Publicación: Estudio de la interfaz grafeno/BN mediante DFT
dc.contributor.advisor | Ortega López, César | spa |
dc.contributor.advisor | González Hernández, Rafael | spa |
dc.contributor.author | Casiano Jiménez, Gladys Rocío | |
dc.date.accessioned | 2022-11-16T20:34:27Z | |
dc.date.available | 2022-11-16T20:34:27Z | |
dc.date.issued | 2019-11-29 | |
dc.description.abstract | En esta tesis de doctorado se realiza un estudio detallado de interface entre grafeno y la superficie (0001) del BN tanto en su estructura hexagonal (grupo #194) y su estructura wurtzita (grupo #186), basados en la teoría de la funcional de la densidad (DFT por sus siglas en inglés). Los cálculos se llevan acabo usando la teoría de la DFT. Los efectos de correlación e intercambio se tratan usando la aproximación gradiente generalizado (GGA)de Perdew-Burke- Ernzerhof (PBE). Los pseudopotenciales atómicos usados son ultrasuaves y una base de ondas planas. Todo se realiza usando el paquete Quantum ESPRESSO [2] . Los estudios realizados comprenden: - El estudio del material BN, grupo #194 (P63/mmc) en volumen; - Seguidamente se estudia el material BN, grupo #186 (P63mc) también en volumen; - En tercer lugar, se estudia el grafeno puro y limpio, usando capas separadas por vacío de 12 Å; - Posteriormente, se hace el estudio de la superficie limpia el BN; la superficie se modela usando un slab separando las terrazas con vacío de 12 Å. - Seguidamente, se estudia la adsorción de átomos o mejor también se la envían a él al correo:de C sobre la superficie del BN. Se halla la adsorción más favorable considerando los sitios especiales T1, T4 y H3. Una vez conocida la estructura de menor energía, se determina la densidad de estados (DOS)y la estructura de bandas de la superficie (0001)BN en ambos casos: sin y con adsorbato atómico. - Para finalizar se adsorbe grafeno sobre la superficie del BN, considerando un slabde cinco capas. Se realiza un breve cálculo acerca de las estructuras que presentan el menor mismatch entre las dos redes. Hallamos que las estructuras: 2x 2(0001) BNgr194 2x2 -grafeno y 2√3 x 2√3(0001)BNgf194/ √13x√13 -grafeno presentan mismatch de ∼2.8% y ∼1.2% respectivamente. La cantidad de átomos de cada estructura es de 72 y 220 respectivamente. Los estudios realizados, en cada caso consisten en el cálculo de las propiedades estructurales, electrónicas y si las hay, propiedades magnéticas de las interfaces de los sistemas grafeno y BN y grafeno/BN(0001) en volumen, en diferentes geometrías hexagonales, Para predecir teóricamente la reconstrucción Grafeno/BN, se establecen diferentes celdas superficiales tanto para BN como para el Grafeno que presenten el menor mismatch entre redes. Finalmente, se determinan las energías de adhesión y la densidad de estados de las interfaces Grafeno/BN bidimensional y Grafeno/BN en volumen. | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor(a) en Ciencias Físicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Resumen 1 | spa |
dc.description.tableofcontents | 1. Introducción 3 | spa |
dc.description.tableofcontents | 2. FUNDAMENTACIÓN TEÓRICA 7 | spa |
dc.description.tableofcontents | 2.1 Métodos ab-initio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | spa |
dc.description.tableofcontents | 2.2 Teoría del Funcional de la Densidad DFT . . . . . . . . . . . . . . . . . . . . 8 | spa |
dc.description.tableofcontents | 2.2.1 Teoremas de Hohenberg-Kohn . . . . . . . . . . . . . . . . . . . . . . 9 | spa |
dc.description.tableofcontents | 2.2.2 Método de Kohn-Sham . . . . . . . . . . . . . . . . . . . . . . . . . . 10 | spa |
dc.description.tableofcontents | 2.2.3 Aproximación de Densidad local LDA . . . . . . . . . . . . . . . . . . 12 | spa |
dc.description.tableofcontents | 2.2.4 Aproximación Gradiente Generalizado (GGA) . . . . . . . . . . . . . . 13 | spa |
dc.description.tableofcontents | 2.2.5 Conjunto de base de ondas planas y seudo-potenciales . . . . . . . . . 14 | spa |
dc.description.tableofcontents | 2.2.6 Seudo potenciales que conservan la norma . . . . . . . . . . . . . . . . 15 | spa |
dc.description.tableofcontents | 2.2.7 Seudopotenciales ultrasuaves . . . . . . . . . . . . . . . . . . . . . . . 16 | spa |
dc.description.tableofcontents | 3. ESTADO DEL ARTE 17 | spa |
dc.description.tableofcontents | 4. RESULTADOS I: NITRURO DE BORO EN VOLUMEN 21 | spa |
dc.description.tableofcontents | 4.1 Estructura BN grupo #194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 | spa |
dc.description.tableofcontents | 4.2 Optimización de los parámetros estructurales . . . . . . . . . . . . . . . . . . 24 | spa |
dc.description.tableofcontents | 4.2.1 Estado base y propiedades estructurales del h-BN, grupo #194 (P63/mmc) 25 | spa |
dc.description.tableofcontents | 4.2.2 Propiedades electrónicas del h-BN, grupo #194 (P63/mmc) . . . . . . . 29 | spa |
dc.description.tableofcontents | 4.3 BN en estructura wurtzita BN, grupo #186 (P63mc) . . . . . . . . . . . . . . . 36 | spa |
dc.description.tableofcontents | 4.3.1 Posiciones atómicas en wurtzita . . . . . . . . . . . . . . . . . . . . . 38 | spa |
dc.description.tableofcontents | 4.3.2 Valores ideales de parámetros wurtzita . . . . . . . . . . . . . . . . . . 38 | spa |
dc.description.tableofcontents | 4.3.3 Primera Zona de Brillouin FBZ . . . . . . . . . . . . . . . . . . . . . . 38 | spa |
dc.description.tableofcontents | 4.3.4 Optimización de parámetros estructurales . . . . . . . . . . . . . . . . 38 | spa |
dc.description.tableofcontents | 4.3.4.1 Algoritmo de optimización de parámetros estructurales de la wurtzita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 | spa |
dc.description.tableofcontents | 4.3.5 Parámetros estructurales de BN wurtzita grupo #186 . . . . . . . . . . 41 | spa |
dc.description.tableofcontents | 4.3.5.1 Ecuación de estado y propiedades estructurales . . . . . . . . 41 | spa |
dc.description.tableofcontents | 4.3.5.1.1 Longitudes de enlace: . . . . . . . . . . . . . . . . 43 | spa |
dc.description.tableofcontents | 4.3.5.1.2 Comparación con otros autores: . . . . . . . . . . . 43 | spa |
dc.description.tableofcontents | 4.3.6 Energías de cohesión (WEBN_coh) y de formación (WEformac BN_wurz) del BN, grupo #186 (P63mc) . . . . . . . . . . . . . . . . . . . . . . . . . 45 | spa |
dc.description.tableofcontents | 4.3.6.1 Método para determinar la energía de cohesión . . . . . . . . 45 | spa |
dc.description.tableofcontents | 4.3.6.1.1 Energía de un átomo de B en un cubo como función del lado: .. . 45 | spa |
dc.description.tableofcontents | 4.3.6.1.2 Energía de una molécula de N2en un cubo como función del lado: 46 | spa |
dc.description.tableofcontents | 4.3.6.1.3 Energía cohesión del BN, grupo #186 (P63mc): . . . 46 | spa |
dc.description.tableofcontents | 4.3.6.1.4 Cuadro comparativo de las energías de cohesión y de formación del BN con otros resultados: . . . . 46 | spa |
dc.description.tableofcontents | 4.3.6.1.5 Comparación de la energía de cohesión: . . . . . . . 47 | spa |
dc.description.tableofcontents | 4.3.6.1.6 Comparaciones de la energía de formación: . . . . . 48 | spa |
dc.description.tableofcontents | 4.3.7 Propiedades electrónicas de BN, grupo #186 (P63mc) . . . . . . . . . . 49 | spa |
dc.description.tableofcontents | 4.3.7.1 Características generales de las bandas y DOS de BN, grupo #186 (P63mc) . . . . . . . . . . . . . . . . . . . . . . . 49 | spa |
dc.description.tableofcontents | 4.3.7.2 Proyección de bandas y DOS sobre la base de orbitales atómicos 52 | spa |
dc.description.tableofcontents | 4.3.7.3 Comparación de las bandas del BN gr. #194 y BN gr. #186. . 54 | spa |
dc.description.tableofcontents | 5. Grafeno 57 | spa |
dc.description.tableofcontents | 5.1 Optimización estructura del grafeno . . . . . . . . . . . . . . . . . . . . . . . 57 | spa |
dc.description.tableofcontents | 5.2 Características estructurales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 | spa |
dc.description.tableofcontents | 5.3 Energías de cohesión y de formación . . . . . . . . . . . . . . . . . . . . . . . 59 | spa |
dc.description.tableofcontents | 5.4 Características electrónicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 | spa |
dc.description.tableofcontents | 6. Superficie (0001)-BN grupo hexagonal #194 65 | spa |
dc.description.tableofcontents | 6.1 Superficie ideal: 1x1-BN(0001), gr. #194 . . . . . . . . . . . . . . . . . . . . . 65 | spa |
dc.description.tableofcontents | 7. Adsorción, difusión e incorporación de C en (0001)BN. 69 | spa |
dc.description.tableofcontents | 7.1 Superficie (0001)BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 | spa |
dc.description.tableofcontents | 7.1.1 Modelo de Terrazas Periódicas . . . . . . . . . . . . . . . . . . . . . . 69 | spa |
dc.description.tableofcontents | 7.2 Condiciones para la realización del cálculo . . . . . . . . . . . . . . . . . . . . 71 | spa |
dc.description.tableofcontents | 7.3 Metodología . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 | spa |
dc.description.tableofcontents | 7.4 La superficie (0001)BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 | spa |
dc.description.tableofcontents | 7.5 Energía de adsorción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 | spa |
dc.description.tableofcontents | 7.6 Estabilidad relativa de la superficie . . . . . . . . . . . . . . . . . . . . . . . . 77 | spa |
dc.description.tableofcontents | 8. Grafeno sobre (0001)-BN hexagonal 81 | spa |
dc.description.tableofcontents | 8.1 Estructuras consideradas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 | spa |
dc.description.tableofcontents | 8.2 Proposición de estructuras nuevas para la interface BN con grafeno . . 82 | spa |
dc.description.tableofcontents | 8.3 Optimización de parámetros configuraciones para la estructura 2X2(0001)-BN gr#194 / 2X2 - grafeno . . . . . . . . . . . 85 | spa |
dc.description.tableofcontents | 8.4 Configuración óptima de la estructura 2√3×2√3 (0001)-BN gr#194/√13x√13 – grafeno 86 | spa |
dc.description.tableofcontents | 8.5 Características estructurales de celda 2X2(0001)-BN gr#194 / 2 X 2-grafeno: constante de red y deformaciones de las redes individuales BN y grafeno . . . . 87 | spa |
dc.description.tableofcontents | 8.6 Características estructurales de celda 2X2(0001)-BN gr#194 / 2 X 2-grafeno: Longitudes de enlaces y separaciones de capas . . . . . . . . . . . .. . . 88 | spa |
dc.description.tableofcontents | 8.7 Propiedades electrónicas de 2X2(0001)-BN gr#194 / 2 X 2-grafeno. . . . 89 | spa |
dc.description.tableofcontents | 8.8 Propiedades electrónicas de 2√3×2√3 (0001)-BN gr#194/√13x√13 – grafeno 92 | spa |
dc.description.tableofcontents | 9. Conclusiones 97 | spa |
dc.description.tableofcontents | Referencias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6796 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Doctorado en Ciencias Físicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Graphene | spa |
dc.subject.keywords | Boron Nitride | eng |
dc.subject.keywords | DFT | eng |
dc.subject.keywords | Interface | eng |
dc.subject.proposal | Grafeno | spa |
dc.subject.proposal | BN (Nitruro de Boro) | spa |
dc.subject.proposal | DFT | spa |
dc.subject.proposal | Interfaz | spa |
dc.title | Estudio de la interfaz grafeno/BN mediante DFT | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Rashid Ahmed, Fazal e Aleem, S. Javad Hashemifar, and Hadi Akbarzadeh. First principles study of structural and electronic properties of different phases of boron nitride. Physica B: Condensed Matter, 400(1):297 – 306, 2007. DOI: 10.1016/j.physb.2007.08.012, citado en págs. 6, 27, 28, 44, 47, 48 | spa |
dcterms.references | [2] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, David Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M.Wentzcovitch. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39):395502, 2009. DOI:10.1088/0953-8984/21/39/395502 citado en págs. . 1, 4, 16, 28, 37, 41, 45, 57, 65, 67, 93 | spa |
dcterms.references | [3] Y. Kubota et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science, 317, Agosto 2007. http://science.sciencemag.org/content/317/5840/932. 3 | spa |
dcterms.references | [4] Kenji Watanabe et al. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 3, 2004. https://www.nature.com/articles/nmat1134. 3, 5 | spa |
dcterms.references | [5] Kenji Watanabe et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics, 591, September 2009. https://www.nature.com/articles/nphoton.2009.167. 3, 5 | spa |
dcterms.references | [6] Y.Kobayashi et al. Layered boron nitride as a release layer for mechanical transfer of gan-based devices. Nature, 484, April 2012. https://www.ncbi.nlm.nih.gov/pubmed/22498627. 3, 5 | spa |
dcterms.references | [7] B.Arnaud et al. Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett, 96, 102 Tesis Doctoral Estudio de la interfaz grafeno/BN Enero 2006. https://www.ncbi.nlm.nih.gov/pubmed/16486604. 3 | spa |
dcterms.references | [8] R. Dahal et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett, 98, May 2011. DOI:10.1063/1.3593958, citado en págs. . 3, 5 | spa |
dcterms.references | [9] S.Majety et al. Epitaxial growth and demonstration of hexagonal bn/algan p-n junctions for deep ultraviolet photonics. Appl. Phys. Lett, 100, February 2012. DOI: 10.1063/1.3682523, citado en págs. . 3, 5 | spa |
dcterms.references | [10] L. Vel et al. Cubic boron nitride: Synthesis, physicochemical properties and applications. Materials Science and Engineering:B, 10, 1991. DOI: 10.1016/0921-5107(91)90121-B, citado en pág. . 3 | spa |
dcterms.references | [11] Mami Yokoyama et al. Density functional theory calculations for pd adsorption on so4 adsorbed on h-bn. Computational Materials Science, 82, February 2014. https://doi.org/10.1016/j.commatsci.2013.08.058. 4 | spa |
dcterms.references | [12] Mami Yokoyama et al. DFT calculations for so4/graphene with and without a pd atom. Computational Materials Science, 83, February 2014. https://doi.org/10.1016/j.commatsci.2013.11.004. 4 | spa |
dcterms.references | [13] Oleg V. Yazyev y Alfredo Pasquarello. Metal adatoms on graphene and hexagonal boron nitride: Towards the rational design of self-assembly templates. Physical Review B, 82, July 2010. https://arxiv.org/abs/1007.1704. 4, 18 | spa |
dcterms.references | [14] William Lopez et al. Ab initio study of Mn adsorption on w-BN(0001) surface. Journal of Magnetism and Magnetic Materials, 320, 2008. https://doi.org/10.1016/j.jmmm.2008.02.157. 4, 19 | spa |
dcterms.references | [15] Arqum Hashmi and Jisang Hong. Metal free half metallicity in 2d system:structural and magnetic properties of g-c4n3 on bn. Scientific Reports, 4, Marzo 2014. https://www.nature.com/articles/srep04374. 4 | spa |
dcterms.references | [16] S.Wang et al. All chemical vapor deposition growth of MoS2/h-BN vertical van der Waals heterostructures. ACS Nano, 9, April 2015. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b00655. 4 | spa |
dcterms.references | [17] Sopt. Propiedades y aplicaciones del grafeno. Monograph, 192-1, Julio 2013. https://www.tecnologiaeinnovacion.defensa.gob.es/Lists/Publicaciones/Attachments/4 | spa |
dcterms.references | [18] Yanwu Zhu et al. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 2010. https://www.ncbi.nlm.nih.gov/pubmed/20706983. 4, 5 | spa |
dcterms.references | [19] Phaedon Avouris and Christos Dimitrakopoulos. Graphene: synthesis and applications. Materials today, 15, March 2012. https://doi.org/10.1016/S1369-7021(12)70044-5. 4 | spa |
dcterms.references | [20] Caterina Soldano et al. Production, properties and potential of graphene. Carbon, 48, March 2010. https://doi.org/10.1016/j.carbon.2010.01.058. 4 | spa |
dcterms.references | [21] S.Majety et al. Semiconducting hexagonal boron nitride for deep ultraviolet photonics. Sensing and Nanophotonic Devices, IX, January 2012. https://doi.org/10.1117/12.914084. 4 | spa |
dcterms.references | [22] K.Novoselov et al. Electric field effect in atomically thin carbon films. Science, 306, October 2004. https://arxiv.org/ftp/cond-mat/papers/0410/0410550.pdf. 4, 18 | spa |
dcterms.references | [23] Virendra Singh et al. Graphene based materials: Past, present and future. Progress in Materials Science, 56, October 2011. https://doi.org/10.1016/j.pmatsci.2011.03.003. 4 | spa |
dcterms.references | [24] Andre Geim and Konstantin Novoselov. The nobel prize in physics 2010. revista:no se sabe, December 2010. https://www.nobelprize.org/prizes/physics/2010/summary/. 4 | spa |
dcterms.references | [25] K.S Novoselov et al. Electronic properties of graphene. Phys. Stat. Sol, 244, September 2007. https://doi.org/10.1002/pssb.200776208. 4 | spa |
dcterms.references | [26] A.H Castro Neto et al. The electronic properties of graphene. Reviews of modern physics, 81, January 2009. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109. 4 | spa |
dcterms.references | [27] Seon-Myeong Choi et al. Effects of strain on electronic properties of graphene. Phys. Rev. B, 81, February 2010. https://arxiv.org/pdf/0908.0977.pdf. 4 | spa |
dcterms.references | [28] D.S.L. Abergel et al. Properties of graphene: A theoretical perspective. Adv.Phys, 59, March 2010. https://doi.org/10.1080/00018732.2010.487978. 4 | spa |
dcterms.references | [29] Joseph Scott Bunch. Mechanical and electrical properties of graphene sheets. Cornell University Thesis, , May 2008. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.721.7973. 4 | spa |
dcterms.references | [30] I.A Ovid’ko. Mechanical properties of graphene. Rev.Adv. Mater, 34, 2013. http://www.ipme.ru/e-journals/RAMS/no_13413/01_13413_ovidko.pdf. 4 | spa |
dcterms.references | [31] I.W.Frank et al. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science and Technology B, 25, July 2007. https://doi.org/10.1116/1.2789446. 4 | spa |
dcterms.references | [32] K.Min and N.R. Aluru. Mechanical properties of graphene under shear deformation. Applied physics letters, 98, July 2011. https://aip.scitation.org/doi/abs/10.1063/1.3534787. 4 | spa |
dcterms.references | [33] R.Nair et al. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nature Communications, June 2013. https://www.nature.com/articles/ncomms3010. 4 | spa |
dcterms.references | [34] Matthias Batzill. The surface science of graphene: Metal interfaces, cvd synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports, 67, March 2012. https://doi.org/10.1016/j.surfrep.2011.12.001. 5 | spa |
dcterms.references | [35] P.A Khomyakov et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B, 79, May 2009. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.79.195425. 5 | spa |
dcterms.references | [36] Daniel Dreyer. The chemistry of graphene oxide. Chemical Society Reviews, 39, October 2010. https://www.ncbi.nlm.nih.gov/pubmed/20023850. 5 | spa |
dcterms.references | [37] F.Perrozzi et al. Graphene oxide: from fundamentals to applications. Phys. Condens. Matter, 27, 2015. https://iopscience.iop.org/article/10.1088/0953-8984/27/1/013002. 5 | spa |
dcterms.references | [38] Songfeng Pei et al. The reduction of graphene oxide. Carbon, 50, August 2012. https://doi.org/10.1016/j.carbon.2011.11.010. 5 | spa |
dcterms.references | [39] Min Wang and Chang Ming Li. Magnetism in graphene oxide. New Journal of Physics, 12, December 2010. https://iopscience.iop.org/article/10.1088/1367-2630/12/12/129801. 5 | spa |
dcterms.references | [40] Zhenyue Chang et al. Piezoelectric properties of graphene oxide: A first-principles computational study. APPLIED PHYSICS LETTERS, 105, July 2014. http://dx.doi.org/10.1063/1.4890385. 5 | spa |
dcterms.references | [41] Cristina Gómez Navarro et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7, September 2007. https://pubs.acs.org/doi/abs/10.1021/nl072090c. 5 | spa |
dcterms.references | [42] Changhong Cao et al. High strength measurement of monolayer graphene oxide. Carbon, 81, January 2015. https://doi.org/10.1016/j.carbon.2014.09.082. 5 | spa |
dcterms.references | [43] Alexey Bosak et al. Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements. Physical Review B, 73, January 2006. https://doi.org/10.1063/1.4959595. 5 | spa |
dcterms.references | [44] M.S.Dresselhaus et al. Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 2005. https://doi.org/10.1016/j.physrep.2004.10.006. 5 | spa |
dcterms.references | [45] T.C. Doan et al. Growth and device processing of hexagonal boron nitride epilayers for termal neutron and deep ultraviolet detectors. Aip Advances, 6, 2016. https://aip.scitation.org/doi/10.1063/1.4959595. 5 | spa |
dcterms.references | [46] C.R. Dean et al. Boron nitride substrates for high- quality graphene electronics. Nature Nanotechnology, 5, August 2010. https://www.nature.com/articles/nnano.2010.172. 5 | spa |
dcterms.references | [47] A.S.Mayorov et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11, May 2011. https://pubs.acs.org/doi/abs/10.1021/nl200758b. 5 | spa |
dcterms.references | [48] P. Hohemberg and KohnW. Inhomogeneous electron gas. Physical Review, 136(3B):B864–B871, November 1964. http://dx.doi.org/10.1038/nature04233. 7 | spa |
dcterms.references | [49] W. Kohn and L.J. Sham. Self-consistent equations and exchange and correlation effects. Physical Review, 140(3A):1133–1138, Nov 1965. https://doi.org/10.1103/PhysRev.140.A1133. 9 | spa |
dcterms.references | [50] J. Perdew and L .J. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review, 23(10):5048–5079, Mayo 1981. https://doi.org/10.1103/PhysRevB.23.5048. 9, 10, 12 | spa |
dcterms.references | [51] J. Kohanoff and N.I. Gidopoulos. Density functional theory: Basics, new trends and applications. Handbook of Molecular Physics and Quantum Chemistry, 2,part 5(26):532–568, October 2003. https://scinapse.io/papers/1570346971. 12, 13 | spa |
dcterms.references | [52] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18):3865, October 1996. https://doi.org/10.1103/PhysRevLett.77.3865. 13 | spa |
dcterms.references | [53] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett., 43(20):1494, November 1979. https://doi.org/10.1103/PhysRevLett.43.1494. 15, 16 | spa |
dcterms.references | [54] G. B. Bachelet, D. R. Hamann, and M. Schlüter. Pseudopotentials that work: From h to pu. Phys. Rev.B., 26(8):4199, May 1981. https://doi.org/10.1103/PhysRevB.26.4199. 15 | spa |
dcterms.references | [55] Kari Laasonen, Roberto Car, Changyol Lee, , and David Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev.B., 43(8):6796, March 1991. https://doi.org/10.1103/PhysRevB.43.6796. 16 | spa |
dcterms.references | [56] Kari Laasonen, Alfredo Pasquarello, Roberto Car, Changyol Lee, and David Vanderbilt. Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Phys. Rev.B., 47(16):10142, April 1993. https://doi.org/10.1103/PhysRevB.47.10142. 16 | spa |
dcterms.references | [57] HangWang et al. BN/Graphene/BN transistors for rf applications. IEEE Electron Device Letters, 32, Septiembre 2011. http://hdl.handle.net/1721.1/74004. 17, 19 | spa |
dcterms.references | [58] D.A Evans et al. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy. Journal Of Physics: Condensed Matter, 20, January 2008. http://dx.doi.org/10.1088/0953-8984/20/7/075233. 17 | spa |
dcterms.references | [59] Wolfgang Pittroff et al. Mounting of high power laser diodes on boron nitride heat sinks using an optimized Au/Sn metallurgy. IEEE TRANSACTIONS ON ADVANCED PACKAGING, 24, Noviembre 2001. https://ieeexplore.ieee.org/document/982826. 17 | spa |
dcterms.references | [60] Shanmugan Subramani et al. Thermal transient analysis of high-power green led fixed on BN coated al substrates as heatsink. IEEE TRANSACTIONS ON ELECTRON DEVICES, 61, Septiembre 2014. https://ieeexplore.ieee.org/document/6860269. 17 | spa |
dcterms.references | [61] Susumu Takahashi et al. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications. Journal of Alloys and Compounds, 615, Junio 2014. https://doi.org/10.1016/j.jallcom.2014.06.138. 17 | spa |
dcterms.references | [62] Kenji Watanave et al. Hexagonal boron nitride as a new material ultraviolet luminiscent material and its application-fluorescence properties of h-BN single-crystal power. Diamond and Related Materials, 20, June 2011. https://doi.org/10.1016/j.diamond.2011.04.002. 17 | spa |
dcterms.references | [63] Ishida Hatsuo et al. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta, 320, Junio 1998. https://doi.org/10.1016/S0040-6031(98)00463-8. 17 | spa |
dcterms.references | [64] Wen G. et al. Co-enhanced sio2/bn ceramics for high-temperature dielectric applications. Journal of the European Ceramic Society, 20, April 2000. https://doi.org/10.1016/S0955-2219(00)00107-2. 17 | spa |
dcterms.references | [65] Jens Eicheler et al. Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28, Noviembre 2008. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005. 17 | spa |
dcterms.references | [66] Ziyin Lin et al. Exfoliated hexagonal boron nitride-based polimer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Composites Science and Technology, 90, January 2014. https://doi.org/10.1016/j.compscitech.2013.10.018. 17 | spa |
dcterms.references | [67] M.B Kanoun et al. Prediction study of elastic properties under pressure effect for zincblende bn, aln, gan and inn. Solid-State Electronics, 48, April 2004. https://doi.org/10.1016/j.sse.2004.03.007. 17 | spa |
dcterms.references | [68] G.Cappellini et al. Pressure- and strain-depen- dent quasiparticle energies of cubic, wurtzite and hexagonal bn. Phys. stat. sol, 217, september 2000. http://adsabs.harvard.edu/abs/2000PSSBR.217..861C. 17 | spa |
dcterms.references | [69] F.P Bundy et al. Direct transformation of hexagonal boron nitride to denser forms. The Journal of Chemical Physics, 38, March 1963. https://aip.scitation.org/doi/10.1063/1.1733815. 17 | spa |
dcterms.references | [70] A.V Kurdyumov et al. Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection. J. Appl. Cryst, 28, March 1963. https://doi.org/10.1107/S002188989500197X. 17, 18 | spa |
dcterms.references | [71] T. Soma et al. Characterization of wurtzite type boron nitride synthesized by shock compression. Mat. Res. Bull, 9, April 1974. https://doi.org/10.1016/0025-5408(74)90110-X. 17, 18 | spa |
dcterms.references | [72] Shang-Peng Gao. Crystal structures and band gap characters of h-bn polytypes predicted by the dispersion corrected dft and gw method. Solid StateCommunications, 152, Octubre 2012. https://doi.org/10.1016/j.ssc.2012.07.022. 17 | spa |
dcterms.references | [73] J.Furtmuller et al. Structural and electronic properties of h-BN. Phys Rev. B, 50, Diciembre 1994. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.50.15606. 17 | spa |
dcterms.references | [74] Q.X Liu et al. Phase transition between cubic-BN and hexagonal BN upon pulsed laser induced liquid-solid interfacial reaction. Chemical Physics Letters, 373, 2003. https://doi.org/10.1016/S0009-2614(03)00580-3. 17 | spa |
dcterms.references | [75] T.Wittkowski et al. Elastic properties of thin h-bn films investigated by brillouin light scattering. Thin Solid Films, 353, Junio 1999. https://doi.org/10.1016/S0040-6090(99)00388-0. 17 | spa |
dcterms.references | [76] Erhan Budak et al. Synthesis of hexagonal boron nitride with presence of representative metals. Physica B, 405, 2010. https://doi.org/10.1016/j.physb.2010.08.067. 17 | spa |
dcterms.references | [77] Nicholas Glavin et al. Syntesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition. Thin Solid Films, 572, 2014. https://doi.org/10.1016/j.tsf.2014.07.059. 17 | spa |
dcterms.references | [78] Jow-Lay Huang et al. Investigation of the BN films prepared by low pressure chemical vapor deposition. Surface and Coatings Technology, 122, 1999. https://doi.org/10.1016/S0257-8972(99)00306-0. 17 | spa |
dcterms.references | [79] S.Kurooka et al. Synthesis and properties of BN:C films deposited by a dual-ion beam sputtering method. Diamond and Related Materials, 12, 2003. https://doi.org/10.1016/S0925-9635(02)00398-9. 17 | spa |
dcterms.references | [80] O.Fukunaga et al. High-pressure synthesis of cubic BN using Fe–Mo–Al and Co–Mo–Al alloy solvents. Diamond and Related Materials, 20, 2011. https://doi.org/10.1016/j.diamond.2011.03.029. 17 | spa |
dcterms.references | [81] Akhmadi Eko et al. Synthesis and grain size control of cubic bn using co-cr-al base alloy solvents under high pressure. Diamond and Related Materials, 40, 2013. https://doi.org/10.1016/j.diamond.2013.09.002. 17 | spa |
dcterms.references | [82] L.Nistor et al. The influence of the h-BN morphology and structure on the c-BN growth. Diamond and Related Materials, 10(3–7):1352–1356, March 2001. DOI: 10.1016/S0925-9635(00)00377-0, citado pág. 17 | spa |
dcterms.references | [83] Daqiang Gao et al. Manifestation of high-temperature ferromagnetism in fluorinated graphitic carbon nitride nanosheets. Journal of Materials Chemistry C, , November 2015. DOI:10.1039/C5TC02911B, citado en pág. 17 | spa |
dcterms.references | [84] Daqiang Gao, Yonggang Liu, Peitao Liu, Mingsu Si, and Desheng Xue. Atomically thin B doped g-C3N4 nanosheets: High-temperature ferromagnetism and calculated half-metallicity. Scientific Reports, 6, October 2016. DOI:10.1038/srep35768. 17 | spa |
dcterms.references | [85] Fang Wu, Chengxi Huang, Haiping Wu, Changhoon Lee, Kaiming Deng, Erjun Kan, and Puru Jena. Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and halfmetallicity. Nano Lett., 15(12), November 2015. DOI: 10.1021/acs.nanolett.5b03835, citado pág. 17 | spa |
dcterms.references | [86] Chong Zhao et al. Carbon-doped boron nitride nanosheets with ferromagnetism above room temperature. Advanced Functional Materials, 24, July 2014. https://doi.org/10.1002/adfm.201401149. 17, 19 | spa |
dcterms.references | [87] Q.Y.Xie et al. Defect-induced room temperature ferromagnetism in un-doped inn film. Applied Physics Letters, 2, March 2012. https://doi.org/10.1063/1.3698320. 17 | spa |
dcterms.references | [88] L.M.C Pereira et al. Searching for room temperature ferromagnetism in transition metal implanted zno and gan. Journal of Applied Physics, 113, January 2013. https://doi.org/10.1063/1.4774102. 17 | spa |
dcterms.references | [89] Nobuko Ohba et al. First-principles study on structural, dielectric, and dynamical properties for three bn polytypes. PHYSICAL REVIEW B, 63, March 2001. https://doi.org/10.1103/PhysRevB.63.115207. 18 | spa |
dcterms.references | [90] K.H.He et al. The electronic structure and ferromagnetism of tm (TM = V, Cr, and Mn)-doped BN(5,5) nanotube: A first-principles study. Physica B, 403, September 2008. https://doi.org/10.1016/j.physb.2008.09.023. 18 | spa |
dcterms.references | [91] A. Boukra et al. Magnetic properties of mn doped bn compound. Superlattices and Microstructures, 52, October 2012. https://doi.org/10.1016/j.spmi.2012.07.005. 18 | spa |
dcterms.references | [92] Arqum Hashmi et al. First-principles study of bilayer graphene on bn/co(111): van der walls density functional approach. Journal of the Korean Physical Society, 64, Mayo 2014. https://link.springer.com/article/10.3938/jkps.64.1370. 18, 19 | spa |
dcterms.references | [93] Yang yang et al. Stability of bn/metal interfaces in gaseous atmosphere. Nano Research, 8, Enero 2015. https://link.springer.com/article/10.1007/s12274-014-0639-0. 18 | spa |
dcterms.references | [94] Sanjay Behura et al. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. Journal of the American Chemical Society, 137, September 2015. https://doi.org/10.1021/jacs.5b07739. 18 | spa |
dcterms.references | [95] Gabriel Constantinescu and Nicholas Hine. Multipurpose black-phosphorus/hBN heterostructures. Nano Letters, 16, Marzo 2016. https://doi.org/10.1021/acs.nanolett.6b00154. 18 | spa |
dcterms.references | [96] Ahmet Avsar et al. Van der Waals bonded Co/h-BN contacts to ultra-thin black phosphorus devices. Nano Lett, 17, Agosto 2017. https://doi.org/10.1021/acs.nanolett.7b01817. 18 | spa |
dcterms.references | [97] Maoyuan Wang et al. Van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls. Phys.Rev.B, 93, Agosto 2016. https://arxiv.org/abs/1603.06454. 18 | spa |
dcterms.references | [98] Leonardo Viti et al. Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv. Mater, 28, Junio 2016. https://arxiv.org/abs/1805.01161. 18 | spa |
dcterms.references | [99] Xuming Zou et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2d field effect transistors. Advanced. Materials, 28, Marzo 2016. https://www.ncbi.nlm.nih.gov/pubmed/26762171. 18 | spa |
dcterms.references | [100] Yury Yu Illarionov et al. The role of charge trapping in mos2/sio2 and mos2/hbn field-effect transistors. 2D Mater, 3, Julio 2017. http://iopscience.iop.org/article/10.1088/2053-1583/3/3/035004. 18 | spa |
dcterms.references | [101] Roland Gillen et al. Electronic properties of mos2/h-bn heterostructures: Impact of dopants and impurities. Phys. Status Solidi B, , Noviembre 2014. https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.201451424. 18 | spa |
dcterms.references | [102] S.Majety et al. Hexagonal boron nitride and 6h-sic heterostructures. Applied Physics Letters, 102, 2013. https://aip.scitation.org/doi/10.1063/1.4808365. 18 | spa |
dcterms.references | [103] C. Kamal et al. Ab initio investigation on hybrid graphite-like structure made up of silicone and boron nitride. Physics Letters A, 378, March 2014. https://doi.org/10.1016/j.physleta.2014.02.011. 18 | spa |
dcterms.references | [104] Hans Peter et al. Koch. Adsorption of gold atoms on the h-BN/Rh(111) nanomesh. Phys. Rev. B, 84, Diciembre 2011. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245410. 18 | spa |
dcterms.references | [105] Hans Peter Koch et al. Adsorption of gold atoms on the h-BN/Rh(111) nanomesh. PHYSICAL REVIEW B, 86, October 2012. https://doi.org/10.1103/PhysRevB.84.245410. 18 | spa |
dcterms.references | [106] Yubin Hwang et al. Comparative study of metal atom adsorption on free-standing h-bn and hbn/ni(111) surfaces. Applied Surface Science, 299, April 2014. https://doi.org/10.1016/j.apsusc.2014.01.172. 18 | spa |
dcterms.references | [107] Min Gao et al. Co oxidation on h-bn supported au atom. The Journal of Chemical Physics, 138, January 2013. https://www.ncbi.nlm.nih.gov/pubmed/23343287. 18 | spa |
dcterms.references | [108] Min Gao et al. Catalytic activity of au and au2 on the h-bn surface: Adsorption and activation of o2. The Journal of Chemical Physics, 116, April 2012. https://pubs.acs.org/doi/abs/10.1021/jp300684v. 18 | spa |
dcterms.references | [109] Min Gao et al. Oxygen activation and dissociation on h-bn supported au atoms. The Journal of Chemical Physics, 116, March 2012. https://onlinelibrary.wiley.com/doi/10.1002/qua.24066. 18 | spa |
dcterms.references | [110] Nam Meng et al. Fabrication and caracterization of an epitaxial graphene nanoribbon-based fieldeffect transistor. IEEE Transactions On Electron Devices, 58, June 2011. https://ieeexplore.ieee.org/document/5732677. 18 | spa |
dcterms.references | [111] Aron Franklin et al. Double contacts for improved performance of graphene transistors. IEEE Electron Device Letters, 33, January 2012. https://ieeexplore.ieee.org/document/6081897. 18 | spa |
dcterms.references | [112] Jeang-sun et al. Moon. Graphene: Its fundamentals to future applications. IEEE Transactions On Microwave Theory And Techniques, 59, October 2011. http://dx.doi.org/10.1109/TMTT.2011.2164617. 18 | spa |
dcterms.references | [113] Pei Zao et al. Influence of metal-graphene contacto n the operation and scalability of graphene field-effect transistors. IEEE Transactions On Electron Devices, 58, September 2011. https://arxiv.org/abs/1106.1111. 18 | spa |
dcterms.references | [114] Rumyanttsev sergey et al. Selective sensing of individual gases using graphene devices. IEEE SENSORS JOURNAL, 13, August 2013. https://ieeexplore.ieee.org/document/6475143. 18 | spa |
dcterms.references | [115] Jorge M.Garcia et al. Graphene growth on h-BN by molecular beam epitaxy. Solid State Communications, 152, 2012. https://doi.org/10.1016/j.ssc.2012.04.005. 18 | spa |
dcterms.references | [116] Mariano Real et al. Graphene epitaxial growth on SiC(0001) for resistence standards. IEEE Transactions On Instrumentation And Measurement, 62, June 2013. https://ieeexplore.ieee.org/document/6412798. 18 | spa |
dcterms.references | [117] Jakub Kedzierski et al. Epitaxial graphene transistor on SiC substrates. IEEE Transactions On Electron Devices, 55, August 2008. https://ieeexplore.ieee.org/document/4578855. 18 | spa |
dcterms.references | [118] Vishal Panchal et al. Epitaxial graphene sensors for detection small magnetic moments. IEEE Transactions On Magnetics, 49, January 2013. https://ieeexplore.ieee.org/abstract/document/6392383. 18 | spa |
dcterms.references | [119] Osama Nayfeh et al. Impact of plasma-assisted atomic-layer-deposited gate dielectric on graphene transistors. IEEE Electron Device Letters, 4, April 2011. https://ieeexplore.ieee.org/document/5722017. 18 | spa |
dcterms.references | [120] C.N.R Rao et al. Synthesis, properties and applications of grafene doped with boron, nitrogen and other elements. Nanotoday, 374, 2014. https://doi.org/10.1016/j.nantod.2014.04.010. 19 | spa |
dcterms.references | [121] Xiao-Lin Wei et al. Significant interplay effect of silicon dopants on electronic properties in graphene. Physics Letters A, 378, April 2014. https://doi.org/10.1016/j.physleta.2014.04.056. 19 | spa |
dcterms.references | [122] Xiao Xu et al. Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. International journal of hydrogen energy, 39, September 2014. https://doi.org/10.1016/j.ijhydene.2013.12.079. 19 | spa |
dcterms.references | [123] Yong-Hui Zhang et al. Tuning the magnetic behavior and transport property of graphene by introducing dopant and defect: A first-principles study. Computational and Theoretical Chemistry, 972, 2011. https://doi.org/10.1016/j.comptc.2011.06.016. 19 | spa |
dcterms.references | [124] Hansika Siricumara et al. Ge cages at the SiC/graphene interface: A first principles calculation. Journal of Crystal Growth, 393, 2014. https://doi.org/10.1016/j.jcrysgro.2013.11.051. 19 | spa |
dcterms.references | [125] Kallol Roy et al. Optically active heterostuctures of graphene and ultrathin MoS2. Solid State Communications, 175-176, 2013. https://doi.org/10.1016/j.ssc.2013.09.021. 19 | spa |
dcterms.references | [126] Chen Gong et al. First-principles study of metal-graphene interfaces. JOURNAL OF APPLIED PHYSICS, 108, 2010. http://www.utdallas.edu/~kjcho/paper4.pdf. 19 | spa |
dcterms.references | [127] Yanan Tang et al. Noble metals induced magnetic properties of graphene. Journal of Magnetism and Magnetic Materials, 323, 2011. https://doi.org/10.1016/j.jmmm.2011.05.004. 19 | spa |
dcterms.references | [128] Compesh Pannu et al. Enginnering the strain in graphene layers with au decoration. Applied Surface Science, 308, 2014. http://adsabs.harvard.edu/abs/2014ApSS..308..19. 19 | spa |
dcterms.references | [129] Guihua Li et al. Gold atom and dimer adsorbed on perfect and defective grafene and boron nitride monolayer: A first-principles study. Physica E, 59, 2014. http://adsabs.harvard.edu/abs/2014PhyE...59..235L. 19 | spa |
dcterms.references | [130] Yulian Mao et al. Structure and electronic properties of au intercalated hexagonalboronnitride/graphene bilayer. Physica E, 49, 2013. http://adsabs.harvard.edu/abs/2013PhyE...49..111M. 19 | spa |
dcterms.references | [131] Kotken Hatice et al. Structural and electronic properties of carbon-doped c-BN(110) surface. Physica B: Condensed Matter, 404, December 2009. https://doi.org/10.1016/j.physb.2009.08.258. 19 | spa |
dcterms.references | [132] Kotken Hatice et al. Oxygen-doped c-BN(110) surface: DFT calculations. IOP Conference Series Materials Science and Engineering, 15, December 2010. https://iopscience.iop.org/article/10.1088/1757-899X/15/1/012075. 19 | spa |
dcterms.references | [133] Javad Beheshtian et al. Theoretical study of co adsorption on the surface bn, aln, bp and alp nanotubes. Surface Science, 606, June 2012. http://adsabs.harvard.edu/abs/2012SurSc.606..981B. 19 | spa |
dcterms.references | [134] Yan Jiao et al. A density functional theory study on co2 capture and activation by graphene-like boron nitride with boron vacancy. Catalysis today, 175, Octubre 2011. https://doi.org/10.1016/j.cattod.2011.02.043. 19 | spa |
dcterms.references | [135] Jain Nikli et al. Monolayer graphene/hexagonal boron nitride heterostructure. Carbon, 54, 2013. https://doi.org/10.1016/j.carbon.2012.11.054. 19 | spa |
dcterms.references | [136] Dongyoo kim et al. Thickness dependent band gap and effective mass of BN/Graphene/BN and Graphene/BN/Graphene heterostructure. Surface science, 610, April 2013. https://doi.org/10.1016/j.susc.2012.12.017. 19 | spa |
dcterms.references | [137] F. D. Murnaghan. The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci., 30(9):244–247, July 1944. http://www.pnas.org/content/30/9/244. 21, 25, 26, 40, 41 | spa |
dcterms.references | [138] R. H. Wentorf Jr. Synthesis of the cubic form of boron nitride. The Journal of Chemical Physics, 34(3):809–812, March, 1st 1961. http://dx.doi.org/10.1063/1.1731679. 22 | spa |
dcterms.references | [139] Boron nitride. https://en.wikipedia.org/wiki/Boron_nitride. Consultado 28 Agosto de 2017. 22 | spa |
dcterms.references | [140] Nasreen G. Chopra, R. J. Luyken, K. Cherrey, Vincent H. Crespi, Marvin L. Cohen, Steven G. Louie, and A. Zettl. Boron nitride nanotubes. Science, 269(5226):966–967, August, 18 1995. http://dx.doi.org/10.1126/science.269.5226.966. 22 | spa |
dcterms.references | [141] R. S. Pease. An x-ray study of boron nitride. Acta Crystallographica, 5(3), 1952. http://dx.doi.org/10.1107/S0365110X52001064. 22, 27 | spa |
dcterms.references | [142] K. Doll, J. C. Schön, and M. Jansen. Structure prediction based on ab initio simulated annealing for boron nitride. Phys. Rev. B, 78:144110, Oct 2008. http://dx.doi.org/10.1103/PhysRevB.78.144110. 22 | spa |
dcterms.references | [143] A. V. Kurdyumov, V. L. Solozhenko, and W. B. Zelyavski. Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection. Journal of Applied Crystallography, 28(5):540–545, Oct 1995. https://doi.org/10.1107/S002188989500197X. 22, 27 | spa |
dcterms.references | [144] N. Ooi, A. Rairkar, L. Lindsley, and J. B. Adams. Electronic structure and bonding in hexagonal boron nitride. Journal of Physics: Condensed Matter, 18(1):97, 2006. http://stacks.iop.org/0953-8984/18/i=1/a=007. 22 | spa |
dcterms.references | [145] Yong-Nian Xu and W.Y.Ching. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev.B., 44(15):7777–7798, October 1991. https://doi.org/10.1103/PhysRevB.44.7787. 27, 35, 44, 52, 55 | spa |
dcterms.references | [146] J. Furthmuller, J. Hafner, and G. Kresse. Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B, 50(21):15606–15622, 1994. http://dx.doi.org/. 27, 36, 48 | spa |
dcterms.references | [147] G. Cassabois, P. Valvin, and B. Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics, 10, 2016. http://dx.doi.org/10.10388/nphoton.2015.277. 35 | spa |
dcterms.references | [148] K.Watanabe, T. Taniguchi, and H. Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 3(6), 2004. http://dx.doi.org/10.1038/nmat1134. 36 | spa |
dcterms.references | [149] X. Blase, Angel Rubio, Steven G. Louie, and Marvin L. Cohen. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B, 51(11), 1995. https://doi.org/10.1103/PhysRevB.51.6868. 36 | spa |
dcterms.references | [150] F. P. Bundy and R. H. Wentorf Jr. Direct transformation of hexagonal boron nitride to denser forms. The Journal of Chemical Physics, 38(5), 1963. http://dx.doi.org/10.1063/1.1733815. 42, 44 | spa |
dcterms.references | [151] Nobuko Ohba, Kazutoshi Miwa, Naoyki Nagasako, and Atsuo Fukumoto. First-principles study on structural, dielectric, and dynamical properties for three bn polytypes. Phys. RevB., 63(11):115207, March 2001. https://doi.org/10.1103/PhysRevB.63.115207. 44, 47, 48 | spa |
dcterms.references | [152] J.J. Zhang, G.J. Zhao, and X.X. Liang. First-principle studies of Phonons III-N Compouns semiconductors in wurtzite structure. International Journal of Applied Physics and Mathematics, 3(4):210, July 2013. https://doi:10.7763/IJAPM.2013.V3.210 http://www.ijapm.org/papers/210-P0004.pdf. 44 | spa |
dcterms.references | [153] Gua Xiao-Ju, Xu Bo, Liu zhong Yuan, and et. al. Theoretical hardness of wurtzite-structured semiconductors. Chin-Phys.Lett, 25(6):2158, June 2008. https://iopscience.iop.org/article/10.1088/0256-307X/25/6/064. 44 | spa |
dcterms.references | [154] X.Lei, X.X.Liang, G.J.Zhao, and T.I.Song. First-principle studies of the electronic band structure and the phonon dispersion properties of wurtzite BN. Journal of Physics, 490(1):2171, June 2014. http://adsabs.harvard.edu/abs/2014JPhCS.490a2171L1. 44 | spa |
dcterms.references | [155] Chaoyu He, L. Z. Sun, C. X. Zhang, Xiangyang Peng, K. W. Zhang, and Jianxin Zhong. Firstprinciples study of a novel super hard boron nitride phase. Condensed matter, 2(1):1, June 2012. https://arxiv.org/abs/1204.2188. 47, 48 | spa |
dcterms.references | [156] Jean-Paul Issi, Paulo T. Araujo, and Mildred S. Dresselhaus. Electron and phonon transport in graphene in and out of the bulk. In Hideo Aoki and Mildred S. Dresselhaus, editors, Physics of Graphene, volume 4 of http://www.springer.com/series/3705, chapter 3, pages 65–112. ©Springer International Publishing Switzerland 2014, 2014. Constante de red grafeno 1:42Å, pág. 66. 58 | spa |
dcterms.references | [157] FG Sen et al. Anchoring platinum on graphene using metallic adatoms: a first principles investigation. IOP Publishing Ltd, , Abril 2012. https://www.ncbi.nlm.nih.gov/pubmed/22534238. 58 | spa |
dcterms.references | [158] Igor A Pasti et al. Atomic adsorption on pristine graphene along the periodic table of elements from pbe to non-local functionals. Applied Surface Science, 436, Abril 2018. https://doi.org/10.1016/j.apsusc.2017.12.046. 58 | spa |
dcterms.references | [159] Hyeondeok Shin et al. Cohesion energetics of carbon allotropes : Quantum monte carlo study. The Journal of Chemical Physics, 140, Enero 2014. https://doi.org/10.1063/1.4867544. 58 | spa |
dcterms.references | [160] A. L. García et al. Influence of S and P doping in a graphene sheet. Journal of Computational and Theoretical Nanoscience, 5, Noviembre 2008. http://nano-bio.ehu.es/files/articles/Garcia_JCaTN_2008_455.pdf. 58 | spa |
dcterms.references | [161] V. V. Ivanovskaya et al. Hydrogen adsorption on graphene: a first principles study. The European Physical Journal B, 76, August 2010. https://link.springer.com/article/10.1140/epjb/e2010-00238-7. 58 | spa |
dcterms.references | [162] Toma Susi et al. Core level binding energies of functionalized and defective graphene. Beilstein J Nanotechnol, 5, Febrero 2014. https://www.ncbi.nlm.nih.gov/pubmed/24605278. 58 | spa |
dcterms.references | [163] Jorge Sofo et al. Graphane: A two-dimensional hydrocarbon. Physical review. B, Condensed matter, , Julio 2006. https://doi.org/10.1103/PhysRevB.75.153401. 58 | spa |
dcterms.references | [164] Miguel Espitia-Rico, Jairo Arbey Rodríguez-Martínez, María G. Moreno-Armenta, and Noboru Takeuchi. Graphene monolayers on gan(0001). Applied Surface Science, 326:7–11, January 2015. DOI: 10.1016/j.apsusc.2014.11.057, citado en págs. 82 | spa |
dcterms.references | [165] Gianluca Giovannetti, Petr A. Khomyakov, Geert Brocks, Paul J. Kelly, and Jeroen van den Brink. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B, 76:073103, Aug 2007. https://link.aps.org/doi/10.1103/PhysRevB.76.073103. 82 | spa |
dcterms.references | [166] B. Sachs, T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys. Rev. B, 84:195414, Nov 2011. http://dx.doi.org/10.1103/PhysRevB.84.195414. 82 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- CasianoJiménezGladysRocío.pdf
- Tamaño:
- 20.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Grado de Doctorado de Ciencias Físicas Casiano Jiménez Gladys Rocío
No hay miniatura disponible
- Nombre:
- Formato de autorización.pdf
- Tamaño:
- 593.28 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: