Publicación: Caracterización de marcos asociados a un operador acotado en espacios de Hilbert
dc.contributor.advisor | Pastrana, Juan Carlos | |
dc.contributor.advisor | Villar Ferrer, Osmin | |
dc.contributor.author | Monterrosa Castillo, Gleimer Enrique | |
dc.contributor.jury | Pérez Reyes, Edgardo | |
dc.contributor.jury | Lloreda Zuñiga, Jimmy | |
dc.contributor.subjectmatterexpert | Ferrer Villar, Osmin | |
dc.date.accessioned | 2025-01-16T16:51:38Z | |
dc.date.available | 2025-01-16T16:51:38Z | |
dc.date.issued | 2024-12-20 | |
dc.description.abstract | Se estudian algunos tipos de marcos asociados a ciertos operadores y ver las principales propiedades que se preservan de un marco, además de caracterizar los operadores de síntesis y marcos entre otros. Más aún el objetivo principal de estudiar marcos es reconstruir cada elemento de un espacio de Hilbert mediante una secuencia de imágenes de un operador lineal acotado. | spa |
dc.description.abstract | The study focuses on certain types of frames associated with specific operators and examines the main properties that are preserved in a frame. Additionally, it aims to characterize synthesis operators and frames, among others. Furthermore, the main objective of studying frames is to reconstruct each element of a Hilbert space through a sequence of images of a bounded linear operator. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Matemático(a) | |
dc.description.modality | Monografías | |
dc.description.tableofcontents | Fundamentos de Análisis Funcional (página 2) | spa |
dc.description.tableofcontents | Operadores lineales en espacios de Hilbert (página 5) | spa |
dc.description.tableofcontents | Marcos en espacios de Hilbert (página 12) | spa |
dc.description.tableofcontents | Sucesiones de Bessel en espacios de Hilbert (página 12) | spa |
dc.description.tableofcontents | Marcos en espacios de Hilbert (página 14) | spa |
dc.description.tableofcontents | Marcos duales (página 24) | spa |
dc.description.tableofcontents | Marcos asociados a un operador en espacios de Hilbert (página 28) | spa |
dc.description.tableofcontents | Sistemas atómicos (página 28) | spa |
dc.description.tableofcontents | Algunos tipos de marcos asociados a un operador (página 28) | spa |
dc.description.tableofcontents | Bibliografía (página 28) | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8861 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Matemática | |
dc.relation.references | Aliprantis C, Burkinshaw O. Principles of real analysis. Gulf. Prof. Publis. (1998). | |
dc.relation.references | Bartle, R., Sherbert, D. Introduction to real analysis. New York: Wiley, 2000. | |
dc.relation.references | Casazza P, Deguang H, Larson D. Frames for Banach spaces, Contemporary Math. (1999) 149-182. | |
dc.relation.references | Christensen O. An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, (2003). | |
dc.relation.references | Duffin R, Schaeffer A. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, (1952), 341-366. | |
dc.relation.references | Douglas R. On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17, (1966), 413-415. | |
dc.relation.references | Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions. J. Math. Phys. 27, (1986), 1271-1283. | |
dc.relation.references | Esmeral K, Ferrer O, Wagner E, Frames in Krein spaces arising from a non regular W-metric, Banach J. Math. Anal. 9, (2015), 1-16. | |
dc.relation.references | Ferrer O, Domínguez J, Arroyo E. Frames associated with an operator in spaces with an indefinite metric. AIMS Math. (2023), vol. 8, no 7, pág. 15712-15722. | |
dc.relation.references | Ferrer O, Arroyo E, Naranjo J. Sistemas atómicos en espacios de Krein. Turkish J. Math. (2023), vol. 47, no 5, p. 1335-1349. | |
dc.relation.references | Feichtinger H, Werther T. Atomic systems for subspaces, Proc. SampTA, (2001): 163-165. | |
dc.relation.references | Găvruţa L. Frames for operator, Appl. Comput. Harmon. Anal. 32, (2012), 139- 144. | |
dc.relation.references | Gröchenig K. Foundations of time-frequency analysis. Birkhäuser, Boston, (2001). | |
dc.relation.references | Harro H. Functional Analysis Wiley, (1982). | |
dc.relation.references | Kreyszig E. Introductory functional analysis with applications, J. Wiley & Sons. Inc. (1978). | |
dc.relation.references | Kovacevic J, Chebira A. An introduction to frames, Found. Tren. Sign. Proc. 2 (2008) (1) 1-94. | |
dc.relation.references | Mohammed A, Samir K, Bounader N. K-frames for Krein spaces. Ann. Funct. Anal. 14, (2023), 1-20. | |
dc.relation.references | Marina H, Matan G, Dustin G, Ram Z. Asymptotic Frame Theory for Analog Coding. Found. Tren. Comm. Inf. Theo. (2021) vol. 18, no. 4, pp. 526-645. | |
dc.relation.references | Paulo S, Diniz, Johan A, Suykens, Rama C. y Sergios T. Frames in Signal Pro cessing. Aca. Press. Lib. Sig. Proc. (2014) Vol. 1 Pg. 561-5 | |
dc.relation.references | Rajupillai k, Palaniammals. Frame Theory and Application in Digital Image Pro cessing. Int. J. Lat. Tren. Engin. Tech. (2015.) Vol. 6 6. | |
dc.relation.references | Rudin, Walter. Análisis funcional. Reverté, 2012. | |
dc.relation.references | Sitati I, Musundi S, Nzimbi B, Dennis K. A Note On Quasi-Similarity of Ope rators in Hilbert Spaces. Res. Conf. hel. Main. Cam. from 28 th–30th October, (2015) p. 356. | |
dc.relation.references | Vera A, Alegría P. Un curso de análisis funcional. (1997). | |
dc.relation.references | Xiao X, Zhu Y, Găvruţa L. Some properties of K-frames in Hilbert spaces. Results Math. 63, (2013) no 3-4, p. 1243-1255. | |
dc.relation.references | Yosida K, Functional analysis, Sprin. Verl. (1965). | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Orthonormal basis | eng |
dc.subject.keywords | Hilbert space | eng |
dc.subject.keywords | Frames | eng |
dc.subject.keywords | Atomic systems | eng |
dc.subject.proposal | Base ortonormal | spa |
dc.subject.proposal | Espacio de Hilbert | spa |
dc.subject.proposal | Marcos | spa |
dc.subject.proposal | Sistemas atómicos | spa |
dc.title | Caracterización de marcos asociados a un operador acotado en espacios de Hilbert | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: