Publicación:
Larvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentos

dc.contributor.advisorAtencio García, Víctor Julio
dc.contributor.advisorMadariaga Mendoza, Diana Luz
dc.contributor.authorAlarcón Martínez, Luis Fernando
dc.contributor.juryFernánadez Méndez, Christian Jesús
dc.contributor.juryRamírez Merlano, Juan Antonio
dc.date.accessioned2025-06-27T21:17:13Z
dc.date.available2026-06-27
dc.date.available2025-06-27T21:17:13Z
dc.date.issued2025-06-27
dc.description.abstractA pesar de la gran biodiversidad íctica colombiana, la piscicultura se limita a pocas especies, de las cuales gran parte son especies introducidas que podrían perturbar los ambientes naturales. Por tanto, es importante la diversificación con especies nativas, mediante el desarrollo de tecnologías de producción sostenibles. El P. atricaudus es un Siluriforme que cuenta con características aprovechables para diversificar la piscicultura continental colombiana; además, es una especie que forma parte de la seguridad alimentaria de las poblaciones aledañas en el Bajo río Cauca. La larvicultura es una etapa crítica en la producción piscícola, en la que se viabilizan las larvas mediante un manejo adecuado de las condiciones y la alimentación, que garanticen mayores porcentajes de sobrevivencia e incrementen las posibilidades de éxito en las etapas posteriores del ciclo productivo de una especie. Este estudio tuvo como objetivo evaluar cuatro tipos de alimentos en la larvicultura de P. atricaudus. El experimento se desarrolló en el Instituto de Investigaciones Piscícolas de la Universidad de Córdoba (CINPIC) mediante dos ensayos. En el primer ensayo (manejo de la primera alimentación), se utilizaron 1200 larvas vitelínicas, distribuidas en 12 acuarios de 5 L de volumen útil (20 larvas/L). Durante diez días, fueron alimentadas con cuatro tipos de alimentos al inicio de la alimentación exógena: nauplios de Artemia (NA), zooplancton silvestre <400 µm (ZS<400 µm), zooplancton silvestre >400 µm (ZS>400 µm) y cistos de Artemia descapsulados (CA), todos suministrados a razón de 10 presas/mL. Posteriormente, se realizó un ensayo de alevinaje (ensayo 2), en el cual se evaluó el efecto de la primera alimentación en el alevinaje durante 23 días, con las dos mejores presas del ensayo anterior (NA y ZS>400 µm). Se manejó una densidad de 50 individuos/m3, realizándose una transición de tres días a dieta seca con 38.0% de proteína bruta. Se caracterizaron morfológicamente las larvas al inicio de la alimentación exógena mediante análisis merístico y morfométrico, se analizaron histológicamente los pliegues intestinales y se evaluó el desempeño zootécnico en ambos ensayos. Los resultados sugieren que P. atricaudus inicia la alimentación exógena a las 30 horas post-eclosión, con un ancho máximo de la abertura bucal de 611.4±11.7 µm, una longitud total de 5.2±0.01 mm y un peso total de 1.5±0.02 mg. En el primer ensayo, las mayores ganancias en longitud (13.7±0.2 mm) y peso (94.6±1.8 mg) se registraron en las larvas alimentadas con ZS>400 µm (p<0.05). Asimismo, este tratamiento presentó la mayor sobrevivencia (91.2±2.2%), con diferencias significativas respecto a NA (73.2±2.5%) y CA (47.0±8.7%). Al evaluar la influencia de la primera alimentación en el alevinaje, los individuos del tratamiento NA mostraron el mejor crecimiento (p<0.05), mientras que la sobrevivencia y resistencia al estrés no mostraron diferencias significativas (NA y ZS>400 µm; p>0.05). Los resultados del presente estudio sugieren que el manejo de la primera alimentación de P. atricaudus es posible con zooplancton silvestre mayor de 400 µm o con nauplios de Artemia, produciendo juveniles de buena calidad en la fase de alevinaje.spa
dc.description.abstractDespite Colombia's vast ichthyological biodiversity, aquaculture is limited to a few species, many of which are introduced and may disrupt natural environments. Therefore, diversification with native species is essential through the development of sustainable production technologies. The Pseudopimelodus. atricaudus, a Siluriform species, possesses advantageous characteristics for expanding Colombia's inland aquaculture. Additionally, this species plays a crucial role in the food security of communities near the Lower Cauca River. Larviculture is a critical stage in fish production, where larvae viability is ensured through proper environmental and feeding management, increasing survival rates and enhancing the likelihood of success in later stages of the production cycle. This study aimed to evaluate four types of feed in the larviculture of P. atricaudus. The experiment was conducted at the Fish Research Institute of the University of Córdoba (CINPIC) in two trials. In the first trial (first feeding management), 1,200 yolk-sac larvae were distributed in 12 aquaria with a usable volume of 5 L (20 larvae/L). For ten days, they were fed with four different prey types at the onset of exogenous feeding: Artemia nauplii (NA), wild zooplankton <400 µm (ZS<400 µm), wild zooplankton >400 µm (ZS>400 µm), and decapsulated Artemia cysts (CA), all provided at a density of 10 prey/mL. Subsequently, a fry trial (Trial 2) was conducted to assess the effect of initial feeding on the fry over 23 days, using the two best-performing prey from the previous trial (NA and ZS>400 µm). A stocking density of 50 individuals/m³ was used, transitioning to a dry diet with 38.0% crude protein over three days. Morphological characterization of larvae at the onset of exogenous feeding was performed through meristic and morphometric analysis, intestinal folds were histologically examined, and zootechnical performance was evaluated in both trials. Results suggest that P. atricaudus begins exogenous feeding at 30 hours post-hatching, with a maximum mouth gape width of 611.4±11.7 µm, a total length of 5.2±0.01 mm, and a total weight of 1.5±0.02 mg. In the first trial, the highest gains in length (13.7±0.2 mm) and weight (94.6±1.8 mg) were recorded in larvae fed ZS>400 µm (p<0.05). Likewise, this treatment resulted in the highest survival rate (91.2±2.2%), with significant differences compared to NA (73.2±2.5%) and CA (47.0±8.7%). When evaluating the influence of first feeding on the fry, individuals from the NA treatment exhibited the highest growth (p<0.05), whereas survival and stress resistance showed no significant differences (NA and ZS>400 µm; p>0.05). The findings of this study suggest that the first feeding of P. atricaudus can be successfully managed with wild zooplankton larger than 400 µm or Artemia nauplii, yielding high-quality juveniles during the fry.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Acuicultura Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsINTRODUCCIÓNspa
dc.description.tableofcontentsOBJETIVOSspa
dc.description.tableofcontentsObjetivo generalspa
dc.description.tableofcontentsObjetivos especificosspa
dc.description.tableofcontentsTaxonomía de P. atricaudusspa
dc.description.tableofcontentsBioecologia de P. atricaudusspa
dc.description.tableofcontentsManejo de primera alimentación y larviculturaspa
dc.description.tableofcontentsArtemia como alimento vivospa
dc.description.tableofcontentsZooplancton silvestrespa
dc.description.tableofcontentsDesafíos en la larvicultura de nuevas especies de pecesspa
dc.description.tableofcontentsMATERIALES Y MÉTODOSspa
dc.description.tableofcontentsLocalizaciónspa
dc.description.tableofcontentsObtención de larvas de primera alimentación exógenaspa
dc.description.tableofcontentsCaracterización morfológica y morfométrica de larvas de P. atricaudus al inicio de alimentación exógenaspa
dc.description.tableofcontentsENSAYO DE MANEJO DE LA PRIMERA ALIMENTACIÓNspa
dc.description.tableofcontentsAnálisis del crecimiento, sobrevivencia y resistencia al estrés en el manejo de la primera alimentación de P. atricaudusspa
dc.description.tableofcontentsCaracterísticas del intestino de larvas de P. atricaudusspa
dc.description.tableofcontentsENSAYO DE ALEVINAJEspa
dc.description.tableofcontentsAnálisis del crecimiento, sobrevivencia y prueba de resistencia al estrés en el alevinaje de P. atricaudusspa
dc.description.tableofcontentsCALIDAD DEL AGUAspa
dc.description.tableofcontentsANÁLISIS ESTADÍSTICOspa
dc.description.tableofcontentsASPECTOS ÉTICOSspa
dc.description.tableofcontentsRESULTADOSspa
dc.description.tableofcontentsCARACTERIZACIÓN MORFOLÓGICA Y MORFOMÉTRICA DE LARVAS DE P. atricaudus AL INICIO DE LA PRIMERA ALIMENTACIÓN EXÓGENAspa
dc.description.tableofcontentsENSAYO DE MANEJO DE LA PRIMERA ALIMENTACIÓN EXÓGENAspa
dc.description.tableofcontentsParámetros zootécnicosspa
dc.description.tableofcontentsHistología intestinalspa
dc.description.tableofcontentsCalidad del aguaspa
dc.description.tableofcontentsENSAYO DE ALEVINAJEspa
dc.description.tableofcontentsCalidad del aguaspa
dc.description.tableofcontentsDISCUSIÓNspa
dc.description.tableofcontentsCARACTERÍSTICAS MORFOLÓGICAS Y MORFOMÉTRICAS DE P. atricaudus AL INICIO DE LA ALIMENTACIÓN EXÓGENAspa
dc.description.tableofcontentsDESEMPEÑO ZOOTÉCNICO EN EL MANEJO DE LA PRIMERA ALIMENTACIÓNspa
dc.description.tableofcontentsDESEMPEÑO ZOOTÉCNICO EN EL ALEVINAJEspa
dc.description.tableofcontentsCALIDAD DEL AGUAspa
dc.description.tableofcontentsCONCLUSIONESspa
dc.description.tableofcontentsREFERENCIASspa
dc.description.tableofcontentsANEXOSspa
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9228
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Acuicultura Tropical
dc.relation.referencesAdriaens, D., Aerts, P., & Verraes, W. (2001). Ontogenetic shift in mouth opening mechanisms in a catfish (Clariidae, Siluriformes): A response to increasing functional demands. Journal of Morphology, 247(3), 197–216. https://doi.org/10.1002/1097-4687(200103)247:3<197::AID-JMOR1012>3.0.CO;2-S
dc.relation.referencesAhmad, A. L., Chin, J. Y., Mohd Harun, M. H. Z., & Low, S. C. (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46, 102553. https://doi.org/10.1016/j.jwpe.2021.102553
dc.relation.referencesArashiro, D. R., Yasui, G. S., Calado, L. L., Do Nascimento, N. F., Alves do Santos, S. C., Shiguemoto, G. F., Monzani, P. S., & Senhorini, J. A. (2020). Capturing, induced spawning, and first feeding of wild-caught Pseudopimelodus mangurus, an endangered catfish species. Latin American Journal of Aquatic Research, 48(3), 440–445. https://doi.org/10.3856/vol48-issue3-fulltext-2357
dc.relation.referencesAraújo, F. G., & Rosa, P. V. (2017). Docosahexaenoic acid (C22:6n-3) alters cortisol response after air exposure in Prochilodus lineatus (Valenciennes) larvae fed on enriched Artemia. Aquaculture Nutrition, 23(6), 1216–1224. https://doi.org/10.1111/anu.12490
dc.relation.referencesArevalo, E., Cabral, H. N., Villeneuve, B., Possémé, C., & Lepage, M. (2023). Fish larvae dynamics in temperate estuaries: A review on processes, patterns and factors that determine recruitment. Fish and Fisheries, 24(3), 466–487. https://doi.org/10.1111/faf.12740
dc.relation.referencesAtencio-Garcia, V., Garcia Arteaga, Y., Pérez morales, J., Pardo-Carrasco, S., & Prieto-Guevara, M. (2016). EFECTO DE LA DENSIDAD DE SIEMBRA EN EL MANEJO DE LA PRIMERA ALIMENTACIÓN DE LARVAS DE BAGRE BLANCO Sorubim cuspicaudus. Sabia, 1(3), 32–45.
dc.relation.referencesAtencio-García, V. J., Kerguelén, E., Wadnipar, L., & Narváez, A. (2003). Manejo de la primera alimentación de bocachico (Prochilodus magdalenae). Revista MVZ Córdoba, 8(1), 254–260.
dc.relation.referencesAtencio-García, V., Padilla-Izquierdo, D., Robles-González, J., Prieto-Guevara, M., Pardo-Carrasco, S., & Espinosa-Araujo, J. (2023). Damage to Sorubim cuspicaudus Sperm Cryopreserved with Ethylene Glycol. Animals, 13(2), 235. https://doi.org/10.3390/ani13020235
dc.relation.referencesAzfar Ismail, M., Kamarudin, M. S., Syukri, F., Nur Ain, S., & Latif, K. (2019). Changes in the mouth morpho-histology of hybrid Malaysian mahseer (Barbonymus gonionotus ♀ × Tor tambroides ♂) during the larval development. Aquaculture Reports, 15, 100210. https://doi.org/10.1016/j.aqrep.2019.100210
dc.relation.referencesAzra, M. N., Noor, M. I. M., Burlakovs, J., Abdullah, M. F., Abd Latif, Z., & Yik Sung, Y. (2022). Trends and New Developments in Artemia Research. Animals, 12(18), 2321. https://doi.org/10.3390/ani12182321
dc.relation.referencesBeerli, E. L. (2002). Alimentacao e comportamento de Pós-Larvas de Pacú [Mestrado]. Universidade Federal de Lavras.
dc.relation.referencesBenini, E., Engrola, S., Politis, S. N., Sørensen, S. R., Nielsen, A., Conceição, L. E. C., Santos, A., & Tomkiewicz, J. (2022). Transition from endogenous to exogenous feeding in hatchery-cultured European eel larvae. Aquaculture Reports, 24, 101159. https://doi.org/10.1016/j.aqrep.2022.101159
dc.relation.referencesBudi, D. S., Priyadi, A., Permana, A., Herjayanto, Muh., Slembrouck, J., Mubarak, A. S., & Mustofa, I. (2024). Sustainable captive breeding practices for native Indonesian freshwater fish. Animal Reproduction Science, 271, 107623. https://doi.org/10.1016/j.anireprosci.2024.107623
dc.relation.referencesCarrera-Quintana, S. C., Gentile, P., & Girón-Hernández, J. (2022). An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. Aquaculture, 561, 738583. https://doi.org/10.1016/j.aquaculture.2022.738583
dc.relation.referencesCarter, J. E., Sporre, M. A., & Eytan, R. I. (2022). Larviculture, allometric growth patterns, and gape morphology of the Florida blenny, Chasmodes saburrae. Aquaculture, 554, 738153. https://doi.org/10.1016/j.aquaculture.2022.738153
dc.relation.referencesDANE. (2021). ACUICULTURA EN COLOMBIA Cadena de la Acuicultura.
dc.relation.referencesDoNascimiento, C., Herrera-Collazos, E. E., Herrera-R., G. A., Ortega-Lara, A., Villa-Navarro, F. A., Usma Oviedo, J. S., & Maldonado-Ocampo, J. A. (2017). Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. ZooKeys, 708, 25–138. https://doi.org/10.3897/zookeys.708.13897
dc.relation.referencesDuarte, L., García, E., Tejada, K., Cuello, F., Gil-Manrique, B., De León, G., Curiel, J., Cuervo, C., Vargas, O., Isaza, E., Manjarrés-Martínez, L., & Reyes-Ardila, H. (2022). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales de Colombia - Enero a Octubre del 2022.
dc.relation.referencesFAO. (2024). El estado mundial de la pesca y la acuicultura 2024. La transformación azul en acción. (FAO, Ed.). FAO. https://doi.org/10.4060/cd0683es
dc.relation.referencesFricke, R., Eschmeyer, W., & Fong, J. D. (2023, October 2). Eschmeyer´s Catalog of Fishes. Genera/Species by Family/Subfamily In.
dc.relation.referencesFrisch, D., Lejeusne, C., Hayashi, M., Bidwell, M. T., Sánchez‐Fontenla, J., & Green, A. J. (2021). Brine chemistry matters: Isolation by environment and by distance explain population genetic structure of Artemia franciscana in saline lakes. Freshwater Biology, 66(8), 1546–1559. https://doi.org/10.1111/fwb.13737
dc.relation.referencesFroehlich, H. E., Gentry, R. R., & Halpern, B. S. (2017). Conservation aquaculture: Shifting the narrative and paradigm of aquaculture’s role in resource management. Biological Conservation, 215, 162–168. https://doi.org/10.1016/j.biocon.2017.09.012
dc.relation.referencesGaspar, W., Niño, A., Alejos, R., & Ynga, G. (2021). MANUAL PARA LA PRODUCCIÓN DE Artemia franciscana COMO ALIMENTO PARA LARVAS Y JUVENILES DE PECES (1st ed., Vol. 48). Instituto del Mar del Perú. https://hdl.handle.net/20.500.12958/3521
dc.relation.referencesGiacomini, H. C., Shuter, B. J., & Lester, N. P. (2013). Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production? Journal of Theoretical Biology, 332, 249–260. https://doi.org/10.1016/j.jtbi.2013.05.004
dc.relation.referencesGiebichenstein, J., Giebichenstein, J., Hasler, M., Schulz, C., & Ueberschär, B. (2022). Comparing the performance of four commercial microdiets in an early weaning protocol for European seabass larvae ( Dicentrarchus labrax ). Aquaculture Research, 53(2), 544–558. https://doi.org/10.1111/are.15598
dc.relation.referencesGisbert, E., Luz, R. K., Fernández, I., Pradhan, P. K., Salhi, M., Mozanzadeh, M. T., Kumar, A., Kotzamanis, Y., Castro‐Ruiz, D., Bessonart, M., & Darias, M. J. (2022). Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages. Reviews in Aquaculture, 14(1), 73–105. https://doi.org/10.1111/raq.12586
dc.relation.referencesHamre, K., Yúfera, M., Rønnestad, I., Boglione, C., Conceição, L. E. C., & Izquierdo, M. (2013). Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5(s1). https://doi.org/10.1111/j.1753-5131.2012.01086.x
dc.relation.referencesHenry, J., Bai, Y., Williams, D., Logozzo, A., Ford, A., & Wlodkowic, D. (2022). Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana. Lab Animal, 51(3), 81–88. https://doi.org/10.1038/s41684-021-00908-7
dc.relation.referencesHerrera-Cruz, E., Vásquez-Machado, G., Estrada-Posada, A., Pardo-Camacho, K. I., Atencio-García, V., & Yepes-Blandón, J. A. (2023). Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Revista Colombiana de Biotecnología, 25(2), 50–61. https://doi.org/10.15446/rev.colomb.biote.v25n2.110786
dc.relation.referencesIsmi, S., & Budi, D. S. (2022). Some Hatchery Parameters of Three Species of Groupers: Tiger Grouper (Epinephelus fuscoguttatus), Humpback Grouper (Cromileptes altivelis), and Leopard Coral Grouper (Plectropomus leopardus). HAYATI Journal of Biosciences, 29(6), 762–770. https://doi.org/10.4308/hjb.29.6.762-770
dc.relation.referencesJiménez-Velásquez, C., Atencio-Garcia, V., Ayazo-Genes, J. E., Espinosa-Araujo, J., & Prieto-Guevara, M. (2021). Management of the First Feeding of Dorada Brycon sinuensis with Two Species of Cladocerans. Applied Sciences, 11(20), 9379. https://doi.org/10.3390/app11209379
dc.relation.referencesJomori, R. K., Carneiro, D. J., Malheiros, E. B., & Portella, M. C. (2003). Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1–4), 277–287. https://doi.org/10.1016/S0044-8486(03)00069-3
dc.relation.referencesJomori, R. K., Luz, R. K., & Célia Portella, M. (2012). Effect of Salinity on Larval Rearing of Pacu, Piaractus mesopotamicus, a Freshwater Species. Journal of the World Aquaculture Society, 43(3), 423–432. https://doi.org/10.1111/j.1749-7345.2012.00570.x
dc.relation.referencesJoshua, W. J., Kamarudin, M. S., Ikhsan, N., Md Yusoff, F., & Zulperi, Z. (2022). Development of enriched Artemia and Moina in larviculture of fish and crustaceans: a review. Latin American Journal of Aquatic Research, 50(2), 144–157. https://doi.org/10.3856/vol50-issue2-fulltext-2840
dc.relation.referencesKarlsen, Ø., van der Meeren, T., Rønnestad, I., Mangor-Jensen, A., Galloway, T. F., Kjørsvik, E., & Hamre, K. (2015). Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae — can we identify the underlying factors? PeerJ, 3, e902. https://doi.org/10.7717/peerj.902
dc.relation.referencesKong, Y., Li, M., Chu, G., Liu, H., Shan, X., Wang, G., & Han, G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531, 735852. https://doi.org/10.1016/j.aquaculture.2020.735852
dc.relation.referencesKotani, T., Yokota, M., Fushimi, H., & Watanabe, S. (2011). How to determine the appropriate mortality in experimental larval rearing? Fisheries Science, 77(2), 255–261. https://doi.org/10.1007/s12562-011-0329-8
dc.relation.referencesKupren, K., Palińska‐Żarska, K., Krejszeff, S., & Żarski, D. (2019). Early development and allometric growth in hatchery‐reared Eurasian perch, Perca fluviatilis L. Aquaculture Research, 50(9), 2528–2536. https://doi.org/10.1111/are.14208
dc.relation.referencesLahnsteiner, F., Lahnsteiner, E., & Duenser, A. (2023). Suitability of Different Live Feed for First Feeding of Freshwater Fish Larvae. Aquaculture Journal, 3(2), 107–120. https://doi.org/10.3390/aquacj3020010
dc.relation.referencesLavens, P., & Sorgeloos, P. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181(3–4), 397–403. https://doi.org/10.1016/S0044-8486(99)00233-1
dc.relation.referencesLe, T. H., Hoa, N. Van, Sorgeloos, P., & Van Stappen, G. (2019). Artemia feeds: a review of brine shrimp production in the Mekong Delta, Vietnam. Reviews in Aquaculture, 11(4), 1169–1175. https://doi.org/10.1111/raq.12285
dc.relation.referencesLefevre, S., Wang, T., Jensen, A., Cong, N. V., Huong, D. T. T., Phuong, N. T., & Bayley, M. (2014). Air‐breathing fishes in aquaculture. What can we learn from physiology? Journal of Fish Biology, 84(3), 705–731. https://doi.org/10.1111/jfb.12302
dc.relation.referencesLeis, J. M., & Trnski, T. (1989). The larvae of Indo-Pacific shorefishes. New South Wales University Press. https://nla.gov.au/nla.cat-vn2412534
dc.relation.referencesLjubobratović, U., Fazekas, G., Koljukaj, A., Ristović, T., Vass, V., Ardó, L., Stanisavljević, N., Vukotić, G., Pešić, M., Milinčić, D., Kostić, A., & Lukić, J. (2021). Pike-perch larvae growth in response to administration of lactobacilli-enriched inert feed during first feeding. Aquaculture, 542, 736901. https://doi.org/10.1016/j.aquaculture.2021.736901
dc.relation.referencesLópez-López, V. V., Rodríguez M. de O., G. A., Galavíz, M. A., Román Reyes, C., Dabrowski, K., Haws, M. C., & Medina-Hernández, E. A. (2017). Comparative histological description of the digestive and visual system development of larval chame Dormitator latifrons (Pisces: Eleotridae). Latin American Journal of Aquatic Research, 43(3), 484–494. https://doi.org/10.3856/vol43-issue3-fulltext-10
dc.relation.referencesMadkour, K., Dawood, M. A. O., & Sewilam, H. (2023). The Use of Artemia for Aquaculture Industry: An Updated Overview. Annals of Animal Science, 23(1), 3–10. https://doi.org/10.2478/aoas-2022-0041
dc.relation.referencesManickam, N., Bhavan, P. S., Santhanam, P., & Muralisankar, T. (2020). Influence of wild mixed zooplankton on growth and muscle biochemical composition of the freshwater prawn Macrobrachium rosenbergii post larvae. Aquaculture, 522, 735110. https://doi.org/10.1016/j.aquaculture.2020.735110
dc.relation.referencesMelaku, S., Geremew, A., Getahun, A., Mengestou, S., & Belay, A. (2024). Challenges and prospects of using live feed substitutes for larval fish. Fisheries and Aquatic Sciences, 27(8), 475–487. https://doi.org/10.47853/FAS.2024.e45
dc.relation.referencesMiladinov, G. (2023). Impacts of population growth and economic development on food security in low-income and middle-income countries. Frontiers in Human Dynamics, 5. https://doi.org/10.3389/fhumd.2023.1121662
dc.relation.referencesMischke, C. C., Wise, D. J., & Byars, T. S. (2009). Evaluation of Zooplankton in Hatchery Diets for Channel Catfish Fry. North American Journal of Aquaculture, 71(4), 312–314. https://doi.org/10.1577/A08-029.1
dc.relation.referencesMokhtar, D. M., & Hassan AH, E. (2015). Light and Scanning Electron Microscopic Studies on the Intestine of Grass Carp (Ctenopharyngodon idella): I-Anterior Intestine. Journal of Aquaculture Research & Development, 6(11). https://doi.org/10.4172/2155-9546.1000374
dc.relation.referencesMozanzadeh, M. T., Bahabadi, M. N., Morshedi, V., Azodi, M., Agh, N., & Gisbert, E. (2021). Weaning strategies affect larval performance in yellowfin seabream (Acanthopagrus latus). Aquaculture, 539, 736673. https://doi.org/10.1016/j.aquaculture.2021.736673
dc.relation.referencesNakatani, K., Agostinho, A., Baumgartner, G., Bialetski, A., Vanderlei, P., Cavicchioli, M., & Pavanelli, C. (2001). Ovos e larvas de peixes de água doce, desenvolvimento e manual de indendifición. Universidade Estadual de Maringá, NUPELIA, Electrobrás
dc.relation.referencesNyang’ate Onura, C., Van den Broeck, W., Nevejan, N., Muendo, P., & Van Stappen, G. (2018). Growth performance and intestinal morphology of African catfish (Clarias gariepinus, Burchell, 1822) larvae fed on live and dry feeds. Aquaculture, 489, 70–79. https://doi.org/10.1016/j.aquaculture.2018.01.046
dc.relation.referencesParparov, A. (2010). Water Quality Assessment, Trophic Classification and Water Resources Management. Journal of Water Resource and Protection, 02(10), 907–915. https://doi.org/10.4236/jwarp.2010.210108
dc.relation.referencesPeng, D., Liang, X.-F., Wang, Y., & Tang, S. (2023). Introduction of Artemia nauplii during Chinese perch (Siniperca chuatsi) first feeding: Effects on larvae growth, survival, gene expression and activity of critical digestive enzymes. Aquaculture, 573, 739619. https://doi.org/10.1016/j.aquaculture.2023.739619
dc.relation.referencesPepe-Victoriano, R., Miranda, L., Ortega, A., & Merino, G. E. (2021). Descriptive morphology and allometric growth of the larval development of Sarda chiliensis chiliensis (Cuvier, 1832) in a hatchery in northern Chile. Aquaculture Reports, 19, 100576. https://doi.org/10.1016/j.aqrep.2020.100576
dc.relation.referencesPepin, P. (2024). Foraging by larval fish: a full stomach is indicative of high performance but random encounters with prey are also important. ICES Journal of Marine Science, 81(4), 790–806. https://doi.org/10.1093/icesjms/fsae037
dc.relation.referencesPham-Huy, C., & Pham Huy, B. (2022). Food and Lifestyle in Health and Disease. CRC Press. https://doi.org/10.1201/9781003220817
dc.relation.referencesPradhan, P. K., Jena, J., Mitra, G., Sood, N., & Gisbert, E. (2014). Effects of different weaning strategies on survival, growth and digestive system development in butter catfish Ompok bimaculatus (Bloch) larvae. Aquaculture, 424–425, 120–130. https://doi.org/10.1016/j.aquaculture.2013.12.041
dc.relation.referencesPrieto, M. J., Logato, P. V. R., Moraes, G. F. de, Okamura, D., & Araújo, F. G. de. (2006). Tipo de alimento, sobrevivência e desempenho inicial de pós-larvas de pacu (Piaractus mesopotamicus). Ciência e Agrotecnologia, 30(5), 1002–1007. https://doi.org/10.1590/S1413-70542006000500026
dc.relation.referencesPrieto-Guevara, M., Hernández B, J., Gómez R, C., Pardo C, S., Atencio-García, V., & Rosa, P. V. (2013). Efecto de tres tipos de presas vivas en la larvicultura de bagre blanco (Sorubim cuspicaudus). Revista MVZ Córdoba, 18(3), 3790–3798. https://doi.org/10.21897/rmvz.149
dc.relation.referencesPrieto-Guevara-Martha, & Atencio-García, V. (2008). Zooplancton en la larvicultura de peces neotropicales. Revista MVZ Córdoba, 13(2). https://doi.org/10.21897/rmvz.401
dc.relation.referencesRajabi, S., Ramazani, A., Hamidi, M., & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences, 23(1), 20. https://doi.org/10.1186/s40199-015-0105-x
dc.relation.referencesRamírez-Merlano, J. A., Otero-Paternina, A. M., Corredor-Santamaría, W., Medina-Robles, V. M., Cruz-Casallas, P. E., & Velasco-Santamaría, Y. M. (2010). Utilización de organismos vivos como primera alimentación de larvas de yaque (Leiarius marmoratus) bajo condiciones de laboratorio. Orinoquia, 14(1), 45–58.
dc.relation.referencesRestrepo-Gómez, A. M., Rangel-Medrano, J. D., Márquez, E. J., & Ortega-Lara, A. (2020). Two new species of Pseudopimelodus Bleeker, 1858 (Siluriformes: Pseudopimelodidae) from the Magdalena Basin, Colombia. PeerJ, 8, e9723. https://doi.org/10.7717/peerj.9723
dc.relation.referencesRivas-Lara, T. S., Gómez-Vanega, H. D., Palacios-Valdés, J., Rentería-Cuesta, V. M., & Lozano-Rentería, L. (2019). Estudio biológico y pesquero de Pseudopimelodus schultzi (Dahl, 1955) en la cuenca media y baja del río Atrato, Chocó. Biodiversidad Neotropical, 9(1), 1–13. https://doi.org/10.18636/bioneotropical.v9i1.544
dc.relation.referencesRocha, G. S., Katan, T., Parrish, C. C., & Kurt Gamperl, A. (2017). Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) larvae. Aquaculture, 479, 100–113. https://doi.org/10.1016/j.aquaculture.2017.05.025
dc.relation.referencesRønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø., & Boglione, C. (2013). Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture, 5(s1). https://doi.org/10.1111/raq.12010
dc.relation.referencesSamat, N. A., Yusoff, F. M., Rasdi, N. W., & Karim, M. (2020). Enhancement of Live Food Nutritional Status with Essential Nutrients for Improving Aquatic Animal Health: A Review. Animals, 10(12), 2457. https://doi.org/10.3390/ani10122457
dc.relation.referencesSewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish & Shellfish Immunology, 86, 260–268. https://doi.org/10.1016/j.fsi.2018.11.026
dc.relation.referencesShiguemoto, G. F., Arashiro, D. R., Levy-Pereira, N., Santos, S. C. A., Senhorini, J. A., Monzani, P. S., & Yasui, G. S. (2021). Domestication strategies for the endangered catfish species Pseudopimelodus mangurus Valenciennes, 1835 (Siluriformes: Pseudopimelodidae). Brazilian Journal of Biology, 81(2), 301–308. https://doi.org/10.1590/1519-6984.224913
dc.relation.referencesShirota, A. (1970). Studies on the mouth size of fish larvae. Nippon Suisan Gakkaishi, 36(353–368).
dc.relation.referencesShishanov, G. A., & Lippo, I. E. (2024). Decapsulation of artemia cysts (Artemia sp.) using different versions of sodium hypochlorite solutions (NaOCL). Rybovodstvo i Rybnoe Hozjajstvo (Fish Breeding and Fisheries), 11, 803–811. https://doi.org/10.33920/sel-09-2411-05
dc.relation.referencesSyafariyah, N. K., Sulmartiwi, L., & Budi, D. S. (2023). Incubation temperature effects on some hatching parameters of silver rasbora (Rasbora argyrotaenia) egg. Journal of Applied Aquaculture, 35(1), 16–26. https://doi.org/10.1080/10454438.2021.1928580
dc.relation.referencesVadstein, O., Attramadal, K. J. K., Bakke, I., & Olsen, Y. (2018). K-Selection as Microbial Community Management Strategy: A Method for Improved Viability of Larvae in Aquaculture. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02730
dc.relation.referencesValbuena, R., Zapata-Berruecos, B., & Otero-Paternina, A. (2013). Evaluación de la primera alimentación en larvas de capaz Pimelodus grosskopfii bajo condiciones de laboratorio. Revista MVZ Córdoba, 18(2), 3518–3524. https://doi.org/10.21897/rmvz.176
dc.relation.referencesWang, P., Chen, S., Chen, Z., Huo, W., Huang, R., Huang, W., Peng, J., & Yang, X. (2019). Benefit–risk assessment of commonly consumed fish species from South China Sea based on methyl mercury and DHA. Environmental Geochemistry and Health, 41(5), 2055–2066. https://doi.org/10.1007/s10653-019-00254-1
dc.relation.referencesWijayanti, G. E., Setyawan, P., & Kurniawati, I. D. (2017). A SIMPLE PARAFFIN EMBEDDED PROTOCOL FOR FISH EGG, EMBRYO, AND LARVAE. Scripta Biologica, 4(2), 85. https://doi.org/10.20884/1.sb.2017.4.2.420
dc.relation.referencesWittenrich, M. L., & Turingan, R. G. (2011). Linking functional morphology and feeding performance in larvae of two coral-reef fishes. Environmental Biology of Fishes, 92(3), 295–312. https://doi.org/10.1007/s10641-011-9840-0
dc.relation.referencesZhang, Y., Lu, R., Qin, C., & Nie, G. (2020). Precision nutritional regulation and aquaculture. Aquaculture Reports, 18, 100496. https://doi.org/10.1016/j.aqrep.2020.100496
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsArtemia
dc.subject.keywordsConservation
dc.subject.keywordsFry
dc.subject.keywordsFood live
dc.subject.keywordsFish culture
dc.subject.proposalArtemia
dc.subject.proposalAlevinaje
dc.subject.proposalConservación
dc.subject.proposalAlimentos vivos
dc.subject.proposalPiscicultura
dc.titleLarvicultura de bagre sapo Pseudopimelodus atricaudus con diferentes tipos de alimentosspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
AlarcónLuis.pdf
Tamaño:
1.79 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FORMATO DE AUTORIZACIÓN.pdf
Tamaño:
2.93 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones