Publicación:
Estudio molecular de especies de Borrelia y Coxiella en garrapatas Ixodidae del departamento del Atlántico

dc.audience
dc.contributor.advisorLópez Mejia, Yesica
dc.contributor.advisorBadillo Viloria, María Auxiliadora
dc.contributor.authorRosa Jaramillo, Steffania De la
dc.contributor.juryContreras Cogollo, Verónica
dc.contributor.juryMiranda, Jorge
dc.date.accessioned2024-01-31T14:54:12Z
dc.date.available2026-12-26
dc.date.available2024-01-31T14:54:12Z
dc.date.issued2024-01-30
dc.description.abstractLas garrapatas son ectoparásitos hematófagos que infestan a la mayoría de los vertebrados. Clasificadas en tres familias: Argasidae (garrapatas blandas), Ixodidae (garrapatas duras). Algunas especies de la familia Ixodidae son vectores de diversos patógenos, siendo una preocupación para la salud humana y animal. Dentro de las principales bacterias zoonóticas transmitidas por garrapatas se encuentras especies de Borrelia sp, Coxiella sp., Rickettsia rickettsii, Anaplasma phagocitophylum, Ehrlichia chaffeensis, entre otras. En Colombia se han identificado 58 especies de garrapatas; 43 de la familia Ixodidae) entre las que se resaltan Rhipicephalus microplus, Rhipicephalus sanguineus, Amblyomma complejo cajennense, Amblyomma dissimile, Dermacentor nitens, entre otros. El conocimiento sobre las especies de Borrelia y Coxiella que circulan en garrapatas duras en el departamento del Atlántico, es crucial, para evaluar el riesgo de infecciones e identificar nuevas especies. Objetivo. Estudiar la distribución molecular de especies de Borrelia y Coxiella en garrapatas Ixodidae recolectadas de animales domésticos, silvestres y de vida libre en el departamento del Atlántico, Colombia. Materiales y métodos. Se realizó un estudio de corte transversal descriptivo a partir de 3045 garrapatas. Las muestras fueron recolectadas entre enero de 2021 a noviembre de 2022 en 18 municipios de las cinco subregiones del departamento del Atlántico, Colombia. Las garrapatas se identificaron a nivel de especie mediante claves morfológicas y se agruparon en 509 grupos. Los grupos de garrapatas se maceraron y se empleó 200μl del macerado para la extracción. La extracción de ADN se llevó a cabo utilizando el kit comercial GeneJET Genomic DNA Purification Kit (Thermo Scientific, Waltham, Massachusetts, EE. UU). Todos los grupos se analizaron para detectar la presencia de Borrelia spp. y Coxiella sp. mediante una Reacción en Cadena de la Polimerasa en tiempo real (qPCR) utilizando cebadores forward Bor16S3F y reverse Bor16S3R y una sonda Probe Bor16S3P dirigidos al gen 16S rRNA para especies de Borrelia y cebadores forward Trans-1F e reverse Trans-2R y una sonda Probe Coxiella sp. TM ([6FAM]) dirigidos a la secuencia de inserción IS1111 para Coxiella. Las muestras con punto de corte Cq <33 se sometieron a PCR anidadas y convencionales semianidadas para amplificar fragmentos de los genes 16S rRNA y flaB para Borrelia sp. Los fragmentos de secuencias se ensamblaron empleando el software MEGAX y los análisis filogenéticos se realizaron con IQ-TREE2 version 2.2.2.6. Resultados. Las garrapatas fueron identificadas morfológicamente como Amblyomma dissimile (5,02%), Amblyomma patinoi (0,39%), Amblyomma sp. (0,09%), Dermacentor nitens (35,9 %), Rhipicephalus microplus (51,2%), Rhipicephalus sanguineus sensu lato (7,4%). Se confirmó la identidad de Amblyomma patinoi en el departamento del Atlántico. Un total de 38 grupos (7,5%; IC95% 5.3-10.1; p= <0,001) analizados resultaron positivos para Borrelia sp. Los grupos analizados para la secuencia de inserción IS1111 de Coxiella sp. ninguno resultó positivo. El análisis BlastN de los fragmentos de los genes 16S rRNA y flaB mostro que las secuencias compartían similitud entre un 98,87 y 100% con Borrelia theileri y del 99.52% con Borrelia sp. depositada en GenBank. Los análisis filogenéticos por el método de máxima verosimilitud del gen 16S rRNA mostraron que la mayoría de las secuencias de Borrelia spp. se agrupaban a con secuencia de Borrelia theileri, y una secuencia de Borrelia sp. detectada en Amblyomma dissimile se agrupaba al clado de Borrelia asociado a reptiles (REP). Conclusiones: Los resultados filogenéticos muestran la distribución geográfica de B. theileri y Borrelia sp. asociada a reptiles recolectadas de animales domésticos, vida silvestre y garrapatas de vida libre en las cinco subregiones del departamento. La frecuencia de Borrelia theileri y su distribución en las cinco subregiones del departamento del Atlántico, sugiriendo que existe un riesgo potencial de borreliosis animal en estas áreas. Estos hallazgos son el primer informe sobre la presencia de Borrelia sp. en Amblyomma dissimile de garrapatas de reptiles en Colombia que se suman a la distribución geográfica de Borrelia spp. a América.spa
dc.description.abstractTicks are hematophagous ectoparasites that infest most vertebrates. They are classified into three families: Argasidae (soft ticks), and Ixodidae (hard ticks). Some species of the Ixodidae family are vectors of various pathogens, being a concern for human and animal health. Among the main zoonotic bacteria transmitted by ticks are species of Borrelia sp., Coxiella sp., Rickettsia rickettsii, Anaplasma phagocitophylum, and Ehrlichia chaffeensis, among others. In Colombia, 58 species of ticks have been identified; 43 of the family Ixodidae) among which Rhipicephalus microplus, Rhipicephalus sanguineus, Amblyomma complejo cajennense, Amblyomma dissimile, Dermacentor nitens, among others, stand out. Knowledge about the species of Borrelia and Coxiella that circulate in hard ticks in the Department of Atlántico is crucial to assessing the risk of infections and identifying new species. Objective. To study the molecular distribution of Borrelia and Coxiella species in Ixodidae ticks collected from domestic, wild, and free-living animals in the department of Atlántico, Colombia. Materials and methods. A descriptive cross-sectional study was conducted using 3045 ticks. The samples were collected between January 2021 and November 2022 in 18 municipalities in the five subregions of the department of Atlántico, Colombia. Ticks were identified at the species level by morphological cues and grouped into 509 pooles. The pooles of ticks were macerated and 200μl of the macerate was used for extraction. DNA extraction was performed using the commercial GeneJET Genomic DNA Purification Kit (Thermo Scientific, Waltham, Massachusetts, USA). All pooles were tested for the presence of Borrelia sp. and Coxiella sp. by a real-time Polymerase Chain Reaction (qPCR) using Bor16S3F forward and Bor16S3R forward primers and a Bor16S3P Probe targeting the 16S rRNA gene for Borrelia species and Trans-1F and reverse Trans-2R forward primers and a Coxiella Probesp. TM ([6FAM]) targeting the IS1111 insertion sequence for Coxiella. Samples with Cq <33 cut-off point were subjected to nested and conventional semi-nested PCR to amplify fragments of the 16S rRNA and flaB genes for Borrelia sp. Sequence fragments were assembled using MEGAX software and phylogenetic analyses were performed using IQ-TREE2 version 2.2.2.6. Results. Ticks were morphologically identified as Amblyomma dissimile (5.02%), Amblyomma patinoi (0.39%), Amblyomma sp. (0.09%), Dermacentor nitens (35.9%), Rhipicephalus microplus (51.2%), Rhipicephalus sanguineus (7.4%). The identity of Amblyomma patinoi was confirmed in the Department of Atlantic. A total of 38 pooles (7.5%; 95% CI 5.3-10.1; p= <0.001) tested positive for Borrelia sp. None of the pooles tested for the IS1111 insertion sequence of Coxiella sp. were positive. BlastN analysis of the fragments of the 16S rRNA and flaB genes showed that the sequences shared 98.87 to 100% similarity with Borrelia theileri and 99.52% with Borrelia sp. deposited in GenBank. Phylogenetic analyses by the maximum likelihood method of the 16S rRNA gene showed that most of the sequences of Borrelia spp. were grouped with a sequence of Borrelia theileri, and a sequence of Borrelia sp. detected in Amblyomma dissimile was grouped with the reptile-associated clade of Borrelia (REP). Conclusions: The phylogenetic results show the geographic distribution of B. theileri and Borrelia sp. associated with reptiles collected from domestic animals, wildlife, and free-living ticks in the five subregions of the department. The frequency of Borrelia theileri and its distribution in the five subregions of the Department of Atlantic, suggests that there is a potential risk of animal borreliosis in these areas. These findings are the first report on the presence of Borrelia sp. in Amblyomma dissimile from reptile ticks in Colombia that add to the geographic distribution of Borrelia spp. to the Americas.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Microbiología Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents2 INTRODUCCIÓN 14spa
dc.description.tableofcontents3. OBJETIVOS 16spa
dc.description.tableofcontents3.1. OBJETIVO GENERAL 16spa
dc.description.tableofcontents3.2. OBJETIVOS ESPECIFICOS 16spa
dc.description.tableofcontents4. ESTADO DEL ARTE 17spa
dc.description.tableofcontents4.1. Garrapatas: aspectos generales 17spa
dc.description.tableofcontents4.1.1. Clasificación Taxonómica 17spa
dc.description.tableofcontents4.1.2. Morfología 18spa
dc.description.tableofcontents4.1.3. Ciclo de vida 18spa
dc.description.tableofcontents4.1.4. Ecología 20spa
dc.description.tableofcontents4.1.5. Implicaciones en la salud humana y animal 22spa
dc.description.tableofcontents4.2. Género Borrelia 23spa
dc.description.tableofcontents4.2.1. Generalidades 24spa
dc.description.tableofcontents4.2.2. Estructura y organización del genoma de Borrelia. 24spa
dc.description.tableofcontents4.2.3. Patogénesis y Ciclo de Vida 27spa
dc.description.tableofcontents4.2.4. Epidemiología y distribución geográfica 28spa
dc.description.tableofcontents4.3. Coxiella 31spa
dc.description.tableofcontents4.3.1. Generalidades 31spa
dc.description.tableofcontents4.3.2. Estructura y organización del genoma de Coxiella. 32spa
dc.description.tableofcontents4.3.3. Patogénesis y ciclos de vida 34spa
dc.description.tableofcontents4.3.4. Epidemiología y distribución geográfica. 34spa
dc.description.tableofcontents5. MÉTODOS 37spa
dc.description.tableofcontents5.2. Área de estudio 37spa
dc.description.tableofcontents5.3. Población de estudio y tamaño de muestra. 37spa
dc.description.tableofcontents5.4. Identificación morfológica de garrapatas 39spa
dc.description.tableofcontents5.5. Detección molecular de Borrelia sp. Por qPCR. 39spa
dc.description.tableofcontents5.6. Análisis filogenético de secuencias 41spa
dc.description.tableofcontents5.7. Implementación de Nextstrain para Borrelia. 41spa
dc.description.tableofcontents5.8. Tratamiento estadístico de datos 41spa
dc.description.tableofcontents5.9. Consideraciones éticas. 42spa
dc.description.tableofcontents6. RESULTADOS 43spa
dc.description.tableofcontents6.1. Garrapatas identificadas en el área de estudio. 43spa
dc.description.tableofcontents6.2. Detección molecular de Borrelia sp. y Coxiella sp. en las garrapatas colectadas. 46spa
dc.description.tableofcontents6.3. Análisis filogenético 47spa
dc.description.tableofcontents6.4. Distribución de especies de Borrelia en el departamento del Atlántico. 50spa
dc.description.tableofcontents7. DISCUSIÓN 54spa
dc.description.tableofcontents8. CONCLUSIONES 59spa
dc.description.tableofcontents9. RECOMENDACIONES 60spa
dc.description.tableofcontents10. REFERENCIAS 61spa
dc.description.tableofcontents11. ANEXOS 72spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8157
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Microbiología Tropical
dc.relation.references1. Atif FA. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res 2015 11411 [Internet]. 2015 Sep 7 [cited 2021 Dec 9];114(11):3941–57. Available from: https://link.springer.com/article/10.1007/s00436-015-4698-2
dc.relation.references2. Jaime O, Hurtado B, Giraldo-Ríos C. Economic and Health Impact of the Ticks in Production Animals. Ticks Tick-Borne Pathog [Internet]. 2018 Nov 9 [cited 2021 Nov 24]; Available from: https://www.intechopen.com/chapters/63777
dc.relation.references3. Dantas-Torres F, Picelli AM, Sales KG da S, Sousa-Paula LC de, Mejia P, Kaefer IL, et al. Ticks on reptiles and amphibians in Central Amazonia, with notes on rickettsial infections. Exp Appl Acarol [Internet]. 2022;86(1):129–44. Available from: https://doi.org/10.1007/s10493-021-00682-8
dc.relation.references4. Rivera-Páez FA, Labruna MB, Martins TF, Perez JE, Castaño-Villa GJ, Ossa-López PA, et al. Contributions to the knowledge of hard ticks (Acari: Ixodidae) in Colombia. Ticks Tick Borne Dis [Internet]. 2018;9(1):57–66. Available from: http://dx.doi.org/10.1016/j.ttbdis.2017.10.008
dc.relation.references5. Guglielmone AA, Nava S, Robbins RG. Neotropical Hard Ticks (Acari: Ixodida: Ixodidae): A critical analysis of their taxonomy, distribution and host relationships. Springer; 2021. 486 p.
dc.relation.references6. Seo HJ, Truong AT, Kim KH, Lim JY, Min S, Kim HC, et al. Molecular Detection and Phylogenetic Analysis of Tick-Borne Pathogens in Ticks Collected from Horses in the Republic of Korea. Pathog 2021, Vol 10, Page 1069 [Internet]. 2021 Aug 24 [cited 2022 Apr 20];10(9):1069. Available from: https://www.mdpi.com/2076-0817/10/9/1069/htm
dc.relation.references7. Cicuttin GL, De Salvo MN, Venzal JM, Nava S. Borrelia spp. in ticks and birds from a protected urban area in Buenos Aires city, Argentina. Ticks Tick Borne Dis. 2019 Oct 1;10(6):101282.
dc.relation.references8. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peňa A, Horak IG, et al. The argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa. 2010 Jul 6;(2528):1–28.
dc.relation.references9. Iqbal S, Swanson J, Williams LK. Investigation and prevalence of hard ticks infestation in ruminant farm animals in the United Kingdom. Egypt J Vet Sci [Internet]. 2023 Feb 23 [cited 2023 May 23];54(3):445–55. Available from: https://pure.hartpury.ac.uk/en/publications/investigation-and-prevalence-of-hard-ticks-infestation-in-ruminan
dc.relation.references10. Makwarela TG, Nyangiwe N, Masebe T, Mbizeni S, Nesengani LT, Djikeng A, et al. Tick Diversity and Distribution of Hard (Ixodidae) Cattle Ticks in South Africa. Microbiol Res 2023, Vol 14, Pages 42-59 [Internet]. 2023 Jan 9 [cited 2023 May 24];14(1):42–59. Available from: https://www.mdpi.com/2036-7481/14/1/4/htm
dc.relation.references11. Tamrat H, Tagel W, Belayneh N. Epidemiology of Ixodid tick infestation and tick-borne haemopathogens in small ruminant from Enarje Enawuga, North Western Ethiopia. Vet Med Sci. 2023 May 1;
dc.relation.references12. Fentahun G, Bizuayehu F, Dubie T. Study on Identification and Prevalence of Ixodid Ticks Genera Infestation in Cattle in the Case of Areka District, Wolaita Zone, and Southern Ethiopia. J Parasitol Res. 2023;2023:6–11.
dc.relation.references13. Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. Special collection: The Rise of Ticks and Tick-Borne Diseases The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. J Med Entomol [Internet]. 2021 [cited 2023 Mar 9];58:1565–1587. Available from: https://academic.oup.com/jme/article/58/4/1565/6245992
dc.relation.references14. Kassiri H, Nasirian H. New insights about human tick infestation features: a systematic review and meta-analysis. Environ Sci Pollut Res. 2021;28(14):17000–28.
dc.relation.references15. Cortés JA, Romero-Moreno LF, Aguirre-León CA, Pinzón-Lozano L, Cuervo SI. Enfoque clínico del síndrome febril agudo en Colombia. Infectio. 2017;21(1):39–50.
dc.relation.references16. Londoño AF, Acevedo-Gutiérrez LY, Marín D, Contreras V, Díaz FJ, Valbuena G, et al. Wild and domestic animals likely involved in rickettsial endemic zones of Northwestern Colombia. Ticks Tick Borne Dis [Internet]. 2017 Oct 1 [cited 2021 Dec 6];8(6):887–94. Available from: https://pubmed.ncbi.nlm.nih.gov/28774495/
dc.relation.references17. Martínez Díaz HC, Gil-Mora J, Betancourt-Ruiz P, Silva-Ramos CR, Matiz-González JM, Villalba-Perez MA, et al. Molecular detection of tick-borne rickettsial pathogens in ticks collected from domestic animals from Cauca, Colombia. Acta Trop. 2023;238(November 2022).
dc.relation.references18. Cabrera R, Mendoza W, López-Mosquera L, Cano MA, Ortiz N, Campo V, et al. Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia. Pathogens. 2022;11(10).
dc.relation.references19. Springer A, Glass A, Probst J, Strube C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. 2021;4075–90. Available from: https://doi.org/10.1007/s00436-020-07033-3
dc.relation.references20. Ullah Q, Jamil T, Saqib M, Iqbal M, Neubauer H. Q Fever—A Neglected Zoonosis. Microorganisms. 2022;10(8):1–17.
dc.relation.references21. Chikeka IM., Dumler JS. Neglected Bacterial Zoonoses. Physiol Behav. 2015;176(1):100–106.
dc.relation.references22. Scott JD, Clark KL, Foley JE, Anderson JF, Bierman BC, Durden LA. Extensive distribution of the lyme disease bacterium, borrelia burgdorferi sensu lato, in multiple tick species parasitizing avian and mammalian hosts across canada. Healthc. 2018;6(4).
dc.relation.references23. Trevisan G, Cinco M, Trevisini S, Di Meo N, Ruscio M, Forgione P, et al. Borreliae part 2: Borrelia relapsing fever group and unclassified borrelia. Biology (Basel). 2021;10(11):1–23.
dc.relation.references24. Rogovskyy A, Batool M, Gillis DC, Holman PJ, Nebogatkin I V., Rogovska Y V., et al. Diversity of Borrelia spirochetes and other zoonotic agents in ticks from Kyiv, Ukraine. Ticks Tick Borne Dis. 2018 Feb 1;9(2):404–9.
dc.relation.references25. Golovchenko M, Vancová M, Clark K, Oliver JH, Grubhoffer L, Rudenko N. A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasites and Vectors [Internet]. 2016;9(1):4–8. Available from: http://dx.doi.org/10.1186/s13071-016-1353-4
dc.relation.references26. Faccini-Martínez ÁA, Silva-Ramos CR, Santodomingo AM, Ramírez-Hernández A, Costa FB, Labruna MB, et al. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites and Vectors [Internet]. 2022;15(1):1–20. Available from: https://doi.org/10.1186/s13071-022-05289-5
dc.relation.references27. Mancilla-Agrono LY, Banguero-Micolta LF, Ossa-López PA, Ramírez-Chaves HE, Castaño-Villa GJ, Rivera-Páez FA. Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia. Trop Med Infect Dis. 2022;7(12).
dc.relation.references28. Weck BC, Serpa MCA, Labruna MB, Muñoz-Leal S. A Novel Genospecies of Borrelia burgdorferi Sensu Lato Associated with Cricetid Rodents in Brazil. Microorganisms [Internet]. 2022 Feb 1 [cited 2023 Jul 8];10(2). Available from: /pmc/articles/PMC8878456/
dc.relation.references29. Ivanova LB, Tomova A, González-Acuña D, Murúa R, Moreno CX, Hernández C, et al. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol [Internet]. 2014 Apr 1 [cited 2023 Jul 8];16(4):1069–80. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.12310
dc.relation.references30. Morales-Diaz J, Colunga-Salas P, Romero-Salas D, Sánchez-Montes S, Estrada-Souza IM, Ochoa-Ochoa LM, et al. Molecular detection of reptile-associated Borrelia in Boa constrictor (Squamata: Boidae) from Veracruz, Mexico. Acta Trop. 2020 May 1;205:105422.
dc.relation.references31. Cuevas-Peláez M, Correa-García A, López-Mahecha JM. Panuveítis no granulomatosa en un paciente colombiano: ¿Atribuible a la enfermedad de lyme? Iatreia. 2021;34(1):86–8.
dc.relation.references32. Miranda J, Mattar S, Perdomo K, Palencia L. Seroprevalencia de borreliosis, o enfermedad de Lyme, en una población rural expuesta de Córdoba, Colombia. Rev Salud Publica. 2009;11(3):480–9.
dc.relation.references33. Ramírez-Hernández A, Arroyave E, Faccini-Martínez ÁA, Martínez-Diaz HC, Betancourt-Ruiz P, Olaya LA, et al. Emerging Tickborne Bacteria in Cattle from Colombia. Emerg Infect Dis. 2022;28(10):2109–11.
dc.relation.references34. McCoy BN, Maïga O, Schwan TG. Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Bone [Internet]. 2014;(1):1–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
dc.relation.references35. Frangoulidis D, Kahlhofer C, Said AS, Osman AY, Chitimia-Dobler L, Shuaib YA. High prevalence and new genotype of coxiella burnetii in ticks infesting camels in somalia. Pathogens. 2021;10(6):1–9.
dc.relation.references36. Duron O, Sidi-Boumedine K, Rousset E, Moutailler S, Jourdain E. The Importance of Ticks in Q Fever Transmission: What Has (and Has Not) Been Demonstrated? Trends Parasitol. 2015 Nov 1;31(11):536–52.
dc.relation.references37. Orrego RC, Ríos-Osorio LA, Keynan Y, Rueda ZV, Gutiérrez LA. Molecular detection of Coxiella burnetii in livestock farmers and cattle from Magdalena Medio in Antioquia, Colombia. PLoS One. 2020;15(6):1–16.
dc.relation.references38. Mattar S, Contreras V, González M, Camargo F, Álvarez J, Oteo y JA. Infection by Coxiella burnetii in a patient from a rural area of Monteria, Colombia. Lancet. 2014;4.
dc.relation.references39. Ayub S, Malak N, Cossío-Bayúgar R, Nasreen N, Khan A, Niaz S, et al. In Vitro and In Silico Protocols for the Assessment of Anti-Tick Compounds from Pinus roxburghii against Rhipicephalus (Boophilus) microplus Ticks. Animals. 2023;13(8).
dc.relation.references40. Estrada A. Ticks as Vectors: taxonomy, biology and ecology. Encycl Parasitol. 2015;34(1):2729–2729.
dc.relation.references41. Eldin C, Parola P. Update on Tick-Borne Bacterial Diseases in Travelers. Curr Infect Dis Rep. 2018;20(7).
dc.relation.references42. Kernif T, Leulmi H, Raoult D, Parola P. Emerging Tick-Borne Bacterial Pathogens. Mycrobiology Spectr. 2016;(9):10.
dc.relation.references43. Leonovich SA. Ontogenesis of the questing behavior of hard ticks (Ixodidae). Entomol Rev. 2015;95(6):795–804.
dc.relation.references44. Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, et al. Analysis of the salivary gland transcriptome of unfed and partially fed Amblyomma sculptum ticks and descriptive proteome of the saliva. Front Cell Infect Microbiol. 2017 Nov 21;7(NOV):476.
dc.relation.references45. JL Camicas, JP Hervy, F Adam PM. The ticks of the world. Nomenclature, described stages, hosts, distribution (acarida, ixodida). Trans R Soc Trop Med Hyg. 1999 Mar;93(2):223.
dc.relation.references46. Barker SC, Murrell A. Systematics and evolution of ticks with a list of valid genus and species names. Parasitology [Internet]. 2004 [cited 2023 Sep 13];129(S1):S15–36. Available from: https://www.cambridge.org/core/journals/parasitology/article/abs/systematics-and-evolution-of-ticks-with-a-list-of-valid-genus-and-species-names/D4A48C408D174138A6485838E00FF5C2
dc.relation.references47. Mathison BA, Pritt BS. Laboratory identification of arthropod ectoparasites. Clin Microbiol Rev. 2014;27(1):48–67.
dc.relation.references48. Liu ZQ, Liu YF, Kuermanali N, Wang DF, Chen SJ, Guo HL, et al. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae. PLoS One. 2018;13(5):1–14.
dc.relation.references49. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Vol. 2020, Database. Oxford University Press; 2020.
dc.relation.references50. Bakkes DK, De Klerk D, Latif AA, Mans BJ. Integrative taxonomy of Afrotropical Ornithodoros (Ornithodoros) (Acari: Ixodida: Argasidae). Ticks Tick Borne Dis. 2018;9(4):1006–37.
dc.relation.references51. Nava S, Venzal JM, González-Acuña D, Martins TF, Guglielmone AA. Genera and Species of Ixodidae. In: Ticks of the Southern Cone of America. Academic Press; 2017. p. 25–267.
dc.relation.references52. Boulanger N, Boyer P, Talagrand-Reboul E, Hansmann Y. Ticks and tick-borne diseases. Médecine Mal Infect. 2019 Mar 1;49(2):87–97.
dc.relation.references53. Anderson JF, Magnarelli LA. Biology of Ticks. Infect Dis Clin North Am. 2008;22(2):195–215.
dc.relation.references54. Yadav N, Upadhyay RK. Tick Saliva Toxins, Host Immune Responses and Its Biological Effects. Int J Pharm Pharm Sci. 2021;(August):9–19.
dc.relation.references55. Centers for Disease Control and Prevention. Ticks [Internet]. 2017 [cited 2023 Jul 6]. Available from: https://www.cdc.gov/dpdx/ticks/index.html
dc.relation.references56. Leal B, Zamora E, Fuentes A, Thomas DB, Dearth RK. Questing by Tick Larvae (Acari: Ixodidae): A Review of the Influences That Affect Off-Host Survival. Ann Entomol Soc Am. 2020;113(6):425–38.
dc.relation.references57. SONENSHINE DE, ROE RM. Biology of Ticks [Internet]. 2nd ed. Sonenshine Daniel E., Roe R. Michael, editors. Vol. 2. Oxford University Press; 2013 [cited 2021 Sep 26]. 1–557 p. Available from: https://books.google.com.co/books?hl=es&lr=&id=ucg4AAAAQBAJ&oi=fnd&pg=PA3&dq=sonenshine+DE+(1991)+Biology+of+ticks,+vol.+1+oxford+university&ots=WfOFL53O1c&sig=m1VdsHizzEnyPf7t9u7_QeytSlY#v=onepage&q=sonenshine DE (1991) Biology of ticks%2C vol. 1 oxford
dc.relation.references58. Nielebeck C, Kim SH, Pepe A, Himes L, Miller Z, Zummo S, et al. Climatic stress decreases tick survival but increases rate of host-seeking behavior. Ecosphere. 2023;14(1):1–13.
dc.relation.references59. Richardson EA, Taylor CE, Jabot B, Martin E, Keiser CN. The effects of habitat type and pathogen infection on tick host-seeking behaviour. Parasitology. 2022;149(1):59–64.
dc.relation.references60. Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhof AM. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front Cell Infect Microbiol. 2013;4(AUG):1–12.
dc.relation.references61. Ogden NH, Ben Beard C, Ginsberg HS, Tsao JI. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. J Med Entomol. 2021;58(4):1536–45.
dc.relation.references62. Zając Z, Bartosik K, Kulisz J, Woźniak A. Ability of adult dermacentor reticulatus ticks to overwinter in the temperate climate zone. Biology (Basel). 2020;9(7):1–12.
dc.relation.references63. Madison-Antenucci S, Kramer LD, Gebhardt LL, Kauffman E. Emerging Tick-Borne Diseases. Clin Microbiol Rev [Internet]. 2020 Apr 1 [cited 2021 Dec 6];33(2). Available from: /pmc/articles/PMC6941843/
dc.relation.references64. Sonenshine DE. Range expansion of tick disease vectors in north america: Implications for spread of tick-borne disease. Int J Environ Res Public Health. 2018;15(3):1–9.
dc.relation.references65. Václavík T, Balážová A, Baláž V, Tkadlec E, Schichor M, Zechmeisterová K, et al. Landscape epidemiology of neglected tick-borne pathogens in central Europe. Transbound Emerg Dis. 2021;68(3):1685–96.
dc.relation.references66. Boulanger N, Boyer P, Talagrand-Reboul E, Hansmann Y. Ticks and tick-borne diseases. Med Mal Infect [Internet]. 2019;49(2):87–97. Available from: https://doi.org/10.1016/j.medmal.2019.01.007
dc.relation.references67. Khan SS, Ahmed H, Afzal MS, Khan MR, Birtles RJ, Oliver JD. Epidemiology, Distribution and Identification of Ticks on Livestock in Pakistan. Int J Environ Res Public Health. 2022;19(5).
dc.relation.references68. Raza A, Schulz BL, Nouwens A, Jackson LA, Piper EK, James P, et al. Serum proteomes of Santa Gertrudis cattle before and after infestation with Rhipicephalus australis ticks. Parasite Immunol. 2021;43(7):1–13.
dc.relation.references69. Trevisan G, Cinco M, Trevisini S, Di Meo N, Chersi K, Ruscio M, et al. Borreliae part 1: Borrelia lyme group and echidna‐reptile group. Biology (Basel). 2021;10(10):1–38.
dc.relation.references70. Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing fevers: Neglected tick-borne diseases. Front Cell Infect Microbiol. 2018;8(APR).
dc.relation.references71. Qiu Y, Squarre D, Nakamura Y, Lau ACC, Moonga LC, Kawai N, et al. Evidence of borrelia theileri in wild and domestic animals in the kafue ecosystem of zambia. Microorganisms. 2021;9(11):1–10.
dc.relation.references72. Stanek G, Reiter M. The expanding Lyme Borrelia complex-clinical significance of genomic species? Clin Microbiol Infect [Internet]. 2011;17(4):487–93. Available from: http://dx.doi.org/10.1111/j.1469-0691.2011.03492.x
dc.relation.references73. Schwartz I, Margos G, Casjens SR, Qiu WG, Eggers CH. Multipartite genome of lyme disease borrelia: Structure, variation and prophages. Curr Issues Mol Biol. 2021;42:409–54.
dc.relation.references74. Stephanie N Seifert, Camilo E. Khatchikian, Wei Zhou and DB. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi. Physiol Behav. 2016;176(1):139–48.
dc.relation.references75. Chaconas G, Norris SJ. Peaceful coexistence amongst Borrelia plasmids: Getting by with a little help from their friends? Plasmid. 2013 Sep;70(2):161–7.
dc.relation.references76. Tyler S, Tyson S, Dibernardo A, Drebot M, Feil EJ, Graham M, et al. Whole genome sequencing and phylogenetic analysis of strains of the agent of Lyme disease Borrelia burgdorferi from Canadian emergence zones. Sci Rep [Internet]. 2018;8(1):1–12. Available from: http://dx.doi.org/10.1038/s41598-018-28908-7
dc.relation.references77. Hepner S, Kuleshov K, Tooming-Kunderud A, Alig N, Gofton A, Casjens S, et al. A high fidelity approach to assembling the complex Borrelia genome. BMC Genomics [Internet]. 2023;24(1):401. Available from: https://doi.org/10.1186/s12864-023-09500-4
dc.relation.references78. Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol [Internet]. 2020;18(10):587–600. Available from: http://dx.doi.org/10.1038/s41579-020-0400-5
dc.relation.references79. Van Duijvendijk G, Sprong H, Takken W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review [Internet]. Vol. 8, Parasites and Vectors. Parasit Vectors; 2015 [cited 2023 Sep 28]. Available from: https://pubmed.ncbi.nlm.nih.gov/26684199/
dc.relation.references80. Eisen L. Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: A review. [cited 2023 Oct 24]; Available from: https://doi.org/10.1016/j.ttbdis.2019.101359
dc.relation.references81. Rose I, Yoshimizu MH, Bonilla DL, Fedorova N, Lane RS, Padgett KA. Phylogeography of Borrelia spirochetes in Ixodes pacificus and Ixodes spinipalpis ticks highlights differential acarological risk of tick-borne disease transmission in northern versus southern California. PLoS One. 2019;14(4):1–17.
dc.relation.references82. Stark JH, Pilz A, Jodar L, Moïsi JC. The Epidemiology of Lyme Borreliosis in Europe: An Updated Review on a Growing Public Health Issue. https://home.liebertpub.com/vbz [Internet]. 2023 Apr 12 [cited 2023 Sep 28];23(4):139–41. Available from: https://www.liebertpub.com/doi/10.1089/vbz.2022.0068
dc.relation.references83. Radolf JD, Strle K, Lemieux JE, Strle F. Lyme disease in humans. Curr Issues Mol Biol. 2020;42:333–84.
dc.relation.references84. Center for Disease Control and Prevention. Surveillance Data | Lyme Disease | CDC [Internet]. CDC website. 2022 [cited 2023 Aug 2]. Available from: https://www.cdc.gov/lyme/datasurveillance/surveillance-data.html
dc.relation.references85. Dong Y, Zhou G, Cao W, Xu X, Zhang Y, Ji Z, et al. Global seroprevalence and sociodemographic characteristics of Borrelia burgdorferi sensu lato in human populations: A systematic review and meta-analysis. BMJ Glob Heal. 2022;7(6).
dc.relation.references86. Nelder MP, Russell CB, Sheehan NJ, Sander B, Moore S, Li Y, et al. Human pathogens associated with the blacklegged tick Ixodes scapularis: A systematic review. Parasites and Vectors. 2016 May 5;9(1).
dc.relation.references87. Curtis MW, Krishnavajhala A, Kneubehl AR, Embers ME, Gettings JR, Yabsley MJ, et al. Characterization of Immunological Responses to Borrelia Immunogenic Protein A (BipA), a Species-Specific Antigen for North American Tick-Borne Relapsing Fever. Am Soc Microbiol [Internet]. 2022 Jun 29 [cited 2023 Oct 24];10(3). Available from: https://journals.asm.org/doi/abs/10.1128/spectrum.01722-21
dc.relation.references88. Otalora Ó, Couto G, Benavides J, Mucha C, Morchón R. Current distribution of selected canine vector-borne diseases in domestic dogs from Barranquilla and Puerto Colombia, Atlántico, Colombia. Vet Med Sci. 2022 Jan;8(1):46–51.
dc.relation.references89. Acevedo-Gutiérrez LY, Paternina LE, Pérez-Pérez JC, Londoño AF, López G, Rodas JD. Hard ticks (Acari: Ixodidae) from colombia, a review to its knowledge in the country. Acta Biol Colomb. 2020 Jan 1;25(1):126–39.
dc.relation.references90. Seitz R. Coxiella burnetii - Pathogenic Agent of Q (Query) Fever. Transfus Med Hemotherapy. 2014;41(1):60–72.
dc.relation.references91. Saini N, Gupta RS. A robust phylogenetic framework for members of the order Legionellales and its main genera (Legionella, Aquicella, Coxiella and Rickettsiella) based on phylogenomic analyses and identification of molecular markers demarcating different clades. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol [Internet]. 2021;114(7):957–82. Available from: https://doi.org/10.1007/s10482-021-01569-9
dc.relation.references92. Boarbi S, Fretin D, Mori M. Coxiella burnetii, agent de la fièvre Q. Can J Microbiol [Internet]. 2016 Nov 5 [cited 2023 Sep 28];62(2):102–22. Available from: https://pubmed.ncbi.nlm.nih.gov/26730641/
dc.relation.references93. Duron O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol Lett [Internet]. 2015 Aug 24 [cited 2023 Sep 28];362(17). Available from: https://pubmed.ncbi.nlm.nih.gov/26269380/
dc.relation.references94. Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A [Internet]. 2003 Apr 4 [cited 2023 Oct 30];100(9):5455. Available from: /pmc/articles/PMC154366/
dc.relation.references95. Lu M, Tian J, Zhao H, Jiang H, Qin X, Wang W, et al. Molecular Survey of Vector-Borne Pathogens in Ticks, Sheep Keds, and Domestic Animals from Ngawa, Southwest China. Pathogens. 2022;11(5):1–11.
dc.relation.references96. Trinachartvanit W, Maneewong S, Kaenkan W, Usananan P, Baimai V, Ahantarig A. Coxiella-like bacteria in fowl ticks from Thailand. Parasites and Vectors. 2018 Dec 27;11(1).
dc.relation.references97. Chisu V, Mura L, Foxi C, Masala G. Coxiellaceae in Ticks from Human, Domestic and Wild Hosts from Sardinia, Italy: High Diversity of Coxiella-like Endosymbionts. Acta Parasitol [Internet]. 2021 Jun 1 [cited 2023 Oct 24];66(2):654–63. Available from: https://link.springer.com/article/10.1007/s11686-020-00324-w
dc.relation.references98. Duron O, Noël V, McCoy KD, Bonazzi M, Sidi-Boumedine K, Morel O, et al. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathog. 2015;11(5):1–23.
dc.relation.references99. Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited—A Systematic Review. Front Vet Sci [Internet]. 2021 Apr 26 [cited 2021 Oct 29];8:655715. Available from: /pmc/articles/PMC8109271/
dc.relation.references100. IGAC;Instituto Geográfico Agustín Codazzi. GENERALIDADES Y RESEÑA HISTÓRICA DEL ATLÁNTICO Y SUS MUNICIPIOS. Man Introd Ion. 2012;2(26):1–68.
dc.relation.references101. República de Colombia. Instituto Colombiano Agropecuario - ICA [Internet]. [cited 2023 Nov 19]. Available from: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018
dc.relation.references102. Ehizibolo DO, Kamani J, Ehizibolo PO, Egwu KO, Dogo GI, Salami-Shinaba JO. OpenEpi : open source epidemiologic statistics for public health, version 2.3.1. http://www.openepi.com [Internet]. 2010 [cited 2023 May 28];23(1):1–4. Available from: http://www.openepi.com/SampleSize/SSPropor.htm
dc.relation.references103. Kjellander PL, Aronsson M, Bergvall UA, Carrasco JL, Christensson M, Lindgren PE, et al. Validating a common tick survey method: cloth-dragging and line transects. Exp Appl Acarol [Internet]. 2021;83(1):131–46. Available from: https://doi.org/10.1007/s10493-020-00565-4
dc.relation.references104. Dantas-Torres F, Fernandes Martins T, Muñoz-Leal S, Onofrio VC, Barros-Battesti DM. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic keys. Ticks Tick Borne Dis. 2019;10(6).
dc.relation.references105. Barros-Battesti DM, Arzua M, Bechara GH. Carrapatos de importância médico-veterinária da região neotropical: um guia ilustrado para identificação de espécies. 2006 [cited 2023 Nov 27]; Available from: https://repositorio.butantan.gov.br/handle/butantan/3153
dc.relation.references106. Anderson A, Bijlmer H, Fournier P-E, Graves S, Hartzell J, Kersh GJ, et al. Diagnosis and management of Q fever--United States, 2013. MMWR Recomm Rep [Internet]. 2013;62(3):1–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23535757
dc.relation.references107. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol [Internet]. 2018 Jun 1 [cited 2022 Dec 28];35(6):1547–9. Available from: https://academic.oup.com/mbe/article/35/6/1547/4990887
dc.relation.references108. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. NextStrain: Real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–3.
dc.relation.references109. Miranda J, Mattar S. Molecular detection of Anaplasma sp. and Ehrlichia sp. in ticks collected in domestical animals, Colombia [Internet]. Vol. 32, Tropical Biomedicine. 2015. p. 726–35. Available from: http://www.unicordoba.edu.co/index.php/investigacion/inst-investigacion/instituto
dc.relation.references110. Instituto Nacional de Salud (Colombia), Martha O. Informe de eventos de baja frecuencia de notificación. 2021;(295).
dc.relation.references111. Acevedo-Gutiérrez LY, Paternina LE, Labruna MB, Rodas JD. Presence of two species of the Amblyomma cajennense complex (Acari: Ixodidae) and probable zones of sympatry in northwestern Colombia. Ticks Tick Borne Dis. 2021 Nov 1;12(6):101815.
dc.relation.references112. Cotes-Perdomo AP, Oviedo Á, Castro LR. Molecular detection of pathogens in ticks associated with domestic animals from the Colombian Caribbean region. Exp Appl Acarol [Internet]. 2020 Sep 1 [cited 2021 Dec 11];82(1):137–50. Available from: https://pubmed.ncbi.nlm.nih.gov/32809186/
dc.relation.references113. Miranda J, Portillo A, Oteo JA, Mattar S. Rickettsia sp. Strain Colombianensi (Rickettsiales: Rickettsiaceae): A New Proposed Rickettsia Detected in Amblyomma dissimile (Acari: Ixodidae) From Iguanas and Free-Living Larvae Ticks From Vegetation. J Med Entomol [Internet]. 2012 Jul 1 [cited 2023 Oct 18];49(4):960–5. Available from: https://dx.doi.org/10.1603/ME11195
dc.relation.references114. Acevedo-Gutiérrez LY, Paternina LE, Labruna MB, Rodas JD. Presence of two species of the Amblyomma cajennense complex (Acari: Ixodidae) and probable zones of sympatry in northwestern Colombia. Ticks Tick Borne Dis. 2021 Nov 1;12(6):101815.
dc.relation.references115. Faccini-Martínez ÁA, Ramírez-Hernández A, Forero-Becerra E, Cortés-Vecino JA, Escandón P, Rodas JD, et al. Molecular Evidence of Different Rickettsia Species in Villeta, Colombia. Vector-Borne Zoonotic Dis [Internet]. 2015 Feb 1 [cited 2021 Dec 17];16(2):85–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26789730/
dc.relation.references116. Álvaro A. Faccini-Martínez, Francisco B. Costa, Tatiana E. Hayama-Ueno, Alejandro Ramírez-Hernández, Jesús A. Cortés-Vecino, Marcelo B. Labruna MH. Rickettsia rickettsii in Amblyomma patinoi Ticks, Colombia. Emerg Infect Dis. 2015;39(6–7):639–41.
dc.relation.references117. Machado-Ferreira E, Vizzoni VF, Balsemão-Pires E, Moerbeck L, Gazeta GS, Piesman J, et al. Coxiella symbionts are widespread into hard ticks. Parasitol Res [Internet]. 2016;115(12):4691–9. Available from: http://dx.doi.org/10.1007/s00436-016-5230-z
dc.relation.references118. López Y, Muñoz-Leal S, Martínez C, Guzmán C, Calderón A, Martínez J, et al. Molecular evidence of Borrelia spp. in bats from Córdoba Department, northwest Colombia. Parasites and Vectors [Internet]. 2023 Dec 1 [cited 2023 Jul 8];16(1):1–7. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05614-y
dc.relation.references119. Morshed MG, Lee MK, Boyd E, Mak S, Fraser E, Nguyen J, et al. Passive Tick Surveillance and Detection of Borrelia Species in Ticks from British Columbia, Canada: 2002–2018. https://home.liebertpub.com/vbz [Internet]. 2021 Jun 24 [cited 2023 Oct 23];21(7):490–7. Available from: https://www.liebertpub.com/doi/10.1089/vbz.2020.2743
dc.relation.references120. Cordeiro MD, Bahia M, Magalhães-Matos PC, Cepeda MB, Guterres A, Fonseca AH. Morphological, molecular and phylogenetic characterization of Borrelia theileri in Rhipicephalus microplus. Rev Bras Parasitol Veterinária [Internet]. 2018 Oct 1 [cited 2023 Oct 24];27(4):555–61. Available from: https://www.scielo.br/j/rbpv/a/PdzHWgPLf6XKTXzTpKv64Yq/
dc.relation.references121. Yparraguirre LA, Machado-Ferreira E, Ullmann AJ, Piesman J, Zeidner NS, Soares CAG. A Hard Tick Relapsing Fever Group Spirochete in a Brazilian Rhipicephalus (Boophilus) microplus. https://home.liebertpub.com/vbz [Internet]. 2008 Jan 2 [cited 2023 Oct 24];7(4):717–21. Available from: https://www.liebertpub.com/doi/10.1089/vbz.2007.0144
dc.relation.references122. Colunga-Salas P, Sánchez-Montes S, Ochoa-Ochoa LM, Grostieta E, Becker I. Molecular detection of the reptile-associated Borrelia group in Amblyomma dissimile, Mexico. Med Vet Entomol [Internet]. 2021 Jun 1 [cited 2023 Oct 22];35(2):202–6. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/mve.12478
dc.relation.references123. Kaenkan W, Nooma W, Chelong I ae, Baimai V, Trinachartvanit W, Ahantarig A. Reptile-associated Borrelia spp. In Amblyomma ticks, Thailand. Ticks Tick Borne Dis. 2020 Jan 1;11(1):101315.
dc.relation.references124. Takano A, Goka K, Une Y, Shimada Y, Fujita H, Shiino T, et al. Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol. 2010;12(1):134–46.
dc.relation.references125. Kumagai Y, Sato K, Taylor KR, Zamoto-Niikura A, Imaoka K, Morikawa S, et al. A relapsing fever group Borrelia sp. is widely distributed among wild deer in Japan. Ticks Tick Borne Dis [Internet]. 2018;9(3):465–70. Available from: https://doi.org/10.1016/j.ttbdis.2017.12.016
dc.relation.references126. Khan M, Islam N, Khan A, Islam ZU, Muñoz-Leal S, Labruna MB, et al. New records of Amblyomma gervaisi from Pakistan, with detection of a reptile-associated Borrelia sp. Ticks Tick Borne Dis. 2022;13(6).
dc.relation.references127. Morel N, De Salvo MN, Cicuttin G, Rossner V, Thompson CS, Mangold AJ, et al. The presence of Borrelia theileri in Argentina. Vet Parasitol Reg Stud Reports [Internet]. 2019;17(December 2018):100314. Available from: https://doi.org/10.1016/j.vprsr.2019.100314
dc.relation.references128. Paula WV de F, Neves LC, de Paula LGF, Serpa MC de A, de Oliveira FP, Dantas‑Torres F, et al. First molecular detection of Borrelia theileri subclinical infection in a cow from Brazil. Vet Res Commun [Internet]. 2023;47(2):963–7. Available from: https://doi.org/10.1007/s11259-022-10020-x
dc.relation.references129. Canham AS. SPIROCHAETOSIS OF PIGS. 1930;32–8.
dc.relation.references130. McCoy BN, Maïga O, Schwan TG. Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Ticks Tick Borne Dis. 2014 Jun 1;5(4):401–3.
dc.relation.references131. Eisen L. Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: A review [Internet]. Vol. 11, Ticks and Tick-borne Diseases. NIH Public Access; 2020 [cited 2023 May 15]. p. 101359. Available from: /pmc/articles/PMC7127979/
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceUniversidad de Córdoba
dc.subject.keywordsBorrelia sp
dc.subject.keywordsCoxiella sp
dc.subject.keywordsTicks
dc.subject.keywordsColombia
dc.subject.proposalBorrelia sp
dc.subject.proposalCoxiella sp
dc.subject.proposalGarrapatas
dc.subject.proposalColombia
dc.titleEstudio molecular de especies de Borrelia y Coxiella en garrapatas Ixodidae del departamento del Atlánticospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Trabajo de grado Borrelia y Coxiella en garrapatas de Atlantico.pdf
Tamaño:
2.24 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AUTORIZACIÓN DE PUBLICACIÓN DE DOCUMENTOS.pdf
Tamaño:
310.11 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones