G. Meng, L. Zhang, AlN serrated nanoribbons synthesized by chloride assisted vapor–solid route, *Inorganic Chemistry Communications*, 7 (2004) 545–547. | |
dc.relation.references | P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias, S. Giamini, C. Grazianetti, D. Chiappe, A. Molle, M. Fanciulli, Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111), *Applied Physics Letters*, 103 (2013) 251605. | |
dc.relation.references | V. Mansurov, T. Malin, Y. Galitsyn, K. Zhuravlev, Graphene-like AlN layer formation on (111) Si surface by ammonia molecular beam epitaxy, *Journal of Crystal Growth*, 428 (2015) 93–97. | |
dc.relation.references | Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vilá, S.M. Eichfeld, J.D. Caldwell, X. Qin, Y.-C. Lin, P.A. DeSario, G. Stone, Two-dimensional gallium nitride realized via graphene encapsulation, *Nature Materials*, 15 (2016) 1166. | |
dc.relation.references | H. S¸ahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger and S. Ciraci, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 80, 155453. | |
dc.relation.references | C. Bacaksiz, H. Sahin, H. Ozaydin, S. Horzum, R.T. Senger, F.M. Peeters, Hexagonal AlN: Dimensional crossover-driven band-gap transition, *Physical Review B*, 91 (2015) 085430. | |
dc.relation.references | V.O. Özcelik, O.Ü. Aktürk, E. Durgun, S. Ciraci, Prediction of a two-dimensional crystalline structure of nitrogen atoms, *Physical Review B*, 92 (2015) 125420. | |
dc.relation.references | A. Onen, D. Kecik, E. Durgun, S. Ciraci, In-plane commensurate GaN/AlN junctions: Single-layer composite structures, single and multiple quantum wells and quantum dots, *Physical Review B*, 95 (2017) 155435. | |
dc.relation.references | D.C. Camacho-Mojica, F. López-Urías, Extended line defects in BN, GaN, and AlN semiconductor materials: Graphene-like structures, *Chemical Physics Letters*, 652 (2016) 73–78. | |
dc.relation.references | W. Tang, M. Sun, J. Yu, J.-P. Chou, Magnetism in non-metal atoms adsorbed graphene-like gallium nitride monolayers, *Applied Surface Science*, 427 (2018) 609–612. | |
dc.relation.references | F. Ersan, A. Akcay, G. Gökoğlu, E. Aktürk, Interactions of h-AlN monolayer with platinum, oxygen, and their clusters, *Chemical Physics*, 455 (2015) 73–80. | |
dc.relation.references | Y. Peng, C. Xia, H. Zhang, T. Wang, S. Wei, Y. Jia, Tunable electronic structures of p-type Mg doping in AlN nanosheet, *Journal of Applied Physics*, 116 (2014) 044306. | |
dc.relation.references | C. Xia, Y. Peng, S. Wei, Y. Jia, The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet, *Acta Materialia*, 61 (2013) 7720–7725. | |
dc.relation.references | T. Jungwirth, J. Sinova, J. Masek, J. Kucera, A. H. MacDonald, *Rev. Mod. Phys.*, 78(3), 809 (2006). | |
dc.relation.references | J. Liu, M. Hanson, J. Peters, and B. W. Wessels, *ACS Appl. Mater. Interfaces*, 7(43), 24159–24167 (2015). | |
dc.relation.references | R. Singh, *J. Magn. Magn. Mater.*, 322(3), 290–297 (2010). | |
dc.relation.references | R. Adhikari, W. Stefanowicz, B. Faina, G. Capuzzo, M. Sawicki, T. Dietl, and A. Bonanni, *Phys. Rev. B*, 91(20), 205204 (2015). | |
dc.relation.references | T. Dietl and H. Ohno, *Rev. Mod. Phys.*, 86(1), 187 (2014). | |
dc.relation.references | Z. Ma, M. E. Jamer, E. Panaitescu, D. Heiman, and L. Menon, *J. Magn. Magn. Mater.*, 394, 155–159 (2015). | |
dc.relation.references | N. G. Szwacki, J. A. Majewski, and T. Dietl, *Phys. Rev. B*, 91(18), 184409 (2015). | |
dc.relation.references | M. Boutaleb, B. Doumi, A. Sayede, A. Tadjer, and A. Mokaddem, *J. Supercond. Nov. Magn.*, 28(1), 143–150 (2015). | |
dc.relation.references | Z. Zhang, Z. Geng, D. Cai, T. Pan, Y. Chen, L. Dong, and T. Zhou, *Physica E*, 65, 24–29 (2015). | |
dc.relation.references | Z.-F. Zhang, T.-G. Zhou, H.-Y. Zhao, and X.-L. Wei, *Chin. Phys. B*, 23(1), 016801 (2014). | |
dc.relation.references | C. Zhang, *J. Appl. Phys.*, 111(4), 043702 (2012). | |
dc.relation.references | M. Lan, G. Xiang, and X. Zhang, *J. Appl. Phys.*, 116(8), 083912 (2014). | |
dc.relation.references | K. Zberecki, *J. Supercond. Nov. Magn.*, 25(7), 2533–2537 (2012). | |
dc.relation.references | C. Shi, H. Qin, Y. Zhang, J. Hu, and L. Ju, *J. Appl. Phys.*, 115(5), 053907 (2014). | |
dc.relation.references | G. X. Chen, D. D. Wang, J. Q. Wen, A. Yang, and J. M. Zhang, *Int. J. Quantum Chem.*, 116, 1000 (2016). | |
dc.relation.references | Y. Lu, X. Zuo, M. Feng, and T. Zhou, *J. Appl. Phys.*, 113(17), 17C304 (2013). | |
dc.relation.references | H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, *Phys. Rev. B*, 80, 155453 (2009). | |
dc.relation.references | Max Born; J. Robert Oppenheimer (1927). “Zur Quantentheorie der Molekeln” [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002. | |
dc.relation.references | Hartree, D. R. (1928). “The Wave Mechanics of an Atom with a NonCoulomb Central Field. Part I. Theory and Methods”. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISS N 0305-0041. S2CID 122077124 | |
dc.relation.references | Slater, J. C. (1928). “The Self Consistent Field and the Structure of Atoms”. Phys. Rev. 32 (3): 339– | |
dc.relation.references | Slater, J. C. (1930). “Note on Hartree’s Method”. Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2 | |
dc.relation.references | Hohenberg, P.; Kohn, W. (1964). “Inhomogeneous Electron Gas”. Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864. | |
dc.relation.references | Kohn, W.; Sham, L. J. (1965). “Self-Consistent Equations Including Exchange and Correlation Effects”. Physical Review. 140 (4ª): A1133. | |
dc.relation.references | Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physica review,136(3B), B864. | |
dc.relation.references | J. Kohanoff and N.I. Gidopoulos. Density functional theory: Basics, new trends and applications. Handbook of Molecular Physics and Quantum Chemistry, 2,part 5(26):532–568, October 2003.https://scinapse.io/papers/1570346971. 12, 13 | |
dc.relation.references | Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865 | |
dc.relation.references | Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN. | |
dc.relation.references | Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497. | |
dc.relation.references | Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895. | |
dc.relation.references | Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991. | |
dc.relation.references | Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993. | |
dc.relation.references | QUANTUM ESPRESSO: a modular and open-source software project for quantum. Giannozzi, P., y otros. 39, 2009, Journal of Physics: Condensed Matter, Vol. 21, pág. 395502. | |
dc.relation.references | ] Electronic energy minimisation with ultrasoft pseudopotentials. Hasnip, P.J. y Pickard, C.J. 1, 2006, Computer Physics Communications, Vol. 174. 0010-4655. | |
dc.relation.references | Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The Intrinsic Ferromagnetism in a MnO2 Monolayer. The Journal of Physical Chemistry Letters, 4(20), 3382–3386. | |
dc.relation.references | Methfessel, M., & Paxton, A. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review, 40(6), 3616–3621. | |
dc.relation.references | .F. de Almeida Junior, F. de Brito Mota, C.M.C. de Castilho, A. Kakanakova-Georgieva, and G.K. Gueorguiev. Defects in hexagonal-AlN sheets by first-principles calculations. | |
dc.relation.references | Y. Kadioglu, F.Ersan, D. Kecik, O. U. Akturk, E. Akturk and S. Ciraci, Phys. Chem. Chem. Phys., 2018 | |
dc.relation.references | Perez Kevin, Ortega, C.(2024) Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal, 15-20. | |
dc.relation.references | Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 109231. doi:10.1016/j.vacuum.2020.109231 | |
dc.relation.references | F. Ersan, A. Akcay, G. Gkoglu, E. Akturk. Interactions of h-AlN monolayer with platinum, oxygen, and their clusters. Chemical Physics 455 (2015) 73–80. | |
dc.relation.references | Min Wang, Hui Li, Jie Ren, Leyuan Gao, Tianlong Feng, Zhi Hao, Yunliang Yue, Tiege Zhou, & Denglu Hou (2021). Ab initio study on electronic structure and magnetic properties of AlN and BP monolayers with Ti doping. Superlattices and Microstructures, 158, 107010. | |
dc.relation.references | Fengguang Shen, Min Wang, Jia Su, Jing Lu, Wei Liu, Jie Ren, Xiuqing Zhang, Yunliang Yue, & Tiege Zhou (2024). Ab initio study on electronic structure and magnetism of AlN and InSe monolayer. Physica B: Condensed Matter, 674, 415553. | |
dc.relation.references | Woldesenbet, M.S., Debelo, N.G. & Woldemariam, M.M. The effect of Mn-doping on structural, electronic, ferromagnetic, and optical properties of monolayer-WSe2 using first-principles calculations. Eur. Phys. J. B 97, 104 (2024). https://doi.org/10.1140/epjb/s10051-024-00748-7. | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Monolayer | |
dc.subject.keywords | Magnetization | |
dc.subject.keywords | Mybridization | |
dc.subject.keywords | Charge | |
dc.subject.keywords | Bandgap | |
dc.subject.proposal | Monocapa | |
dc.subject.proposal | Magnetizacion | |
dc.subject.proposal | Hibridacion | |
dc.subject.proposal | Carga | |
dc.subject.proposal | Bandgap | |
dc.title | Sustituciones de aluminio y nitrógeno por oxígeno y manganeso en la monocapa nitruro de aluminio (ALN). | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: