Publicación: Evaluación de la eficiencia de la energía de equipos de enfriamiento evaporativos en diferentes condiciones climáticas
dc.audience | ||
dc.contributor.advisor | Jesús David Rhenals Julio | spa |
dc.contributor.author | Cardona, Iván | |
dc.contributor.author | Parejo, Robert | |
dc.date.accessioned | 2022-03-22T15:34:08Z | |
dc.date.available | 2022-03-22T15:34:08Z | |
dc.date.issued | 2021-03-21 | |
dc.description.abstract | In this research, a study was developed of the effect of climatic conditions on the performance of evaporative equipment located in the city of Montería, using the EES software in which the various modeling of ambient temperature, relative humidity and air velocity were carried out. air. The development of this strategy begins with the characterization of available evaporative cooling equipment, as a second instance the identification of the climatic variables that influence the system, the third section is the selection of an equipment based on the environmental conditions, the fourth section is the Carrying out the simulation of the equipment varying these conditions and finally giving the conclusions and recommendations for the system. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | En la presente investigación se desarrolló un estudio de la afectación de las condiciones climáticas en el rendimiento de equipos evaporativos situados en la ciudad de Montería, utilizando el software EES en el cual se realizaron las diversas modelaciones de la temperatura ambiente, humedad relativa y velocidad del aire. El desarrollo de esta estrategia inicia con la caracterización de equipos de enfriamiento evaporativo disponibles, como segunda instancia la identificación de las variables climáticas que influyen en el sistema, tercera sección es la selección de un equipo en base a las condiciones ambientales, cuarta sección es la realización de la simulación del equipo variando dichas condiciones y por último dar las conclusiones y recomendaciones para el sistema. | |
dc.description.tableofcontents | AGRADECIMIENTOS ................................................................................................................. 2 | spa |
dc.description.tableofcontents | RESUMEN .................................................................................................................................... 5 | spa |
dc.description.tableofcontents | INTRODUCCIÓN ......................................................................................................................... 6 | spa |
dc.description.tableofcontents | OBJETIVOS .................................................................................................................................. 7 | spa |
dc.description.tableofcontents | DESARROLLO DEL TEMA ......................................................................................................... 8 | spa |
dc.description.tableofcontents | 1. Equipos evaporativos.......................................................................................................... 8 | spa |
dc.description.tableofcontents | 1.1. Eficiencia energética en HVAC................................................................................... 8 | spa |
dc.description.tableofcontents | 2. Características de Montería................................................................................................. 9 | spa |
dc.description.tableofcontents | 2.1. Condiciones climáticas ............................................................................................... 9 | spa |
dc.description.tableofcontents | 2.2. Consumo de energía.................................................................................................. 10 | spa |
dc.description.tableofcontents | ESTADO DEL ARTE .................................................................................................................. 11 | spa |
dc.description.tableofcontents | METODOLOGÍA ........................................................................................................................ 13 | spa |
dc.description.tableofcontents | 3. Influencia de las condiciones climáticas ............................................................................ 13 | spa |
dc.description.tableofcontents | 4. Condiciones experimentales ............................................................................................. 14 | spa |
dc.description.tableofcontents | 5. Modelo matemático .......................................................................................................... 16 | spa |
dc.description.tableofcontents | RESULTADOS ........................................................................................................................... 20 | spa |
dc.description.tableofcontents | CONCLUSIONES ....................................................................................................................... 25 | spa |
dc.description.tableofcontents | BIBLIOGRAFIA ......................................................................................................................... 26 | spa |
dc.description.tableofcontents | ANEXOS..................................................................................................................................... 30 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/5014 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Evaporative cooling | spa |
dc.subject.keywords | Environmental conditions | spa |
dc.subject.keywords | EES software | spa |
dc.subject.keywords | Energy improvements | spa |
dc.subject.proposal | Enfriamiento evaporativo | spa |
dc.subject.proposal | Condiciones ambientales | spa |
dc.subject.proposal | Software EES | spa |
dc.subject.proposal | Mejoras energeticas | spa |
dc.title | Evaluación de la eficiencia de la energía de equipos de enfriamiento evaporativos en diferentes condiciones climáticas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | eng |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | eng |
dc.type.version | info:eu-repo/semantics/submittedVersion | eng |
dcterms.references | Abdullah, A., Said, I. Bin, & Ossen, D. R. (2019). A sustainable bio-inspired cooling unit for hot arid regions: Integrated evaporative cooling system in wind tower. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.114201 | spa |
dcterms.references | Adam, A., Han, D., He, W., & Amidpour, M. (2021). Analysis of indirect evaporative cooler performance under various heat and mass exchanger dimensions and flow parameters. International Journal of Heat and Mass Transfer, 176, 121299. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121299 | spa |
dcterms.references | Al Touma, A., & Ouahrani, D. (2019). Evaporatively-cooled façade integrated with photovoltaic thermal panel applied in hot and humid climates. Energy. https://doi.org/10.1016/j.energy.2019.01.129 | spa |
dcterms.references | AviNew. (2021). PERIcool, Panel evaporativo de Termotecnica Pericoli - aviNews, la revista global de avicultura. Revista Gloval. https://avicultura.info/producto/pericool-panel-evaporativo-termotecnica-pericoli/# | spa |
dcterms.references | Bac, U., Alaloosi, K. A. M. S., & Turhan, C. (2021). A comprehensive evaluation of the most suitable HVAC system for an industrial building by using a hybrid building energy simulation and multi criteria decision making framework. Journal of Building Engineering, 37, 102153. https://doi.org/10.1016/j.jobe.2021.102153 | spa |
dcterms.references | Bishoyi, D., & Sudhakar, K. (2017). Experimental performance of a direct evaporative cooler in composite climate of India. Energy and Buildings, 153, 190–200. https://doi.org/10.1016/j.enbuild.2017.08.014 | spa |
dcterms.references | Chaouch, H., Çeken, C., & Arı, S. (2021). Energy management of HVAC Systems in smart buildings by using fuzzy logic and M2M communication. Journal of Building Engineering, 44, 102606. https://doi.org/10.1016/j.jobe.2021.102606 | spa |
dcterms.references | for hot and dry climatic conditions Chauhan, S. S., & Rajput, S. P. S. (2015). Thermodynamic analysis of the evaporative-vapour compression based combined air conditioning system. Journal of Building Engineering, 4, 200–208. | spa |
dcterms.references | https://doi.org/10.1016/j.jobe.2015.09.010 El Loubani, M., Ghaddar, N., Ghali, K., & Itani, M. (2021). Hybrid cooling system integrating PCM-desiccant dehumidification and personal evaporative cooling for hot and humid climates. Journal of Building Engin | spa |
dcterms.references | Estrategia Energética Local de MONTERÍA. (2019). Ghosh, A., & Bhattacharya, J. (2021). A solar regenerated liquid desiccant evaporative cooling system for office building application in hot and humid climate. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2020.100804 | spa |
dcterms.references | Guan, L., Bennett, M., & Bell, J. (2015). Evaluating the potential use of direct evaporative cooling in Australia. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2015.09.020 | spa |
dcterms.references | Harby, K., & Al-Amri, F. (2019). An investigation on energy savings of a split air-conditioning using different commercial cooling pad thicknesses and climatic conditions. Energy, 182, 321–336. https://doi.org/10.1016/j.energy.2019.06.031 | eng |
dcterms.references | IDEAM, A. al M. de A. y D. S. (2021, May 23). ACTOS ADMINISTRATIVOS - ACREDITACIÓN - IDEAM. ACREDITACION DE LABORATORIOS AMBIENTALES EN COLOMBIA. http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/acreditacion | spa |
dcterms.references | calidad-ambiental/acreditacion Katramiz, E., Al Jebaei, H., Alotaibi, S., Chakroun, W., Ghaddar, N., & Ghali, K. (2020). Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system. Energy. https://doi.org/10.1016/j.energy.2020.119045 | spa |
dcterms.references | Li, W., Shi, W., Wang, J., Li, Y., & Lu, J. (2021). Experimental study of a novel household exhaust air heat pump enhanced by indirect evaporative cooling. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2021.110808 | eng |
dcterms.references | Liu, Q., Guo, C., Ma, X., You, Y., & Li, Y. (2020). Experimental study on total heat transfer efficiency evaluation of an indirect evaporative cooler. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2020.115287 | eng |
dcterms.references | Lv, J., Xu, H., Zhu, M., Dai, Y., Liu, H., & Li, Z. (2021). The performance and model of porous materials in the indirect evaporative cooling system: A review. Journal of Building Engineering, 41(May), 102741. https://doi.org/10.1016/j.jobe.2021.102741 | eng |
dcterms.references | Ma, Y., & Guan, L. (2015). Performance Analysis of Solar Desiccant-Evaporative Cooling for a Commercial Building under Different Australian Climates. Procedia Engineering. https://doi.org/10.1016/j.proeng.2015.08.1024 | eng |
dcterms.references | Molano, J. (2005). Sociedad geográfica de colombia academia de ciencias geográficas calendario climatológico aeronáutico colombiano. In Sociedad geografica de Colombia (Vol. 15). www.sogeocol.edu.co | spa |
dcterms.references | Porumb, B., BǍlan, M., & Porumb, R. (2016). Potential of Indirect Evaporative Cooling to Reduce the Energy Consumption in Fresh Air Conditioning Applications. Energy Procedia, 85, 433–441. https://doi.org/10.1016/j.egypro.2015.12.224 | eng |
dcterms.references | Porumb, B., Ungureşan, P., Tutunaru, L. F., Şerban, A., & BǍlan, M. (2016). A Review of Indirect Evaporative Cooling Operating Conditions and Performances. Energy Procedia. https://doi.org/10.1016/j.egypro.2015.12.226 | eng |
dcterms.references | Roca Villanueva, B., Beltrán Salvador, M., & Gómez Huelgas, R. (2019). Change climate and health. Revista Clinica Espanola, 219(5), 260–265. https://doi.org/10.1016/j.rce.2019.01.004 | spa |
dcterms.references | Sajjad, U., Abbas, N., Hamid, K., Abbas, S., Hussain, I., Ammar, S. M., Sultan, M., Ali, H. M., Hussain, M., Rehman, T. ur, & Wang, C. C. (2021). A review of recent advances in indirect evaporative cooling technology. International Communications in Heat and Mass Transfer. https://doi.org/10.1016/j.icheatmasstransfer.2021.105140 | spa |
dcterms.references | Shiva, kumar, Salins, S. S., Reddy, S. V. K., & Nair, P. S. (2021). Comparative performance analysis of a static & dynamic evaporative cooling pads for varied | spa |
dcterms.references | climatic conditions. Energy, 121136. https://doi.org/10.1016/j.energy.2021.121136 TuTiempo Network, S. . (2021, May 18). Clima en Monteria / Los Garzones - Históricos el tiempo en 2019. Clima Mnteria/ Los Garzones. https://www.tutiempo.net/clima/2019/ws-800630.html | spa |
dcterms.references | Venkateswara Rao, V., & Datta, S. P. (2020). A feasibility assessment of single to multi/hybrid evaporative coolers for building air-conditioning across diverse climates in India. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.114813 | eng |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | eng |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | eng |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: