Publicación:
Caracterización genética de influenzavirus y coronavirus en murciélagos de los departamentos de Córdoba y Bolívar- Colombia

dc.audience
dc.contributor.advisorMartinez Bravo, Caty Milena
dc.contributor.advisorGastelbondo Pastrana, Bertha Irina
dc.contributor.authorEcheverri De la Hoz, Daniel Mauricio
dc.contributor.educationalvalidatorMattar Velilla, Salim
dc.contributor.juryRodriguez Villamizar, Fernando
dc.contributor.jurySoler-Tovar, Diego
dc.date.accessioned2024-07-10T15:03:46Z
dc.date.available2025-07-10
dc.date.available2024-07-10T15:03:46Z
dc.date.issued2024-07-10
dc.description.abstractLos murciélagos son un grupo de mamíferos caracterizados por albergar patógenos de importancia en salud pública y animal. A pesar de ser caracterizados como un grupo taxonómica de vigilancia epidemiológica, el surgimiento del nuevo influenza virus de murciélagos y la reciente pandemia del COVID-19 causada por el SARS-CoV-2, aumentó el interés de los investigadores en comprender el papel de estos mamíferos en el mantenimiento y circulación de dichos virus. El objetivo de este estudio fue caracterizar la diversidad genética de coronavirus e influenza virus en murciélagos de los departamentos de Córdoba y Bolívar, Colombia. Se procesaron 106 animales para la detección molecular de coronavirus e influenza. Quince muestras fueron secuenciadas por RNA-Seq (NGS). Se obtuvo el genoma completo de un coronavirus y un influenza virus. Los análisis filogenéticos y reloj molecular indican que se trata de un nuevo virus del género Alphacoronavirus altamente divergente que proviene de un nodo ancestral. Mientras que, el influenza virus está asociado a los influenza A virus de murciélagos descritos anteriormente. En el análisis de la arquitectura antigénica, la proteína Spike del AlphaCov muestra similitud con TGEV y HCoV-229E con capacidad de unirse al CD13 de humanos y porcinos. La neuraminidasa del influenza A virus presenta cambios antigénicos en el sitio putativo de unión que le permite unirse al HLA-DR de murciélagos, lo que sugiere que recupera su actividad catalítica. Este es el primer estudio de caracterización filogenética, evolutiva y antigénica de coronavirus e influenza virus en murciélagos de Colombia.spa
dc.description.abstractBats are a group of mammals characterized by harboring pathogens of importance in public and animal health. Despite being characterized as a taxonomic epidemiological surveillance group, the emergence of the new bat influenza virus and the recent COVID-19 pandemic caused by SARS-CoV-2, increased the interest of researchers in understanding the role of these mammals in the maintenance and circulation of these viruses. The objective of this study was to characterize the genetic diversity of coronaviruses and influenza viruses in bats from the departments of Córdoba and Bolívar, Colombia. We process 106 animals for the molecular detection of coronavirus and influenza. Fifteen samples were sequenced by RNA-Seq (NGS). The complete genome of a coronavirus and an influenza virus was obtained. Phylogenetic analyses and molecular clock indicate that it is a new virus of the genus Alphacoronavirus, highly divergent, that comes from an ancestral node. Influenza viruses are associated with the influenza A bat viruses described above. In the analysis of the antigenic architecture, the AlphaCov Spike protein shows similarity to TGEV and HCoV-229E with the ability to bind to CD13 from humans and pigs. The neuraminidase of influenza A virus exhibits antigenic changes at the putative binding site that allows it to bind to bat HLA-DR, suggesting that it regains its catalytic activity. This is the first study of phylogenetic, evolutionary and antigenic characterization of coronaviruses and influenza viruses in bats in Colombia.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Microbiología Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. Introducción...13spa
dc.description.tableofcontents2. Objetivo general...17spa
dc.description.tableofcontents2.1 Objetivos específicos...17spa
dc.description.tableofcontents3. Marco conceptual...18spa
dc.description.tableofcontents3.1 Caracteríticas generales de los murciélagos...18spa
dc.description.tableofcontents3.2 Los murciélagos como reservorios de patógenos virales emergentes y reemergentes...18spa
dc.description.tableofcontents3.3 Virus en murciélagos del nuevo mundo...21spa
dc.description.tableofcontents3.3.1 Coronavirus en murciélagos...23spa
dc.description.tableofcontents3.3.2 Influenzavirus en murciélagos...26spa
dc.description.tableofcontents3.4 Caracterización genética de los virus en murciélagos...29spa
dc.description.tableofcontents3.5 El sistema inmune de los murciélagos en la conservación y trasmisión de los virus...30spa
dc.description.tableofcontents3.6 Factores asociados al contacto murciélago-humano y la diseminación de virus patógenos...31spa
dc.description.tableofcontents4. Materiales y métodos...33spa
dc.description.tableofcontents4.1 Ubicación y tipo de estudio...33spa
dc.description.tableofcontents4.2 Tipo de muestra...33spa
dc.description.tableofcontents4.3 Componentes éticos...33spa
dc.description.tableofcontents4.4 Metodología para el cumplimiento del objetivo específico 1...34spa
dc.description.tableofcontents4.4.1 Extracción de material genético...34spa
dc.description.tableofcontents4.4.2 Identificación molecular...35spa
dc.description.tableofcontents4.5 Metodología para el cumplimiento del objetivo específico 2...36spa
dc.description.tableofcontents4.5.1 Secuenciación de Nueva Generación (NGS)...36spa
dc.description.tableofcontents4.5.2 Análisis bioinformático...37spa
dc.description.tableofcontents4.5.2.1 Procesamiento de secuencias...37spa
dc.description.tableofcontents4.5.2.2 Recuperación de genomas y análisis filogenético...38spa
dc.description.tableofcontents4.5.3 Reconstrucción filogenética y estimación del ancestro común más cercano (TMCRA)...38spa
dc.description.tableofcontents4.6 Metodología para el cumplimiento del objetivo específico número 3...39spa
dc.description.tableofcontents4.6.1 Modelamiento de la estructura antigénica...39spa
dc.description.tableofcontents4.6.1.1 Obtención de modelos 3D...39spa
dc.description.tableofcontents4.6.1.2 Predicción de epítopos predichos...39spa
dc.description.tableofcontents4.6.2 Docking molecular (proteína-proteína)...40spa
dc.description.tableofcontents4.7 Metodología para el cumplimiento del objetivo específico número 4....40spa
dc.description.tableofcontents4.7.1 Estrategias de difusión...40spa
dc.description.tableofcontents4.7.1.1 Población...40spa
dc.description.tableofcontents4.7.1.2 Diseño y ejecución de las estrategias de difusión...41spa
dc.description.tableofcontents5. Resultados....42spa
dc.description.tableofcontents5.1 Resultados relacionados con el cumplimiento del objetivo específico número 1...42spa
dc.description.tableofcontents5.1.1 Extracción de material genético y detección molecular...42spa
dc.description.tableofcontents5.2 Resultados relacionados con el cumplimiento del objetivo específico número 2...44spa
dc.description.tableofcontents5.2.1 Secuenciación y análisis bioinformático ....44spa
dc.description.tableofcontents5.2.1.1 Optimización de muestras para obtención de genomas de CoV...45spa
dc.description.tableofcontents5.2.1.2 Optimización de muestras para secuenciación de genoma de IV...45spa
dc.description.tableofcontents5.2.2 Análisis filogenético....46spa
dc.description.tableofcontents5.2.2.1 Coronavirus....46spa
dc.description.tableofcontents5.2.2.2 Influenza A virus...50spa
dc.description.tableofcontents5.2.3 Determinación del ancestro común más cercano (TMCRA)...52spa
dc.description.tableofcontents5.2.3.1 Coronavirus...52spa
dc.description.tableofcontents5.2.3.2 Influenza A virus ...53spa
dc.description.tableofcontents5.3 Resultados relacionados con el cumplimiento del objetivo específico 3...54spa
dc.description.tableofcontents5.3.1 Modelamiento de la proteína de la espícula (S) de coronavirus...54spa
dc.description.tableofcontents5.3.1.1 Docking molecular...57spa
dc.description.tableofcontents5.3.2 Modelamiento de la neuraminidasa (N) de Influenza A virus...59spa
dc.description.tableofcontents5.3.2.1 Docking molecular...63spa
dc.description.tableofcontents5.4 Resultados relacionados con el cumplimiento del objetivo específico 4...63spa
dc.description.tableofcontents5.4.1 Comunidades rurales...63spa
dc.description.tableofcontents5.4.2 Población estudiantil...65spa
dc.description.tableofcontents6. Discusión...66spa
dc.description.tableofcontents7. Conclusiones...74spa
dc.description.tableofcontents8. Recomendaciones...75spa
dc.description.tableofcontents9. Glosario...75spa
dc.description.tableofcontents10. Referencias...76spa
dc.description.tableofcontents11. Anexos...93spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8368
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Microbiología Tropical
dc.relation.references1. Gupta P, Singh MP, Goyal K, Tripti P, Ansari MI, Obli Rajendran V, et al. Bats and viruses: a death-defying friendship. VirusDisease 2021 32:3 [Internet]. 2021 Sep 9 [cited 2022 May 6];32(3):467–79. Available from: https://link.springer.com/article/10.1007/s13337-021-00716-0
dc.relation.references2. Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology 2020 18:8 [Internet]. 2020 Jun 11 [cited 2023 Jul 14];18(8):461–71. Available from: https://www.nature.com/articles/s41579-020-0394-z
dc.relation.references3. Pawan JL. The Transmission of Paralytic Rabies in Trinidad by the Vampire Bat (Desmodus Rotundus Murinus Wagner, 1840). Ann Trop Med Parasitol [Internet]. 1936;30(1):101–30. Available from: https://doi.org/10.1080/00034983.1936.11684921
dc.relation.references4. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science (1979) [Internet]. 2005 Oct 28 [cited 2023 Jul 14];310(5748):676–9. Available from: https://www.science.org/doi/10.1126/science.111839
dc.relation.references5. Campos ACA, Góes LGB, Moreira-Soto A, de Carvalho C, Ambar G, Sander AL, et al. Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil. Emerg Infect Dis [Internet]. 2019 Feb 1 [cited 2022 May 6];25(2):333. Available from: /pmc/articles/PMC6346480/
dc.relation.references6. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, Binger T, et al. Bats host major mammalian paramyxoviruses. Nature Communications 2012 3:1 [Internet]. 2012 Apr 24 [cited 2023 Jul 14];3(1):1–13. Available from: https://www.nature.com/articles/ncomms1796
dc.relation.references7. Corman VM, Rasche A, Diallo TD, Cottontail VM, Stöcker A, Souza BF de CD, et al. Highly diversified coronaviruses in neotropical bats. Journal of General Virology [Internet]. 2013 Sep 1 [cited 2024 Feb 25];94(PART9):1984–94. Available from: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.054841-0
dc.relation.references8. Wang LF, Anderson DE. Viruses in bats and potential spillover to animals and humans. Curr Opin Virol. 2019 Feb 1;34:79–89.
dc.relation.references9. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020 Mar 12 [cited 2024 Feb 25];579(7798):270–3. Available from: https://pubmed.ncbi.nlm.nih.gov/32015507/
dc.relation.references10. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. Global patterns in coronavirus diversity. Virus Evol [Internet]. 2017 Jan 1 [cited 2024 Feb 25];3(1):12. Available from: https://dx.doi.org/10.1093/ve/vex012
dc.relation.references11. Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, et al. Ecology, evolution and spillover of coronaviruses from bats. Nature Reviews Microbiology 2021 20:5 [Internet]. 2021 Nov 19 [cited 2024 Feb 25];20(5):299–314. Available from: https://www.nature.com/articles/s41579-021-00652-2
dc.relation.references12. Bittar C, Machado RRG, Comelis MT, Bueno LM, Beguelini MR, Morielle-Versute E, et al. Alphacoronavirus Detection in Lungs, Liver, and Intestines of Bats from Brazil. Microb Ecol [Internet]. 2020 Jan 1 [cited 2024 Feb 25];79(1):203–12. Available from: https://link.springer.com/article/10.1007/s00248-019-01391-x
dc.relation.references13. Asano KM, Hora AS, Scheffer KC, Fahl WO, Iamamoto K, Mori E, et al. Alphacoronavirus in urban Molossidae and Phyllostomidae bats, Brazil. Virol J [Internet]. 2016 Jun 24 [cited 2024 Feb 25];13(1):1–5. Available from: https://link.springer.com/articles/10.1186/s12985-016-0569-4
dc.relation.references14. Lima FEDS, Campos FS, Kunert Filho HC, Batista HBDCR, Carnielli Júnior P, Cibulski SP, et al. Detection of Alphacoronavirus in velvety free-tailed bats (Molossus molossus) and Brazilian free-tailed bats (Tadarida brasiliensis) from urban area of Southern Brazil. Virus Genes [Internet]. 2013 Aug 16 [cited 2024 Feb 25];47(1):164– 7. Available from: https://link.springer.com/article/10.1007/s11262-013-0899-x
dc.relation.references15. Dominguez SR, O’Shea TJ, Oko LM, Holmes K V. Detection of Group 1 Coronaviruses in Bats in North America. Emerg Infect Dis [Internet]. 2007 [cited 2024 Feb 25];13(9):1295. Available from: /pmc/articles/PMC2857301/
dc.relation.references16. Bonny TS, Driver JP, Paisie T, Salemi M, Morris JG, Shender LA, et al. Detection of Alphacoronavirus vRNA in the Feces of Brazilian Free-Tailed Bats (Tadarida brasiliensis) from a Colony in Florida, USA. Diseases 2017, Vol 5, Page 7 [Internet]. 2017 Feb 27 [cited 2024 Feb 25];5(1):7. Available from: https://www.mdpi.com/2079- 9721/5/1/7/htm
dc.relation.references17. Woo PCY, Lau SKP, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med [Internet]. 2009 Oct 1 [cited 2024 Feb 25];234(10):1117–27. Available from: https://journals.sagepub.com/doi/full/10.3181/0903-MR-94
dc.relation.references18. Sriwilaijaroen N, Suzuki Y. Host Receptors of Influenza Viruses and Coronaviruses— Molecular Mechanisms of Recognition. Vaccines (Basel) [Internet]. 2020 Dec 1 [cited 2023 Jun 16];8(4):1–47. Available from: /pmc/articles/PMC7712180/
dc.relation.references19. Ciminski K, Pfaff F, Beer M, Schwemmle M. Bats reveal the true power of influenza A virus adaptability. PLoS Pathog [Internet]. 2020 Apr 1 [cited 2022 May 6];16(4):e1008384. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1008384
dc.relation.references20. Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol. 2018 Jul 20;9(JUL):383042.
dc.relation.references21. Tong S, Li Y, Rivailler P, Conrardy C, Alvarez Castillo DA, Chen LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A [Internet]. 2012 Mar 13 [cited 2022 May 6];109(11):4269–74. Available from: www.pnas.org/cgi/doi/10.1073/pnas.1116200109
dc.relation.references22. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog [Internet]. 2013 Oct [cited 2022 May 6];9(10):e1003657. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003657
dc.relation.references23. Kandeil A, Gomaa MR, Shehata MM, El Taweel AN, Mahmoud SH, Bagato O, et al. Isolation and Characterization of a Distinct Influenza A Virus from Egyptian Bats. J Virol [Internet]. 2019 Jan 15 [cited 2022 May 6];93(2). Available from: https://journals.asm.org/doi/full/10.1128/JVI.01059-18
dc.relation.references24. Ciminski K, Ran W, Gorka M, Lee J, Malmlov A, Schinköthe J, et al. Bat influenza viruses transmit among bats but are poorly adapted to non-bat species. Nature Microbiology 2019 4:12 [Internet]. 2019 Sep 16 [cited 2023 Jul 18];4(12):2298–309. Available from: https://www.nature.com/articles/s41564-019-0556-9
dc.relation.references25. Zhong G, Fan S, Hatta M, Nakatsu S, Walters KB, Lopes TJS, et al. Mutations in the Neuraminidase-Like Protein of Bat Influenza H18N11 Virus Enhance Virus Replication in Mammalian Cells, Mice, and Ferrets. J Virol [Internet]. 2020 Feb 14 [cited 2023 Jul 18];94(5). Available from: https://journals.asm.org/doi/10.1128/jvi.01416-19
dc.relation.references26. Yang W, Schountz T, Ma W. Bat Influenza Viruses: Current Status and Perspective. Viruses [Internet]. 2021 Apr 1 [cited 2022 May 6];13(4). Available from: /pmc/articles/PMC8064322/
dc.relation.references27. Pulliam JRC, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface [Internet]. 2012 Jan 7 [cited 2022 May 16];9(66):89–101. Available from: https://pubmed.ncbi.nlm.nih.gov/21632614/
dc.relation.references28. Sabino-Santos G, Maia FGM, Martins RB, Gagliardi TB, De Souza WM, Muylaert RL, et al. Natural infection of Neotropical bats with hantavirus in Brazil. Scientific Reports 2018 8:1 [Internet]. 2018 Jun 13 [cited 2022 May 6];8(1):1–8. Available from: https://www.nature.com/articles/s41598-018-27442-w
dc.relation.references29. Allen LJS, Wesley CL, Owen RD, Goodin DG, Koch D, Jonsson CB, et al. A habitat- based model for the spread of hantavirus between reservoir and spillover species. J Theor Biol. 2009 Oct 21;260(4):510–22.
dc.relation.references30. Asamblea departamental de Córdoba. “Ahora le Toca a Córdoba: Oportunidades, Bienestar y Seguridad” [Internet]. 2020 [cited 2022 May 16]. Available from: https://cordoba.gov.co/documentos/452/plan-de-desarrollo-2020--2023/
dc.relation.references31. Asamblea Departamental de Bolívar. Proyecto de Ordenanza Plan de Desarrollo para el Departamento de Bolívar 2020-2023 [Internet]. 2020 [cited 2024 Jun 24]. Available from: https://asambleadebolivar.gov.co/servicios/2020/proyecto-de- ordenanza-plan-de-desarrollo-bolivar-2020-2023
dc.relation.references32. Wilkinson DA, Marshall JC, French NP, Hayman DTS. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J R Soc Interface [Internet]. 2018 Dec 1 [cited 2022 May 16];15(149). Available from: https://pubmed.ncbi.nlm.nih.gov/30518565/
dc.relation.references33. Guzmán C, Calderón A, Oviedo T, Mattar S, Castañeda J, Rodriguez V, et al. Molecular and cellular evidence of natural Venezuelan equine encephalitis virus infection in frugivorous bats in Colombia. Vet World [Internet]. 2020 Mar 1 [cited 2022 Apr 15];13(3):495–501. Available from: https://pubmed.ncbi.nlm.nih.gov/32367955/
dc.relation.references34. Calderón A, Guzmán C, Mattar S, Rodríguez V, Acosta A, Martínez C. Frugivorous bats in the Colombian Caribbean region are reservoirs of the rabies virus. Ann Clin Microbiol Antimicrob [Internet]. 2019 Mar 19 [cited 2022 Apr 15];18(1):1–8. Available from: https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-019-0308-y
dc.relation.references35. Calderón A, Guzmán C, Mattar S, Rodriguez V, Martínez C, Violet L, et al. Dengue Virus in Bats from Córdoba and Sucre, Colombia. Vector-Borne and Zoonotic Diseases [Internet]. 2019 Oct 1 [cited 2022 Apr 15];19(10):747–51. Available from: https://www.liebertpub.com/doi/full/10.1089/vbz.2018.2324
dc.relation.references36. Calderón A, Guzmán C, Oviedo-Socarras T, Mattar S, Rodríguez V, Castañeda V, et al. Two Cases of Natural Infection of Dengue-2 Virus in Bats in the Colombian Caribbean. Tropical Medicine and Infectious Disease 2021, Vol 6, Page 35 [Internet]. 2021 Mar 12 [cited 2022 Sep 14];6(1):35. Available from: https://www.mdpi.com/2414-6366/6/1/35/htm
dc.relation.references37. Gunnell GF, Simmons NB. Fossil evidence and the origin of bats. J Mamm Evol [Internet]. 2005 Jun [cited 2024 Apr 27];12(1-2 SPEC. ISS.):209–46. Available from: https://link.springer.com/article/10.1007/s10914-005-6945-2
dc.relation.references38. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 2008 451:7180 [Internet]. 2008 Feb 14 [cited 2024 Apr 27];451(7180):818–21. Available from: https://www.nature.com/articles/nature06549
dc.relation.references39. Mickleburgh SP, Hutson AM, Racey PA. A review of the global conservation status of bats. Oryx [Internet]. 2002 Jan [cited 2024 Apr 27];36(1):18–34. Available from: https://www.cambridge.org/core/journals/oryx/article/review-of-the-global- conservation-status-of-bats/C6E366DAB7EF0AA044C205ECD407944A
dc.relation.references40. Clare EL, Lim BK, Fenton MB, Hebert PDN. Neotropical Bats: Estimating Species Diversity with DNA Barcodes. PLoS One [Internet]. 2011 [cited 2024 Apr 27];6(7):e22648. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022648
dc.relation.references41. Castillo-Figueroa D. Ecological Morphology of Neotropical Bat Wing Structures. Zool Stud [Internet]. 2020 [cited 2024 Apr 27];59:e60. Available from: /pmc/articles/PMC8181164/
dc.relation.references42. Brook CE, Dobson AP. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol [Internet]. 2015 [cited 2024 Apr 27];23(3):172. Available from: /pmc/articles/PMC7126622/
dc.relation.references43. Mishra N, Fagbo SF, Alagaili AN, Nitido A, Williams SH, Ng J, et al. A viral metagenomic survey identifies known and novel mammalian viruses in bats from Saudi Arabia. PLoS One [Internet]. 2019 Apr 1 [cited 2022 Apr 15];14(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30969980/
dc.relation.references44. Bergner LM, Mollentze N, Orton RJ, Tello C, Broos A, Biek R, et al. Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats. Viruses 2021, Vol 13, Page 252 [Internet]. 2021 Feb 6 [cited 2022 Apr 12];13(2):252. Available from: https://www.mdpi.com/1999-4915/13/2/252/htm
dc.relation.references45. Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis [Internet]. 2002 Dec 1 [cited 2024 Apr 29];8(12):1468–73. Available from: https://pubmed.ncbi.nlm.nih.gov/12498665/
dc.relation.references46. Lord JS, Parker S, Parker F, Brooks DR. Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/Pipistrellus pygmaeus) (Chiroptera: Vespertilionidae) of England. Parasitology [Internet]. 2012 Mar [cited 2024 Apr 29];139(3):366–74. Available from: https://pubmed.ncbi.nlm.nih.gov/22217158/
dc.relation.references47. Ramasindrazana B, Dellagi K, Lagadec E, Randrianarivelojosia M, Goodman SM, Tortosa P. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats. PLoS One [Internet]. 2016 Jan 11 [cited 2024 Apr 29];11(1):e0145709. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145709
dc.relation.references48. Evans NJ, Bown K, Timofte D, Simpson VR, Birtles RJ. Fatal Borreliosis in Bat Caused by Relapsing Fever Spirochete, United Kingdom. Emerg Infect Dis [Internet]. 2009 Aug [cited 2024 Apr 29];15(8):1331. Available from: /pmc/articles/PMC2815988/
dc.relation.references49. Greer DL, McMurray DN. Pathogenesis of experimental histoplasmosis in the bat, Artibeus lituratus. Am J Trop Med Hyg [Internet]. 1981 [cited 2024 Apr 29];30(3):653– 9. Available from: https://pubmed.ncbi.nlm.nih.gov/7258485/
dc.relation.references50. Liu Z, Liu Q, Wang H, Yao X. Severe zoonotic viruses carried by different species of bats and their regional distribution. Clinical Microbiology and Infection [Internet]. 2024 Feb 1 [cited 2024 May 10];30(2):206–10. Available from: http://www.clinicalmicrobiologyandinfection.com/article/S1198743X23004913/fulltext
dc.relation.references51. Geldenhuys M, Mortlock M, Weyer J, Bezuidt O, Seamark ECJ, Kearney T, et al. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa. PLoS One [Internet]. 2018 Mar 1 [cited 2022 Apr 12];13(3):e0194527. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194527
dc.relation.references52. Mishra N, Fagbo SF, Alagaili AN, Nitido A, Williams SH, Ng J, et al. A viral metagenomic survey identifies known and novel mammalian viruses in bats from Saudi Arabia. PLoS One [Internet]. 2019 Apr 1 [cited 2022 Apr 15];14(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30969980/
dc.relation.references53. Skirmuntt EC, Escalera-Zamudio M, Teeling EC, Smith A, Katzourakis A. The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annu Rev Virol [Internet]. 2020 Sep 29 [cited 2024 Apr 29];7(Volume 7, 2020):103–19. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-virology-092818- 015613
dc.relation.references54. Luis AD, Hayman DTS, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JRC, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proceedings of the Royal Society B: Biological Sciences [Internet]. 2013 [cited 2024 Apr 29];280(1756). Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2012.2753
dc.relation.references55. Turmelle AS, Olival KJ. Correlates of Viral Richness in Bats (Order Chiroptera). EcoHealth 2010 6:4 [Internet]. 2010 Jan 5 [cited 2024 Apr 29];6(4):522–39. Available from: https://link.springer.com/article/10.1007/s10393-009-0263-8
dc.relation.references56. Teeling EC, Vernes SC, Dávalos LM, Ray DA, Gilbert MTP, Myers E. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annu Rev Anim Biosci [Internet]. 2018 Feb 15 [cited 2024 Apr 29];6(Volume 6, 2018):23–46. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-animal-022516- 022811
dc.relation.references57. De Araujo J, Thomazelli LM, Henriques DA, Lautenschalager D, Ometto T, Dutra LM, et al. Detection of hantavirus in bats from remaining rain forest in São Paulo, Brazil. BMC Res Notes [Internet]. 2012 Dec 21 [cited 2022 May 14];5(1):1–5. Available from: https://link.springer.com/articles/10.1186/1756-0500-5-690
dc.relation.references58. Sabino-Santos G, Maia FGM, Martins RB, Gagliardi TB, De Souza WM, Muylaert RL, et al. Natural infection of Neotropical bats with hantavirus in Brazil. Scientific Reports 2018 8:1 [Internet]. 2018 Jun 13 [cited 2022 Sep 6];8(1):1–8. Available from: https://www.nature.com/articles/s41598-018-27442-w
dc.relation.references59. Fuoco NL, Fernandes ER, dos Ramos Silva S, Luiz FG, Ribeiro OG, Santos Katz IS. Street rabies virus strains associated with insectivorous bats are less pathogenic than strains isolated from other reservoirs. Antiviral Res. 2018 Dec 1;160:94–100.
dc.relation.references60. Cargnelutti JF, de Oliveira PSB, Pacheco SM, dos Santos HF, Weiblen R, Flores EF. Genetic identification of a rabies virus from an insectivorous bat in an urban area of Rio Grande do Sul, Brazil. Brazilian Journal of Microbiology 2021 52:3 [Internet]. 2021 May 4 [cited 2022 Sep 7];52(3):1627–30. Available from: https://link.springer.com/article/10.1007/s42770-021-00519-x
dc.relation.references61. de Souza WM, Fumagalli MJ, Carrera JP, de Araujo J, Cardoso JF, de Carvalho C, et al. Paramyxoviruses from neotropical bats suggest a novel genus and nephrotropism. Infection, Genetics and Evolution. 2021 Nov 1;95:105041.
dc.relation.references62. Wells HL, Loh E, Nava A, Solorio MR, Lee MH, Lee J, et al. Classification of new morbillivirus and jeilongvirus sequences from bats sampled in Brazil and Malaysia. Arch Virol [Internet]. 2022 Jul 4 [cited 2022 Sep 6];167(10):1977–87. Available from: https://link.springer.com/article/10.1007/s00705-022-05500-z
dc.relation.references63. Rojas-Sereno ZE, Streicker DG, Medina-Rodríguez AT, Benavides JA. Drivers of Spatial Expansions of Vampire Bat Rabies in Colombia. Viruses [Internet]. 2022 Nov 1 [cited 2023 Mar 8];14(11):2318. Available from: https://www.mdpi.com/1999- 4915/14/11/2318/htm
dc.relation.references64. Pieracci EG, Brown JA, Bergman DL, Gilbert A, Wallace RM, Blanton JD, et al. Evaluation of species identification and rabies virus characterization among bat rabies cases in the United States. J Am Vet Med Assoc [Internet]. 2020 Jan 1 [cited 2022 Sep 14];256(1):77–84. Available from: https://avmajournals.avma.org/view/journals/javma/256/1/javma.256.1.77.xml
dc.relation.references65. Hyeon JY, Risatti GR, Helal ZH, McGinnis H, Sims M, Hunt A, et al. Whole Genome Sequencing and Phylogenetic Analysis of Rabies Viruses from Bats in Connecticut, USA, 2018-2019. Viruses [Internet]. 2021 Dec 1 [cited 2022 Sep 14];13(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34960769/
dc.relation.references66. do Carmo Cupertino M, de Souza Bayão T, Xisto M, de Paula SO, Ribeiro SP, Montenegro SSP, et al. Yellow fever virus investigation in tissues of vampire bats Desmodus rotundus during a wild yellow fever outbreak in Brazilian Atlantic Forest. Comp Immunol Microbiol Infect Dis. 2022 Sep 1;101869.
dc.relation.references67. Abundes-Gallegos J, Salas-Rojas M, Galvez-Romero G, Perea-Martínez L, Obregón- Morales CY, Morales-Malacara JB, et al. Detection of Dengue Virus in Bat Flies (Diptera: Streblidae) of Common Vampire Bats, Desmodus rotundus, in Progreso, Hidalgo, Mexico. https://home.liebertpub.com/vbz [Internet]. 2018 Jan 1 [cited 2022 Sep 13];18(1):70–3. Available from: https://www.liebertpub.com/doi/10.1089/vbz.2017.2163
dc.relation.references68. Torres-Castro M, Noh-Pech H, Hernández-Betancourt S, Peláez-Sánchez R, Lugo- Caballero C, Puerto FI. West Nile and Zika viruses in bats from a suburban area of Merida, Yucatan, Mexico. Zoonoses Public Health [Internet]. 2021 Nov 1 [cited 2022 Sep 13];68(7):834–41. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/zph.12834
dc.relation.references69. Moreira Marrero L, Botto Nuñez G, Frabasile S, Delfraro A. Alphavirus Identification in Neotropical Bats. Viruses [Internet]. 2022 Jan 28 [cited 2022 Sep 14];14(2):269. Available from: https://www.mdpi.com/1999-4915/14/2/269/htm
dc.relation.references70. Ubico SR, McLean RG. Serologic survey of neotropical bats in Guatemala for virus antibodies. J Wildl Dis [Internet]. 1995 [cited 2024 Apr 30];31(1):1–9. Available from: https://pubmed.ncbi.nlm.nih.gov/7563415/
dc.relation.references71. Platt KB, Mangiafico JA, Rocha OJ, Zaldivar ME, Mora J, Trueba G, et al. Detection of dengue virus neutralizing antibodies in bats from Costa Rica and Ecuador. J Med Entomol [Internet]. 2000 [cited 2024 Apr 30];37(6):965–7. Available from: https://pubmed.ncbi.nlm.nih.gov/11126559/
dc.relation.references72. Favoretto SR, Carrieri ML, Cunha EMS, Aguiar EAC, Silva LHQ, Sodré MM, et al. Antigenic typing of Brazilian rabies virus samples isolated from animals and humans, 1989-2000. Rev Inst Med Trop Sao Paulo [Internet]. 2002 [cited 2024 Apr 30];44(2):91–5. Available from: https://pubmed.ncbi.nlm.nih.gov/12048546/
dc.relation.references73. Bolatti EM, Viarengo G, Zorec TM, Cerri A, Montani ME, Hosnjak L, et al. Viral Metagenomic Data Analyses of Five New World Bat Species from Argentina: Identification of 35 Novel DNA Viruses. Microorganisms 2022, Vol 10, Page 266 [Internet]. 2022 Jan 24 [cited 2022 Sep 18];10(2):266. Available from: https://www.mdpi.com/2076-2607/10/2/266/htm
dc.relation.references74. Cibulski SP, de Sales Lima FE, Teixeira TF, Varela APM, Scheffer CM, Mayer FQ, et al. Detection of multiple viruses in oropharyngeal samples from Brazilian free-tailed bats (Tadarida brasiliensis) using viral metagenomics. Arch Virol [Internet]. 2021 Jan 1 [cited 2023 Jul 20];166(1):207–12. Available from: https://link.springer.com/article/10.1007/s00705-020-04825-x
dc.relation.references75. Bergner LM, Orton RJ, Benavides JA, Becker DJ, Tello C, Biek R, et al. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol Ecol [Internet]. 2020 Jan 1 [cited 2022 Sep 18];29(1):26–39. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15250
dc.relation.references76. Barrón-Rodríguez RJ, Parra-Laca R, Rojas-Anaya E, Romero-Espinoza JÁI, Ayala- Sumuano JT, Vázquez-Pérez JA, et al. Evidence of viral communities in three species of bats from rural environment in Mexico. Acta Chiropt. 2022 Aug 18;24(1).
dc.relation.references77. Li Y, Altan E, Reyes G, Halstead B, Deng X, Delwart E. Virome of Bat Guano from Nine Northern California Roosts. J Virol [Internet]. 2021 Jan 13 [cited 2022 Sep 14];95(3). Available from: https://journals.asm.org/doi/10.1128/JVI.01713-20
dc.relation.references78. James S, Donato D, de Thoisy B, Lavergne A, Lacoste V. Novel herpesviruses in neotropical bats and their relationship with other members of the Herpesviridae family. Infection, Genetics and Evolution. 2020 Oct 1;84:104367.
dc.relation.references79. Bonilla-Aldana DK, Jimenez-Diaz SD, Arango-Duque JS, Aguirre-Florez M, Balbin- Ramon GJ, Paniz-Mondolfi A, et al. Bats in ecosystems and their Wide spectrum of viral infectious potential threats: SARS-CoV-2 and other emerging viruses. International Journal of Infectious Diseases. 2021 Jan 1;102:87–96.
dc.relation.references80. Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol [Internet]. 2012 Apr [cited 2024 Feb 25];86(7):3995– 4008. Available from: https://pubmed.ncbi.nlm.nih.gov/22278237/
dc.relation.references81. Conceicao C, Thakur N, Human S, Kelly JT, Logan L, Bialy D, et al. The SARS-CoV- 2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol [Internet]. 2020 Dec 21 [cited 2024 Feb 25];18(12). Available from: https://pubmed.ncbi.nlm.nih.gov/33347434/
dc.relation.references82. Chen L, Liu B, Yang J, Jin Q. DBatVir: the database of bat-associated viruses. Database [Internet]. 2014 Jan 1 [cited 2024 Apr 30];2014. Available from: https://dx.doi.org/10.1093/database/bau021
dc.relation.references83. Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. J Virol [Internet]. 2017 Mar [cited 2024 Apr 30];91(5). Available from: https://journals.asm.org/doi/10.1128/jvi.01953-16
dc.relation.references84. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology 2018 17:3 [Internet]. 2018 Dec 10 [cited 2024 Apr 30];17(3):181–92. Available from: https://www.nature.com/articles/s41579-018-0118-9
dc.relation.references85. Bueno LM, Rizotto LS, Viana A de O, Silva LMN, de Moraes MV dos S, Benassi JC, et al. High genetic diversity of alphacoronaviruses in bat species (Mammalia: Chiroptera) from the Atlantic Forest in Brazil. Transbound Emerg Dis [Internet]. 2022 [cited 2022 Sep 18]; Available from: https://pubmed.ncbi.nlm.nih.gov/35729863/
dc.relation.references86. Alves RS, do Canto Olegário J, Weber MN, da Silva MS, Canova R, Sauthier JT, et al. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound Emerg Dis [Internet]. 2022 Jul 1 [cited 2022 Sep 6];69(4):2384–9. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tbed.14150
dc.relation.references87. Bergner LM, Orton RJ, Streicker DG. Complete Genome Sequence of an Alphacoronavirus from Common Vampire Bats in Peru. Microbiol Resour Announc [Internet]. 2020 Aug 20 [cited 2022 Sep 18];9(34). Available from: https://journals.asm.org/doi/10.1128/MRA.00742-20
dc.relation.references88. Arteaga FL, Miragaya M, Molina N, Mondino MA, Bracamonte JC, Capitelli GM, et al. Circulation of coronavirus in bats from northern and central Argentina: preliminary study. International Journal of Infectious Diseases. 2022 Mar 1;116:S76–7.
dc.relation.references89. Lucero Arteaga F, Miragaya M, Molina N, Mondino M, Bracamonte C, Capitelli G, et al. Identification of coronaviruses in bats and rodents in northern and central Argentina. Arch Virol [Internet]. 2023 Mar 1 [cited 2023 Mar 25];168(3):78. Available from: /pmc/articles/PMC9899506/
dc.relation.references90. Moreira-Soto A, Taylor-Castillo L, Vargas-Vargas N, Rodríguez-Herrera B, Jiménez C, Corrales-Aguilar E. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses. Zoonoses Public Health [Internet]. 2015 Nov 1 [cited 2024 May 1];62(7):501. Available from: /pmc/articles/PMC7165833/
dc.relation.references91. Góes LGB, Campos AC de A, Carvalho C de, Ambar G, Queiroz LH, Cruz-Neto AP, et al. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil. Infect Genet Evol [Internet]. 2016 Oct 1 [cited 2024 May 1];44:510–3. Available from: https://pubmed.ncbi.nlm.nih.gov/27473780/
dc.relation.references92. Colunga-Salas P, Hernández-Canchola G. Bats and humans during the SARS-CoV- 2 outbreak: The case of bat-coronaviruses from Mexico. Transbound Emerg Dis [Internet]. 2021 May 1 [cited 2022 Sep 13];68(3):987–92. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tbed.13751
dc.relation.references93. Schaeffer R, Temeeyasen G, Hause BM. Alphacoronaviruses Are Common in Bats in the Upper Midwestern United States. Viruses [Internet]. 2022 Feb 1 [cited 2022 Sep 14];14(2). Available from: https://pubmed.ncbi.nlm.nih.gov/35215778/
dc.relation.references94. Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe [Internet]. 2020 Sep 1 [cited 2024 May 1];1(5):e218–25. Available from: http://www.thelancet.com/article/S2666524720300896/fulltext
dc.relation.references95. Munster VJ, Adney DR, Van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Scientific Reports 2016 6:1 [Internet]. 2016 Feb 22 [cited 2024 May 1];6(1):1–10. Available from: https://www.nature.com/articles/srep21878
dc.relation.references96. Hall JS, Knowles S, Nashold SW, Ip HS, Leon AE, Rocke T, et al. Experimental challenge of a North American bat species, big brown bat (Eptesicus fuscus), with SARS-CoV-2. Transbound Emerg Dis [Internet]. 2021 Nov 1 [cited 2022 Sep 18];68(6):3443–52. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tbed.13949
dc.relation.references97. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nature Reviews Disease Primers 2018 4:1 [Internet]. 2018 Jun 28 [cited 2023 Jun 16];4(1):1–21. Available from: https://www.nature.com/articles/s41572-018- 0002-y
dc.relation.references98. Sato M, Maruyama J, Kondoh T, Nao N, Miyamoto H, Takadate Y, et al. Generation of bat-derived influenza viruses and their reassortants. Sci Rep [Internet]. 2019 Dec 1 [cited 2022 May 6];9(1). Available from: /pmc/articles/PMC6362294/
dc.relation.references99. Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Experimental & Molecular Medicine 2021 53:5 [Internet]. 2021 May 6 [cited 2023 Apr 11];53(5):737–49. Available from: https://www.nature.com/articles/s12276-021-00603-0
dc.relation.references100. Watanabe Y, Ibrahim MS, Suzuki Y, Ikuta K. The changing nature of avian influenza A virus (H5N1). Trends Microbiol [Internet]. 2012 Jan [cited 2023 Jun 16];20(1):11– 20. Available from: https://pubmed.ncbi.nlm.nih.gov/22153752/
dc.relation.references101. Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nature Reviews Microbiology 2018 17:2 [Internet]. 2018 Nov 28 [cited 2023 Jun 16];17(2):67–81. Available from: https://www.nature.com/articles/s41579-018-0115-z
dc.relation.references102. Zhu X, Yang H, Guo Z, Yu W, Carney PJ, Li Y, et al. Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site. Proc Natl Acad Sci U S A [Internet]. 2012 Nov 13 [cited 2024 May 2];109(46):18903–8. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1212579109
dc.relation.references103. Sun X, Shi Y, Lu X, He J, Gao F, Yan J, et al. Bat-Derived Influenza Hemagglutinin H17 Does Not Bind Canonical Avian or Human Receptors and Most Likely Uses a Unique Entry Mechanism. Cell Rep [Internet]. 2013 Mar 28 [cited 2024 May 2];3(3):769–78. Available from: http://www.cell.com/article/S2211124713000326/fulltext
dc.relation.references104. Kirkpatrick E, Qiu X, Wilson PC, Bahl J, Krammer F. The influenza virus hemagglutinin head evolves faster than the stalk domain. Scientific Reports 2018 8:1 [Internet]. 2018 Jul 11 [cited 2023 Jun 16];8(1):1–14. Available from: https://www.nature.com/articles/s41598-018-28706-1
dc.relation.references105. Karakus U, Thamamongood T, Ciminski K, Ran W, Günther SC, Pohl MO, et al. MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature 2019 567:7746 [Internet]. 2019 Feb 20 [cited 2024 May 2];567(7746):109–12. Available from: https://www.nature.com/articles/s41586-019-0955-3
dc.relation.references106. Giotis ES, Carnell G, Young EF, Ghanny S, Soteropoulos P, Wang LF, et al. Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nature Microbiology 2019 4:12 [Internet]. 2019 Jul 29 [cited 2024 May 2];4(12):2035–8. Available from: https://www.nature.com/articles/s41564-019- 0517-3
dc.relation.references107. Phelps KL, Hamel L, Alhmoud N, Ali S, Bilgin R, Sidamonidze K, et al. Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses 2019, Vol 11, Page 240 [Internet]. 2019 Mar 10 [cited 2022 Apr 12];11(3):240. Available from: https://www.mdpi.com/1999-4915/11/3/240/htm
dc.relation.references108. Grubaugh ND, Ladner JT, Lemey P, Pybus OG, Rambaut A, Holmes EC, et al. Tracking virus outbreaks in the twenty-first century. Nature Microbiology 2018 4:1 [Internet]. 2018 Dec 13 [cited 2024 Jun 22];4(1):10–9. Available from: https://www.nature.com/articles/s41564-018-0296-2
dc.relation.references109. Swelum AA, Shafi ME, Albaqami NM, El-Saadony MT, Elsify A, Abdo M, et al. COVID- 19 in Human, Animal, and Environment: A Review. Front Vet Sci. 2020 Sep 4;7:564334.
dc.relation.references110. Holmes EC. The Ecology of Viral Emergence. Annu Rev Virol [Internet]. 2022 Sep 29 [cited 2024 Jun 22];9(Volume 9, 2022):173–92. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-virology-100120- 015057
dc.relation.references111. Rife BD, Mavian C, Chen X, Ciccozzi M, Salemi M, Min J, et al. Phylodynamic applications in 21st century global infectious disease research. Glob Health Res Policy [Internet]. 2017 Dec 1 [cited 2024 Jun 22];2(1):1–10. Available from: https://ghrp.biomedcentral.com/articles/10.1186/s41256-017-0034-y
dc.relation.references112. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol [Internet]. 2016 Jun 1 [cited 2024 Feb 25];24(6):490–502. Available from: https://pubmed.ncbi.nlm.nih.gov/27012512/
dc.relation.references113. Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg [Internet]. 2020 Sep 1 [cited 2022 Apr 12];103(3):955–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32700664/
dc.relation.references114. Schountz T, Baker ML, Butler J, Munster V. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol [Internet]. 2017 Sep 11 [cited 2024 May 2];8(SEP):295561. Available from: www.frontiersin.org
dc.relation.references115. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al. Dampened NLRP3- mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology 2019 4:5 [Internet]. 2019 Feb 25 [cited 2024 May 2];4(5):789– 99. Available from: https://www.nature.com/articles/s41564-019-0371-3
dc.relation.references116. Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, et al. Dampened STING-Dependent Interferon Activation in Bats. Cell Host Microbe [Internet]. 2018 Mar 14 [cited 2024 May 2];23(3):297-301.e4. Available from: http://www.cell.com/article/S1931312818300416/fulltext
dc.relation.references117. Afelt A, Lacroix A, Zawadzka-Pawlewska U, Pokojski W, Buchy P, Frutos R. Distribution of bat-borne viruses and environment patterns. Infection, Genetics and Evolution. 2018 Mar 1;58:181–91.
dc.relation.references118. Guy C, Ratcliffe JM, Mideo N. The influence of bat ecology on viral diversity and reservoir status. Ecol Evol [Internet]. 2020 Jun 1 [cited 2024 May 19];10(12):5748– 58. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6315
dc.relation.references119. Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, Tashmukhamedova A, et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf- nosed bat in Nigeria. mBio [Internet]. 2010 Oct 12 [cited 2024 Feb 25];1(4). Available from: https://journals.asm.org/doi/10.1128/mbio.00208-10
dc.relation.references120. Shu B, Kirby MK, Davis WG, Warnes C, Liddell J, Liu J, et al. Multiplex Real-Time Reverse Transcription PCR for Influenza A Virus, Influenza B Virus, and Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis [Internet]. 2021 Jul 1 [cited 2023 Jul 18];27(7):1821. Available from: /pmc/articles/PMC8237866/
dc.relation.references121. Claro IM, Ramundo MS, Coletti TM, da Silva CAM, Valenca IN, Candido DS, et al. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res [Internet]. 2023 [cited 2024 Jun 9];6. Available from: https://pubmed.ncbi.nlm.nih.gov/37224315/
dc.relation.references122. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics [Internet]. 2018 Sep 1 [cited 2024 Feb 25];34(17):i884–90. Available from: https://dx.doi.org/10.1093/bioinformatics/bty560
dc.relation.references123. Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016 Jun 1;102:3–11.
dc.relation.references124. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature Methods 2014 12:1 [Internet]. 2014 Nov 17 [cited 2024 Feb 25];12(1):59–60. Available from: https://www.nature.com/articles/nmeth.3176
dc.relation.references125. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods 2012 9:4 [Internet]. 2012 Mar 4 [cited 2024 Jan 30];9(4):357–9. Available from: https://www.nature.com/articles/nmeth.1923
dc.relation.references126. Okonechnikov K, Golosova O, Fursov M, Varlamov A, Vaskin Y, Efremov I, et al. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics [Internet]. 2012 Apr 15 [cited 2024 May 3];28(8):1166–7. Available from: https://dx.doi.org/10.1093/bioinformatics/bts091
dc.relation.references127. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics [Internet]. 2014 Jul 15 [cited 2024 May 3];30(14):2068–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24642063/
dc.relation.references128. Kuraku S, Zmasek CM, Nishimura O, Katoh K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res [Internet]. 2013 Jul 1 [cited 2024 Jan 30];41(W1):W22–8. Available from: https://dx.doi.org/10.1093/nar/gkt389
dc.relation.references129. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol [Internet]. 2015 Jan 1 [cited 2024 Jan 30];32(1):268–74. Available from: https://dx.doi.org/10.1093/molbev/msu300
dc.relation.references130. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol [Internet]. 2018 Jan 1 [cited 2024 May 3];4(1). Available from: https://dx.doi.org/10.1093/ve/vex042
dc.relation.references131. Samson S, Lord É, Makarenkov V. SimPlot++: a Python application for representing sequence similarity and detecting recombination. Bioinformatics [Internet]. 2022 Jun 1 [cited 2024 Jun 9];38(11):3118–20. Available from: https://pubmed.ncbi.nlm.nih.gov/35451456/
dc.relation.references132. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol [Internet]. 2014 [cited 2023 Jul 21];10(4):e1003537. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003537
dc.relation.references133. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol [Internet]. 2018 Sep 1 [cited 2024 May 3];67(5):901–4. Available from: https://dx.doi.org/10.1093/sysbio/syy032
dc.relation.references134. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res [Internet]. 2003 Jul 7 [cited 2024 May 3];31(13):3381. Available from: /pmc/articles/PMC168927/
dc.relation.references135. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci [Internet]. 2018 Jan 1 [cited 2024 May 3];27(1):14–25. Available from: https://pubmed.ncbi.nlm.nih.gov/28710774/
dc.relation.references136. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res [Internet]. 2019 [cited 2024 May 3];47(D1):D339–43. Available from: https://pubmed.ncbi.nlm.nih.gov/30357391/
dc.relation.references137. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow G V., et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res [Internet]. 2021 [cited 2024 Jun 9];49(D1):D437–51. Available from: https://pubmed.ncbi.nlm.nih.gov/33211854/
dc.relation.references138. Honorato R V., Koukos PI, Jiménez-García B, Tsaregorodtsev A, Verlato M, Giachetti A, et al. Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front Mol Biosci. 2021 Jul 28;8:729513.
dc.relation.references139. Meli P, Carlos Imio J, Lisón F. Tradeoffs in people’s perceptions about ecosystem services and disservices related to bats: Implications for managing agroecosystems and conserving bats. Ecosyst Serv. 2024 Apr 1;66:101609.
dc.relation.references140. Ghanem SJ, Voigt CC. Increasing Awareness of Ecosystem Services Provided by Bats. Adv Study Behav. 2012 Jan 1;44:279–302.
dc.relation.references141. Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM. Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies. PLoS Pathog [Internet]. 2012 Aug [cited 2024 Jun 12];8(8):e1002859. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002859
dc.relation.references142. Wang Q, Vlasova AN, Kenney SP, Saif LJ. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol. 2019 Feb 1;34:39–49.
dc.relation.references143. Ko KKK, Chng KR, Nagarajan N. Metagenomics-enabled microbial surveillance. Nature Microbiology 2022 7:4 [Internet]. 2022 Apr 1 [cited 2023 Aug 4];7(4):486–96. Available from: https://www.nature.com/articles/s41564-022-01089-w
dc.relation.references144. Newson L, Richerson PJ. Ice Age Humans (30,000 Years Ago). A Story of Us [Internet]. 2021 May 6 [cited 2024 May 7];113–43. Available from: https://academic.oup.com/book/42125/chapter/356152873
dc.relation.references145. Jia Y, Cao J, Wei Z. Bioinformatics Analysis of Spike Proteins of Porcine Enteric Coronaviruses. Biomed Res Int [Internet]. 2021 [cited 2024 May 7];2021. Available from: /pmc/articles/PMC8266444/
dc.relation.references146. Qi M, Zambrano-Moreno C, Pineda P, Calderón C, Rincón-Monroy MA, Diaz A, et al. Several lineages of porcine epidemic diarrhea virus in Colombia during the 2014 and 2016 epidemic. Transbound Emerg Dis [Internet]. 2021 Jul 1 [cited 2024 May 7];68(4):2465–76. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tbed.13914
dc.relation.references147. Wong AHM, Tomlinson ACA, Zhou D, Satkunarajah M, Chen K, Sharon C, et al. Receptor-binding loops in alphacoronavirus adaptation and evolution. Nature Communications 2017 8:1 [Internet]. 2017 Nov 23 [cited 2024 Jun 17];8(1):1–10. Available from: https://www.nature.com/articles/s41467-017-01706-x
dc.relation.references148. Li Y, Zheng P, Liu T, Shi C, Wang B, Xu Y, et al. Structural Requirements and Plasticity of Receptor-Binding Domain in Human Coronavirus Spike. Front Mol Biosci [Internet]. 2022 Jul 12 [cited 2024 Jun 17];9. Available from: /pmc/articles/PMC9315343/
dc.relation.references149. Leopardi S, Priori P, Zecchin B, Zamperin G, Milani A, Tonon F, et al. Interface between Bats and Pigs in Heavy Pig Production. Viruses 2021, Vol 13, Page 4 [Internet]. 2020 Dec 22 [cited 2024 May 20];13(1):4. Available from: https://www.mdpi.com/1999-4915/13/1/4/htm
dc.relation.references150. Instituto Colombiano Agropecuario - ICA [Internet]. [cited 2024 May 8]. Available from: https://www.ica.gov.co/
dc.relation.references151. William TC, Williams JM. Radio tracking of homing and feeding flights of a neotropical bat, Phyllostomus hastatus. Anim Behav. 1970 May 1;18(PART 2):302–9.
dc.relation.references152. Sun Y, Xing J, Xu Z ying, Gao H, Xu S jia, Liu J, et al. Re-emergence of Severe Acute Diarrhea Syndrome Coronavirus (SADS-CoV) in Guangxi, China, 2021. 2022 [cited 2024 May 7]; Available from: https://doi.org/10.1016/j.jinf.2022.08.020
dc.relation.references153. Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, et al. The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin. Science (1979) [Internet]. 2004 Mar 19 [cited 2023 Jun 16];303(5665):1838–42. Available from: https://www.science.org/doi/10.1126/science.1093155
dc.relation.references154. García-Sastre A. The neuraminidase of bat influenza viruses is not a neuraminidase. Proc Natl Acad Sci U S A [Internet]. 2012 Nov 11 [cited 2024 May 8];109(46):18635. Available from: /pmc/articles/PMC3503194/
dc.relation.references155. Li Q, Sun X, Li Z, Liu Y, Vavricka CJ, Qi J, et al. Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus. Proc Natl Acad Sci U S A [Internet]. 2012 Nov 13 [cited 2024 May 8];109(46):18897–902. Available from: /pmc/articles/PMC3503196/
dc.relation.references156. Solanki A, Riedel M, Cornette J, Udell J, Koratkar I, Vasmatzis G. The Role of Hydrophobicity in Peptide-MHC Binding. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet]. 2021 [cited 2024 May 9];13060 LNBI:24–37. Available from: https://link.springer.com/chapter/10.1007/978-3-030-91241-3_3
dc.relation.references157. Varghese JN, Colman PM. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J Mol Biol [Internet]. 1991 Sep 20 [cited 2024 May 8];221(2):473–86. Available from: https://pubmed.ncbi.nlm.nih.gov/1920428/
dc.relation.references158. Varghese JN, Colman PM, Van Donkelaar A, Blick TJ, Sahasrabudhe A, Mckimm- Breschkin JL. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci U S A [Internet]. 1997 Oct 28 [cited 2024 May 8];94(22):11808–12. Available from: https://pubmed.ncbi.nlm.nih.gov/9342319/
dc.relation.references159. Smith BJ, Huyton T, Joosten RP, McKimm-Breschkin JL, Zhang JG, Luo CS, et al. Structure of a calcium-deficient form of influenza virus neuraminidase: implications for substrate binding. Acta Crystallogr D Biol Crystallogr [Internet]. 2006 Sep [cited 2024 May 8];62(Pt 9):947–52. Available from: https://pubmed.ncbi.nlm.nih.gov/16929094/
dc.relation.references160. Halwe NJ, Hamberger L, Sehl-Ewert J, Mache C, Schön J, Ulrich L, et al. Bat-borne H9N2 influenza virus evades MxA restriction and exhibits efficient replication and transmission in ferrets. Nature Communications 2024 15:1 [Internet]. 2024 Apr 25 [cited 2024 May 9];15(1):1–8. Available from: https://www.nature.com/articles/s41467-024-47455-6
dc.relation.references161. Hassan MM, Kalam MA, Alam M, Shano S, Faruq A Al, Hossain MS, et al. Understanding the Community Perceptions and Knowledge of Bats and Transmission of Nipah Virus in Bangladesh. Animals 2020, Vol 10, Page 1814 [Internet]. 2020 Oct 5 [cited 2024 May 23];10(10):1814. Available from: https://www.mdpi.com/2076- 2615/10/10/1814/htm
dc.relation.references162. Caiza-Villegas A, Ginn F, van Hoven B. Learning to live with synanthropic bats: Practices of tolerance and care in domestic space. Soc Cult Geogr [Internet]. 2024 Jul 2 [cited 2024 May 23]; Available from: https://www.tandfonline.com/doi/abs/10.1080/14649365.2023.2209054
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsViruses
dc.subject.keywordsNeotropical bats
dc.subject.keywordsColombian Caribbean
dc.subject.keywordsZoonosis
dc.subject.proposalVirus
dc.subject.proposalMurciélagos neotropicales
dc.subject.proposalCaribe Colombiano
dc.subject.proposalZoonosis
dc.titleCaracterización genética de influenzavirus y coronavirus en murciélagos de los departamentos de Córdoba y Bolívar- Colombiaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Caracterización genética de influenzavirus y coronavirus en murciélagos de los departamentos de Córdoba y Bolívar- Colombia.pdf
Tamaño:
36.42 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
354.56 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones