Publicación:
Caracterización y manejo químico de aislados de Colletotrichum spp. Causantes de la antracnosis del ñame (Dioscorea spp.) en el departamento de Córdoba

dc.contributor.advisorCampo Arana, Rodrigo Orlando
dc.contributor.authorRoyet Barroso, Jhoandys de Jesús
dc.date.accessioned2022-06-10T18:31:20Z
dc.date.available2022-06-10T18:31:20Z
dc.date.issued2022-06-08
dc.description.abstractThe yam crop is of great importance for the economy of tropical and subtropical countries located in Africa, Asia, Central and South America, and is part of the human diet, being valued for its contribution of carbohydrates and vitamins. The most widely planted species have been affected by phytosanitary problems caused by fungi and viruses, where the most limiting disease is anthracnose (Colletotrichum gloeosporioides), causing losses of up to 85%. Disease management has been done through the application of fungicides and cultural practices without achieving an effective management of the disease; due to the lack of knowledge of the disease and the increasing levels of resistance of the genus to different fungicides, in this sense, the monitoring of resistance to fungicides is crucial to achieve an effective management of the disease and no previous report has explored the resistance in the populations of Colletotrichum in yams in Colombia. Therefore, the following research was conducted to evaluate the sensitivity of Colletotrichum spp. to fungicides with different modes of action. The research was carried out in two phases, one in the field and the other in the laboratory; in the field, the different symptoms associated with anthracnose were identified and described, then isolates of each type of lesion were obtained and the macroscopic and microscopic characteristics of the isolates were described. The virulence and severity of the isolates was determined by in vitro inoculation of four promising accessions of yam D. alata and three of D. rotundata. Genetic variability was determined by sequencing the ITS region of the 5,8S gene. Finally, the sensitivity of the strains to fungicides was determined by in vitro assays. Field observations allowed the classification of nine types of symptoms in yam cultivars (seven lesions and two necroses). Eleven monosporic isolates were obtained and classified into three groups according to morphological and cultural characteristics, with a correlation coefficient r = 0.90, which showed differences between pathogenicity and virulence in resistant and susceptible hosts. Partial sequencing of the ITS region identified C. gloeosporioides and C. fructicola associated with yam anthracnose in the department of Córdoba. Disease severity showed statistical differences, allowing the classification of accessions as highly resistant, resistant and highly susceptible. Finally, the sensitivity of the isolates according to LD50 values, azoxystrobin and difenoconazole were most effective against the isolates of Colletotrichum spp, tested in this study, followed by chlorothalonil and captan, while the least effective fungicides were mancozeb and benomyl. This research confirmed the variability in symptomatology, morphological and molecular traits, virulence and fungicide sensitivity of Colletotrichum spp. associated with yam anthracnose, which can be exploited to improve disease management strategies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agronómicasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEl cultivo de ñame es de gran importancia para la economía de los países tropicales y subtropicales ubicados en África, Asia, América central y del sur, hace parte de la dieta humana, siendo valorado por su aporte de carbohidratos y vitaminas. Las especies más sembradas se han visto afectadas por problemas fitosanitarios causados por hongos y virus; donde la enfermedad más limitante es la antracnosis (Colletotrichum gloeosporioides), causando pérdidas hasta de un 85%. El manejo de la enfermedad se ha hecho mediante la aplicación de fungicidas y prácticas culturales sin alcanzar un manejo eficaz de esta; debido al desconocimiento de la enfermedad y el aumento de los niveles de resistencia del género a diferentes fungicidas, en este sentido, el monitoreo de la resistencia a los fungicidas es crucial para lograr un manejo efectivo de la enfermedad y ningún informe anterior ha explorado la resistencia en las poblaciones de Colletotrichum en ñame en Colombia. Por lo tanto, se plantea la siguiente investigación, cuyo objetivo es contribuir en el manejo integrado de la antracnosis del ñame Colletotrichum spp., mediante la caracterización de los síntomas de la enfermedad, de su agente causal y la sensibilidad a fungicidas comúnmente empleados en su manejo. La investigación se realizó en dos fases, una en campo y otra en laboratorio; en campo se identificaron y describieron los diferentes síntomas asociados a la antracnosis, luego se obtuvieron los aislados de cada tipo de lesión y se describieron las características macroscópicas y microscópicas de los aislados. La virulencia y severidad de los aislados fue determinada mediante la inoculación in vitro de cuatro accesiones promisorias de ñame D. alata y tres de D. rotundata. La variabilidad genética se determinó secuenciando la región ITS del gen 5,8S. Finalmente, se determinó la sensibilidad de las cepas a los fungicidas mediante ensayos “in vitro”. Las observación en campo permitieron clasificar nueve tipos de síntomas en los cultivares de ñame (siete lesiones y dos necrosis). Se obtuvieron 11 aislados monospóricos, que se clasificaron en tres grupos según características morfológicas y culturales, los cuales presentaron diferencias entre su patogenicidad y virulencia en hospederos resistentes y susceptibles. La secuenciación parcial de la región ITS identificaron a C. gloeosporioides y C. fructicola asociados a la antracnosis del ñame en el departamento de Córdoba. La severidad de la enfermedad mostró diferencias estadísticas, perimiendo clasificar las accesiones como altamente resistente, resistentes y altamente susceptibles. Por último, la sensibilidad de los aislados según los valores de DL50, el azoxystrobin y el difenoconazol fueron más efectivos contra los aislados de Colletotrichum spp, probados en este estudio, seguidos por el clorotalonil y el captan, mientras que los fungicidas menos eficaces fueron el mancozeb y el benomyl. Está investigación confirmó la variabilidad en la sintomatología, los rasgos morfológicos, moleculares, la virulencia y la sensibilidad a los fungicidas de las especies de Colletotrichum asociadas a la antracnosis del ñame, las cuales se pueden aprovechar para mejorar las estrategias de manejo de la enfermedad.spa
dc.description.tableofcontentsRESUMEN.............................................................................................................................................7spa
dc.description.tableofcontents1. INTRODUCCIÓN ........................................................................................................................9spa
dc.description.tableofcontents2. PLANTEAMIENTO DEL PROBLEMA............................................................................11spa
dc.description.tableofcontents3. OBJETIVOS.................................................................................................................................13spa
dc.description.tableofcontents3.1. OBJETIVO GENERAL...........................................................................................................13spa
dc.description.tableofcontents3.2. OBJETIVOS ESPECÍFICOS.................................................................................................................................13spa
dc.description.tableofcontents4. MARCO TEÓRICO.................................................................................................................................14spa
dc.description.tableofcontents4.1. IMPORTANCIA DEL CULTIVO DE ÑAME.................................................................................................................................14spa
dc.description.tableofcontents4.2. LIMITANTES DEL CULTIVO..................................................................................................................................15spa
dc.description.tableofcontents4.3. LA ANTRACNOSIS.................................................................................................................................16spa
dc.description.tableofcontents4.3.1. Etiología o agente causal.................................................................................................................................16spa
dc.description.tableofcontents4.3.2. Biología de Colletotrichum spp..................................................................................................................................17spa
dc.description.tableofcontents4.3.3. Síntomas de la antracnosis en ñame.................................................................................................................................19spa
dc.description.tableofcontents4.3.4. Caracterización e identificación del genero Colletotrichum...............................................................................21spa
dc.description.tableofcontents4.3.6. Sensibilidad de Colletotrichum spp a fungicidas 23spa
dc.description.tableofcontents5. METODOLÓGÍA............................................................................................................................................................24spa
dc.description.tableofcontents5.1. LOCALIZACIÓN.................................................................................................................................24spa
dc.description.tableofcontents5.2. PROCEDIMIENTO.................................................................................................................................24spa
dc.description.tableofcontents6. RESULTADOS Y DISCUSIONES.................................................................................................................................31spa
dc.description.tableofcontents7. CONCLUSIONES.................................................................................................................................64spa
dc.description.tableofcontents8. RECOMENDACIONES.................................................................................................................................64spa
dc.description.tableofcontents9. BIBLIOGRAFÍA.................................................................................................................................64spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/5200
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Agrícolasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Agronómicasspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywords“In vitro” fungicide sensitivityeng
dc.subject.keywordsFungal morphologyeng
dc.subject.keywordsPathogenicityeng
dc.subject.keywordsGenetic variabilityeng
dc.subject.proposalSensibilidad “in vitro” a fungicidasspa
dc.subject.proposalMorfología de hongosspa
dc.subject.proposalPatogenicidadspa
dc.subject.proposalVariabilidad genéticaspa
dc.titleCaracterización y manejo químico de aislados de Colletotrichum spp. Causantes de la antracnosis del ñame (Dioscorea spp.) en el departamento de Córdobaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbang, M. M., Asiedu, R., Hoffmann, P., Wolf, G. A., Mignouna, H. D., & Winter, S. (2006). Pathogenic and genetic variability among Colletotrichum gloeosporioides isolates from different yam hosts in the agroecological zones in Nigeria. Journal of Phytopathology, 154(1), 51-61.spa
dcterms.referencesAbang, M. M., Fagbola, O., Smalla, K., & Winter, S. (2005). Two genetically distinct populations of Colletotrichum gloeosporioides Penz. causing anthracnose disease of yam (Dioscorea spp.). Journal of Phytopathology, 153(3), 137-142.spa
dcterms.referencesAbang, M. M., Winter, S., Green, K. R., Hoffmann, P., Mignouna, H. D., & Wolf, G. A. (2001). Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathology, 51(1), 63-71..spa
dcterms.referencesAbang, M., Winter, S., Mignouna, H., Green, K. y Asiedu, R. (2003). Molecular taxonomic, epidemiological and popultion genetic approaches to understanding yam anthracnose disease. African Journal of Biotechnology 2, 486-496.spa
dcterms.referencesAbang, M.M., Abraham, W.R., Asiedu, R., Hoffmann, P., Wolf, G., Winter, S. (2009). Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycological research 113, 130-140.spa
dcterms.referencesAduramigba, A. O., Asiedu, R., Odebode, A. C., & Owolade, O. F. (2012). Genetic diversity of Colletotrichum gloeosporioides in Nigeria using amplified fragment length polymorphism (AFLP) markers. African Journal of Biotechnology, 11(33), 8189-8195.spa
dcterms.referencesAfanador, K.L., Minz, D., Maymon, M., Freeman, S. (2003). Characterization of Colletotrichum isolates from tamarillo,passiflora, and mango in Colombia and identification of a unique specie from the genus. Phytopathology 93: 579-587.spa
dcterms.referencesAgrios, G. N. (2005). Plant pathology. Academic press,.spa
dcterms.referencesAgronet (Red de Información y Comunicación Estratégica del Sector Agropecuario –Colombia). (2018). Disponible en: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dcterms.referencesÁlvarez, E., Ospina,C.A., Mejia, J.F., Llano, G. (2005). Caracterización morfológica, patogénica y genética del agente causal de la antracnosis (Colletotrichum gloeosporioides) en Guanábana (Annona muricata) en el Valle del cauca. CIAT.Fitopatologia Colombiana, Vol. 28, No.1spa
dcterms.referencesAlzate, D.A., G.I. Mier, L. Afanador, D.L. Durango, y C.M. García. (2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo (Cymbopogon citratus).spa
dcterms.referencesAmusa, N., Adegbite, A., Muhammed, S. y Baiyewu, R. (2003). Yam diseases and its management in Nigeria. African Journal of Biotechnology 2, 497-502.spa
dcterms.referencesANALDEX - Asociación Nacional de Comercio Exterior. (2019). Informe de exportaciones de hortalizas, plantas raíces y tubérculos alimenticios en el primer semestre de 2019. Disponible en: https://www.analdex.org/2019/08/29/informe-de-exportaciones-de-hortalizas-plantas-raices-y-tuberculos-alimenticios-en-el-primer-semestre-de-2019/spa
dcterms.referencesAnastassiadou, M., Arena, M., Auteri, D., Brancato, A., Bura, L., ... & Villamar‐Bouza, L. (2020). Peer review of the pesticide risk assessment of the active substance captan. EFSA Journal, 18(9), e06230.spa
dcterms.referencesAndres, C., AdeOluwa, O. O., and Bhullar, G. S. (2017). “Yam (Dioscorea spp.),” in Encyclopedia of Applied Plant Sciences, Vol. 3., eds B. Thomas, B. G. Murray, and D. J. Murphy (Waltham, MA: Academic Press), 435–441.spa
dcterms.referencesAppiah, Z., Kofi, A., Emmanuel, M., David, A. y Esther, M. (2016). Variability of Colletotrichum gloeosporioides isolates the causal agent of anthracnose disease of cassava and yam plants in Ghana. International Journal of Phytopathology, 5(1), 01-09..spa
dcterms.referencesArce, C., Varela, I., & Torres, S. (2019). Inhibición del crecimiento micelial de hongos asociados a antracnosis en ñame (Dioscorea alata). Agronomía Mesoamericana, 381-393.spa
dcterms.referencesArya, R., Sheela, M., Jeeva, M. y Abhilash, P. (2019). Identification of Host Plant Resistance to Anthracnose in Greater Yam (Dioscorea alata L.). Int. J. Curr. Microbiol. App. Sci, 8(8), 1690-1696.spa
dcterms.referencesAyodele, M.A., Hughes, J.D. and Asiedu, R. (2006). Yam antracnose disease: field symptoms and laboratory diagnostics. IITA.spa
dcterms.referencesAzeddine, S., Billard, A., Bach, J., Lanen, C., Walker, A. S., Debieu, D., & Sabine, H. F. D. (2014). Botrytis pseudocinerea is resistant to the fungicide fenhexamid due to detoxification by the cytochrome P450 monooxygenase CYP684. In 10es Rencontres de Phytopathologie-Mycologie de la Société Française de Phytopathologie (SFP) (pp. p-83).spa
dcterms.referencesBaggio, J. S., Wang, N. Y., Peres, N. A., & Amorim, L. (2018). Baseline sensitivity of Colletotrichum acutatum isolates from Brazilian strawberry fields to azoxystrobin, difenoconazole, and thiophanate-methyl. Tropical Plant Pathology, 43(6), 533-542.spa
dcterms.referencesBarak, E., & Edgington, L. V. (1984). Glutathione synthesis in response to captan: a possible mechanism for resistance of Botrytis cinerea to the fungicide. Pesticide Biochemistry and Physiology, 21(3), 412-416.spa
dcterms.referencesBarcelos, Q.L., Pinto, J.M.A., Vaillancourt, L.J., Souza, E.A. (2014). Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil. PLoS One 9, 1e15.spa
dcterms.referencesBarimani, M., Pethybridge, S.J., Vaghefi, N., Hay, F.S., Taylor, P.W.J. (2013). A new anthracnose disease of pyrethrum caused by Colletotrichum tanaceti sp. nov. Plant Pathol. 62,1248e1257.spa
dcterms.referencesBarnett, H. y Hunter, B. (1998). Illustrated Genera of Imperfect Fungi. 4. a edición. Saint Paul: American Phytopathological Society.spa
dcterms.referencesBartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr‐Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science: formerly Pesticide Science, 58(7), 649-662.spa
dcterms.referencesBeltrán, J. (2000). Caracterización y diagnóstico del género Colletotrichum causante de la antracnosis en ñame y otros cultivos. En ñame: producción de semilla por biotecnología (eds) Guzmán M y Buitrago G. Universidad Nacional. Bogotá, Colombia.spa
dcterms.referencesBrent, K. J., & Hollomon, D. W. (1995). Fungicide resistance in crop pathogens: how can it be managed? (Vol. 1, p. 48). Brussels: GIFAP.spa
dcterms.referencesBrown, AE., Sreenivasaprasad, S., Timmer LW, (1996). Molecular characterization of slow‐growing orange and key lime anthracnose strains of Colletotrichum from Citrus as C. acutatum. Phytopathology 86, 523–7.spa
dcterms.referencesBrown, J. K. (2006). Surveys of variation in virulence and fungicide resistance and their application to disease control. In The epidemiology of plant diseases (pp. 81-115). Springer, Dordrecht.spa
dcterms.referencesCampo, R. O., & Royet, J. D. J. (2020). La antracnosis del ñame y estrategias de manejo: una revisión. Temas Agrarios, 25(2), 190-201.spa
dcterms.referencesCampo, R.O, Luna, J. y Jiménez, Y. (2009). Selección de genotipos de ñame Dioscorea spp. resistente a la antracnosis Colletotrichum gloeosporioides Penz. Fitopatología Colombiana 33(1):7-10.spa
dcterms.referencesCampo, R.O. (2000). La antracnosis, enfermedad limitante del cultivo del ñame. En ñame: producción de semilla por biotecnología (eds) Guzmán M y Buitrago G. Universidad Nacional. Bogota, Colombia p 67- 70.spa
dcterms.referencesCampo, R.O. (2011). Manejo integrado de la antracnosis (Colletotrichum spp.) en ñame (Dioscorea alata) mediante el uso de alternativas para reducir el inóculo primario, la dispersión y el establecimiento del patógeno. informe final de proyecto. universidad de córdoba, col. doi:10.13140/rg.2.1.2576.9846spa
dcterms.referencesCampo, R.O. y Luna, J. (1998). Evaluación de la antracnosis en ñame Dioscorea alata var. Diamante 22 en monocultivo e intercalado con la variedad concha de coco. Ascolfi Informa 24 (5): 26-27 p.spa
dcterms.referencesCampo, R.O., Luna, J.M. y Jimenez, Y.M. (2009). Selección de genotipos de ñame Dioscorea spp. resistente a la antracnosis Colletotrichum gloeosporioides Penz. Fitopatología Colombiana 33(1):7-10.spa
dcterms.referencesCao, X. R., Xu, X. M., Che, H. Y., West, J. S., & Luo, D. Q. (2019). Characteristics and distribution of Colletotrichum species in coffee plantations in Hainan, China. Plant Pathology, 68(6), 1146-1156.spa
dcterms.referencesCastellanos, G., Jara, C., & Mosquera, G. (2011). Guías Prácticas de Laboratorio para el Manejo de Patógenos del Frijol. Centro Internacional de Agricultura Tropical. Publicación CIAT No. 375.spa
dcterms.referencesCastro, L., Saquero, M. y Herrera, J. (2003). Caracterización morfológica y patogénica de Colletotrichum sp. como agente causal de la antracnosis en ñame Dioscorea sp. Revista colombiana de Biotecnologia, (1), 24-35spa
dcterms.referencesCerón, L.E., Higuera, B.L., Sánchez, J., Bustamante, S., Buitrago, G. (2006). Crecimiento y desarrollo de Colletotrichum gloeosporioides f. alatae durante su cultivo en medios líquidos. Acta Biológica Colombiana 11, 99-109.spa
dcterms.referencesChacko, R. J., Weidemann, G. J., Tebeest, D. O., & Correll, J. C. (1994). The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange in Colletotrichum gloeosporioides. Biological control, 4(4), 382-389.spa
dcterms.referencesChechi, A., Stahlecker, J., Dowling, M. E., & Schnabel, G. (2019). Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide biochemistry and physiology, 158, 18-24.spa
dcterms.referencesChen, F., Tsuji, S. S., Li, Y., Hu, M., Bandeira, M. A., Câmara, M. P. S., ... & Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide biochemistry and physiology, 162, 60-68.spa
dcterms.referencesChen, S. N., Luo, C. X., Hu, M. J., & Schnabel, G. (2016). Sensitivity of Colletotrichum species, including C. fioriniae and C. nymphaeae, from peach to demethylation inhibitor fungicides. Plant disease, 100(12), 2434-2441.spa
dcterms.referencesChen, S. N., Shang, Y., Wang, Y., Schnabel, G., Lin, Y., Yin, L. F., & Luo, C. X. (2014). Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin. Plant disease, 98(11), 1555-1560.spa
dcterms.referencesChen, S., Hu, M., Schnabel, G., Yang, D., Yan, X., & Yuan, H. (2020). Paralogous CYP51 genes of Colletotrichum spp. mediate differential sensitivity to sterol demethylation inhibitors. Phytopathology, 110(3), 615-625.spa
dcterms.referencesChen, S., Wang, Y., Schnabel, G., Peng, C. A., Lagishetty, S., Smith, K., & Yuan, H. (2018). Inherent resistance to 14α-demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology, 108(11), 1263-1275.spa
dcterms.referencesChen, X. Y., Dai, D. J., Zhao, S. F., Shen, Y., Wang, H. D., & Zhang, C. Q. (2020). Genetic Diversity of Colletotrichum spp. Causing Strawberry Anthracnose in Zhejiang, China. Plant Disease, 104(5), 1351-1357.spa
dcterms.referencesCORPORACIÓN PBA. (2009). Programa de investigación participativa para la producción y transformación sostenible del nombre (Dioscorea sp) en la Costa Atlántica. 58 p.spa
dcterms.referencesCosseboom, S. D., & Hu, M. (2021). Diversity, Pathogenicity, and Fungicide Sensitivity of Fungal Species Associated with Late-Season Rots of Wine Grape in the Mid-Atlantic United States. Plant Disease, (ja).spa
dcterms.referencesCox, K. D. (2015). Fungicide resistance in Venturia inaequalis, the causal agent of apple scab, in the United States. In Fungicide resistance in plant pathogens (pp. 433-447). Springer, Tokyo.spa
dcterms.referencesDamm, U., Cannon, P.F., Woudenberg, J.H.C., Crous, P.W. (2012). The Colletotrichum acutatum species complex. Stud. Mycol. 73, 37e113.spa
dcterms.referencesDe Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31(3), 155-168.spa
dcterms.referencesDean, R., Van kan, J. A. L., Pretorius, Z. A., Hammond-kosack, K. E., Pietro, A. D., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, J. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13, 414-430.spa
dcterms.referencesDeising HB., Werner S. y Wernitz M. (2000). The role of fungal appressoria in plant infection. Microbes Infect; 2:1631–41.spa
dcterms.referencesDhavale, R. A., Mulekar, V. G., Jaiswal, K. L., Bhosale, A. R., & Rothe, A. S. (2019). In vitro evaluation of non-systemic fungicides against Colletotrichum gloeosporioides causing fruit rot in banana. Journal of Pharmacognosy and Phytochemistry, 8(5), 1486-1488.spa
dcterms.referencesDixon, E., Barlow, W., Walles, G., Amsden, B., Hirsch, R. L., Pearce, R., & Pfeufer, E. E. (2020). Cytochrome b mutations F129L and G143A confer resistance to azoxystrobin in Cercospora nicotianae, the frogeye leaf spot pathogen of tobacco. Plant disease, 104(6), 1781-1788.spa
dcterms.referencesDongo, A. B. (2017). Descripción metodológica del anàlisis Clúster utilizando el algoritmo de Ward.spa
dcterms.referencesdos Santos, W. A., Bezerra, P. A., da Silva, A. C., Veloso, J. S., Câmara, M. P. S., & Doyle, V. P. (2020). Optimal markers for the identification of Colletotrichum species. Molecular Phylogenetics and Evolution, 143, 106694.spa
dcterms.referencesEgesi, C. N., Odu, B. O., Ogunyemi, S., Asiedu, R., & Hughes, J. (2007). Evaluation of wáter yam (Dioscorea alata L.) germplasm for reaction to yam anthracnose and virus diseases and their effect on yield. Journal of Phytopathology, 155(9), 536–543. http://doi.org/10.1111/j.1439-0434.200spa
dcterms.referencesEspinel, P. (2019). Procedimiento para efectuar una Clasificación Ascendente Jerárquica de un Conjunto de Puntos utilizando el Método de Ward. Infociencia, 9(1), 13-18.spa
dcterms.referencesEspinoza, D., Silva, H. V., Leyva, S. G., Marbán, N., & Rebollar, Á. (2017). Sensitivity of Colletotrichum acutatum isolates obtained from strawberry to tiophanate-methyl and azoxystrobin fungicides. Revista mexicana de fitopatología, 35(2), 186-203.spa
dcterms.referencesFAO. (2020). Datos sobre alimentación y agricultura. Recuperado el 2 de septiembre de 2021, de http://www.fao.org/faostat/es/#dataspa
dcterms.referencesFernández, E., Rentería, M. E., Ramírez, I., Moreno, S. F., Ochoa, A., & Guillén, D. (2020). Colletotrichum karstii: causal agent of anthracnose of Dendrobium nobile in Mexico. Canadian Journal of Plant Pathology, 1-6.spa
dcterms.referencesFerreira, J. B., Abreu, M. S. D., Pereira, I. S., Fernandes, K. D., & Pereira, R. B. (2009). Sensibilidade de Colletotrichum gloeosporioides (mancha manteigosa do cafeeiro) a diferentes concentrações de fungicidas. Ciência e Agrotecnologia, 33, 2052-2058.spa
dcterms.referencesForcelini, B. B., Seijo, T. E., Amiri, A., & Peres, N. A. (2016). Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Disease, 100(10), 2050-2056.spa
dcterms.referencesFox, R. T. V., & Narra, H. P. (2006). Plant disease diagnosis. In The epidemiology of plant diseases (pp. 1-42). Springer, Dordrecht.spa
dcterms.referencesFRAC (2018). Importance of Multisite Fungicides in Managing Pathogen Resistance. Online publication. https://www.frac.info/docs/default-source/publications/state ment-on-multisite-fungicides/frac-statement-on-multisite-fungicides-2018.pdf? sfvrsn=3c25489a_2.spa
dcterms.referencesFrąc, M., Gryta, A., Oszust, K., & Kotowicz, N. (2016). Fast and accurate microplate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity. Frontiers in microbiology, 7, 489.spa
dcterms.referencesFRAC. (2021). Grupos de modo de acción. Disponible en: https://www.frac.info/fungicide-resistance-management/by-frac-mode-of-action-groupspa
dcterms.referencesFrézal, L., Desquilbet, L., Jacqua, G. y Neema, C. (2012). Quantification of the aggressiveness of a foliar pathogen, Colletotrichum gloeosporioides, responsible for water yam (Dioscorea alata) anthracnose. European journal of plant pathology, 134(2), 267-279.spa
dcterms.referencesFrézal, L., Jacqua, G., & Neema, C. (2018). Adaptation of a fungal pathogen to host quantitative resistance. Frontiers in plant science, 9, 1554.spa
dcterms.referencesFrossard E, Aighewi BA, Aké S, Barjolle D, Baumann P, Bernet T, Dao D, Diby LN, Floquet A, Hgaza VK, Ilboudo LJ, Kiba DI, Mongbo RL, Nacro HB, Nicolay GL, Oka E, Ouattara YF, Pouya N, Senanayake RL, Six J and Traoré OI (2017) The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa. Front. Plant Sci. 8:1953. doi: 10.3389/fpls.2017.01953spa
dcterms.referencesFuentes, D., Silva, H. V., Guarnaccia, V., Mora, J. A., Aranda, S., Bautista, N., & Téliz, D. (2020). Colletotrichum species causing anthracnose on avocado fruit in Mexico: current status. Plant Pathology.spa
dcterms.referencesFuentes, D., Silva, H., Guarnaccia, V., Mora, J., Aranda, S., Bautista, N. y Téliz, D. (2020). Colletotrichum species causing anthracnose on avocado fruit in Mexico: current status. Plant Pathology.spa
dcterms.referencesFuentes, S. (2015). Caracterización morfológica, patogénica y molecular de especies de colletrotrichum asociados al follaje del cultivo de ñame (Dioscorea spp.) (Doctoral dissertation).spa
dcterms.referencesGama, A. B., Baggio, J. S., Rebello, C. S., Lourenco, S. D. A., Gasparoto, M. C. D. G., da Silva Junior, G. J., ... & Amorim, L. (2020). Sensitivity of Colletotrichum acutatum Isolates from Citrus to Carbendazim, Difenoconazole, Tebuconazole, and Trifloxystrobin. Plant disease, 104(6), 1621-1628.spa
dcterms.referencesGao, Y. Y., He, L. F., Li, B. X., Mu, W., Lin, J., & Liu, F. (2017). Sensitivity of Colletotrichum acutatum to six fungicides and reduction in incidence and severity of chili anthracnose using pyraclostrobin. Australasian Plant Pathology, 46(6), 521-528.spa
dcterms.referencesGhini, R., & Kimati, H. (2000). Resistência de fungos a fungicidas. Jaguariúna: Embrapa Meio Ambiente.spa
dcterms.referencesGiorgio, T., Adler, L. S., & Sandler, H. A. (2020). Colletotrichum Species Isolated from Massachusetts Cranberries Differ in Response to the Fungicide Azoxystrobin.spa
dcterms.referencesGonzález, M. (2012). El Ñame (Dioscorea spp.). Características, usos y valor medicinal. Aspectos de importancia en el desarrollo de su cultivo. Cultivos Tropicales, 33(4), 05-15.spa
dcterms.referencesGreen KR, Abang MM, Iloba C, 1998. Characterization of Colletotrichum gloeosporioides from yam (Dioscorea spp.) in Nigeria. In: Proceedings of the 7th International Congress of Plant Pathology, Edinburgh, UK, Abstract 2.2.128.spa
dcterms.referencesGreen, K. R., and Simons, S. A. (1994). ‘Dead skin’ on yams (Dioscorea alata) caused by Colletotrichum gloeosporioides. Plant Pathol. 43, 1062–1065. doi: 10.1111/j.1365-3059.1994.tb01660.xspa
dcterms.referencesGREEN, K. y SIMONS, S. (1994). Quantitative methods for assessing the severity of antracnose on yam (Dioscorea alata). Trop. Sci. 34: 216-224..spa
dcterms.referencesGuarnaccia, V., Groenewald, J. Z., Polizzi, G., & Crous, P. W. (2017). High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia: Molecular Phylogeny and Evolution of Fungi, 39, 32.spa
dcterms.referencesGuillén, D., Cadenas, C. I., Alia, I., López, V., Andrade, M., & Juárez, P. (2017). Inhibición colonial in vitro de un aislado de Colletotrichum acutatum Simmonds a tratamientos con fungicidas. Centro Agrícola, 44(4), 11-16.spa
dcterms.referencesGullino, M. L., Tinivella, F., Garibaldi, A., Kemmitt, G. M., Bacci, L., & Sheppard, B. (2010). Mancozeb: past, present, and future. Plant Disease, 94(9), 1076-1087.spa
dcterms.referencesGwa, I. V., Bem, A. A., & Okoro, J. K. (2015). Yams (Dioscorea rotundata Poir and D. alata Lam.) fungi etiology in Katsina-ala local government area of Benue state, Nigeria. Journal of Phytopathology and Plant Health, 3, 38-43.spa
dcterms.referencesGwa, V. I., & Ekefan, E. J. (2017). Fungal Organisms Isolated from Rotted White Yam (Dioscorea rotundata) Tubers and Antagonistic Potential of Trichoderma harzianum against Colletotrichum Species. Agri Res & Tech: Open Access J, 10(3), 555787.spa
dcterms.referencesHAN, Y. C., ZENG, X. G., XIANG, F. Y., ZHANG, Q. H., Cong, G. U. O., CHEN, F. Y., & GU, Y. C. (2018). Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. Journal of integrative agriculture, 17(6), 1391-1400.spa
dcterms.referencesHu, M. J., Grabke, A., Dowling, M. E., Holstein, H. J., & Schnabel, G. (2015). Resistance in Colletotrichum siamense from peach and blueberry to thiophanate-methyl and azoxystrobin. Plant Disease, 99(6), 806-814.spa
dcterms.referencesHu, M., & Chen, S. (2021). Non-target site mechanisms of fungicide resistance in crop pathogens: A review. Microorganisms, 9(3), 502.spa
dcterms.referencesHua, S., Chen, Z., Li, L., Lin, K., Zhang, Y., Yang, J. y Chen, S. (2020). Differences in immunity between pathogen-resistant and-susceptible yam cultivars reveal insights into disease prevention underlying ethylene supplementation. Journal of Plant Biochemistry and Biotechnology, 1-11.spa
dcterms.referencesHuanyu, L., Tingting, F., Yun, Z., Tianyou, L., Yuan, L., & Bingliang, X. (2017). Effect Comparison of Five Methods to Extract Fungal Genomic DNA as PCR Templates. Chinese Agricultural Science Bulletin, 2017(16), 7.spa
dcterms.referencesHulvey, J., Popko Jr, J. T., Sang, H., Berg, A., & Jung, G. (2012). Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Applied and environmental microbiology, 78(18), 6674-6682.spa
dcterms.referencesIDEAM. (2020). Consulta y Descarga de Datos Hidrometeorológicos. Recuperado el 14 de enero de 2020, de http://dhime.ideam.gov.co/atencionciudadano/spa
dcterms.referencesInglis, P. W., Pappas, M. D. C. R., Resende, L. V., & Grattapaglia, D. (2018). Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS One, 13(10), e0206085.spa
dcterms.referencesIslam, A., Schreinemachers, P. and Kumar, S. (2020). Farmers’ knowledge, perceptions and management of chili pepper anthracnose disease in Bangladesh. Crop Protection, 133,105,139.spa
dcterms.referencesIvors, K. (2016). PROTOCOL 06-03.1: Modified CTAB extraction of fungal DNA. In Laboratory protocols for Phytophthora species. APS.spa
dcterms.referencesJabs, T., Cronshaw, K., & Freund, A. (2001). New strobilurin resistance mechanism in apple scab (Venturia inaequalis). Mitt. Deutsch. Phytomed. Ges, 31, 15-16.spa
dcterms.referencesJagtap, N. M., Ambadkar, C. V., & Bhalerao, G. A. (2015). In vitro evaluation of different fungicides against Colletotrichum gloeosporioides causing anthracnose of pomegranate. International Journal of Agricultural Sciences, 11(2), 273-276.spa
dcterms.referencesJehani, M. D., Patel, P. R., & Chaudhary, A. K. (2019). Evaluation of bioagents against Colletotrichum capsici caused anthracnose disease of yam (Dioscorea alata L.). Journal of Pharmacognosy and Phytochemistry, 8(3), 4788-4790.spa
dcterms.referencesJiménez, Y.M., Campo, R.O., Lopez, L.L. (2009). Caracterización morfológica de aislamientos de Colletotrichum spp. causantes de la antracnosis del ñame Dioscorea alata L. Fitopatología Colombiana 33(1):1-6spa
dcterms.referencesJung, G., Sang, H.,, Hulvey, J., Chang, T., y Popko, J. (2017). Multidrug Resistance Conferred by Xenobiotic Detoxification in the Ascomycete Fungus Sclerotinia homoeocarpa. In: Deising HB; Fraaije B; Mehl A; Oerke EC; Sierotzki H; Stammler G (Eds), "Modern Fungicides and Antifungal Compounds", Vol. VIII, pp. 101-106. © 2017 Deutsche Phytomedizinische Gesellschaft, Braunschweig, ISBN: 978-3-941261-15-0spa
dcterms.referencesJurick, W. M., Macarisin, O., Gaskins, V. L., Janisiewicz, W. J., Peter, K. A., & Cox, K. D. (2019). Baseline sensitivity of Penicillium spp. to difenoconazole. Plant disease, 103(2), 331-337.spa
dcterms.referencesKatediya, M. A., Jaiman, R. K., & Kumar, S. (2019). Management of chilli anthracnose caused by Colletotrichum capasici. Journal of Pharmacognosy and Phytochemistry, 8(3), 2697-2701.spa
dcterms.referencesKay, M., Elkin, L. A., Higgins, J. J., and Wobbrock, J. O. (2021). ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R package version 0.11.1, https://github.com/mjskay/ARTool. DOI: 10.5281/zenodo.594511.spa
dcterms.referencesKim, S., Park, S. Y., Kim, H., Kim, D., Lee, S. W., Kim, H. T. & Choi, W. (2014). Isolation and characterization of the Colletotrichum acutatum ABC transporter CaABC1. The plant pathology journal, 30(4), 375.spa
dcterms.referencesKing, K. M., Bucur, D. E., Ritchie, F., Hawkins, N. J., Kaczmarek, A. M., Duan, Y. & Fraaije, B. A. (2021). Fungicide resistance status and chemical control options for the brassica pathogen Pyrenopeziza brassicae. Plant Pathology.spa
dcterms.referencesKumar, G. (2014). Colletotrichum gloeosporioides: Biology, Pathogenicity and Management in India. J Plant Physiol Pathol 2:2.spa
dcterms.referencesKunova, A., Pizzatti, C., Bonaldi, M., & Cortesi, P. (2014). Sensitivity of nonexposed and exposed populations of Magnaporthe oryzae from rice to tricyclazole and azoxystrobin. Plant Disease, 98(4), 512-518.spa
dcterms.referencesKwodaga, J. K., Sowley, E. N. K., & Badii, B. K. (2020). Morphological and molecular characterisation of Colletotrichum gloeosporioides (Penz) isolates obtained from Dioscorea rotundata (Poir). African Journal of Biotechnology, 19(5), 231-239. ISO 690spa
dcterms.referencesLeroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., ... & Chapeland, F. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest management science, 58(9), 876-888.spa
dcterms.referencesLiang, S. H. E. N., Yuxuan, M. A., Min, F. U., Ni, H. O. N. G., & Guoping, W. A. N. G. (2020). Sensitivity of difenoconazole to Colletotrichum fructicola at major pear cultivation areas in South China. 农药学学报, 22(1), 54-59.spa
dcterms.referencesLin, C. H., Wu, W. Q., Liao, X. M., Liu, W. B., Miao, W. G., & Zheng, F. C. (2018). First Report of Leaf Anthracnose Caused by Colletotrichum alatae on Water Yam (Dioscorea alata) in China. Plant Disease, 102(1), 248.spa
dcterms.referencesLiu, F., Tang, G., Zheng, X., Sun, X., Qi, X. y Zhang, S. (2016). Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Scientific reports, 6, 32761.spa
dcterms.referencesLópez, S. P., & Castaño, J. (2020). In vitro effect of four fungicides on Colletotrichum gloeosporioides causing anthracnosis on the Red Globe grape variety. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 747-758.spa
dcterms.referencesLucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in applied microbiology, 90, 29-92.spa
dcterms.referencesLuna, L. L., Tamara, R. E., & García, J. A. (2018). Efecto de tipo de tutores y densidad de siembra sobre el rendimiento de ñame espino (Dioscorea rotundata Poir.). Fave. Sección ciencias agrarias, 17(2), 53-62.spa
dcterms.referencesLuo, Q., Schoeneberg, A., & Hu, M. (2020). Resistance to azoxystrobin and thiophanate-methyl is widespread in Colletotrichum spp. isolates from the Mid-Atlantic Strawberry Fields. Plant Disease, (ja).spa
dcterms.referencesManamgoda, D.S., Udayanga, D., Cai, L., Chukeatirote, E., Hyde, K.D., (2013). Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Divers. 61, 107e115.spa
dcterms.referencesMarroquín, N. G., Rodríguez, S. L. B., Gutiérrez, Y. A. P., & Hurtado, G. B. (2016). Caracterización molecular de Colletotrichum gloeosporioides aislado de plantas de ñame de la Costa Atlántica Colombiana utilizando la técnica “DNA Amplification Fingerprinting (DAF)”. Revista Colombiana de Biotecnología, 18(1), 95-103.spa
dcterms.referencesMartin, P. L., Krawczyk, T., Pierce, K., Thomas, C. A., Khodadadi, F., Aćimović, S., & Peter, K. (2021). Fungicide sensitivity of Colletotrichum species causing bitter rot of apple in the Mid-Atlantic United States. Plant Disease, (ja).spa
dcterms.referencesMaymon, M., Zveibil, A., Pivonia, S., Minz, D., & Freeman, S. (2006). Identification and characterization of benomyl-resistant and-sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology, 96(5), 542-548.spa
dcterms.referencesMehl, A., & Manger-Jacob, F. (2015). Banana Diseases. In Fungicide Resistance in Plant Pathogens (pp. 467-479). Springer, Tokyo.spa
dcterms.referencesMendgen, K., Hahn, M., (2002). Review: plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 7, 352e356.spa
dcterms.referencesMercado, A. Q., Dangon-Bernier, F., & Páez-Redondo, A. (2019). Aislamientos endofíticos de Colletotrichum spp. a partir de hojas y ramas de mango (Mangifera indica L.) cultivar Azúcar en el municipio de Ciénaga, Magdalena, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 65-77.spa
dcterms.referencesMignouna, H. D., Abang, M. M., Green, K. R., & Asiedu, R. (2001). Inheritance of resistance in water yam (Dioscorea alata) to anthracnose (Colletotrichum gloeosporioides). Theoretical and Applied Genetics, 103(1), 52-55.spa
dcterms.referencesMignouna, H. D., Abang, M. M., Onasanya, A., & Asiedu, R. (2002). Identification and application of RAPD markers for anthracnose resistance in water yam (Dioscorea alata). Annals of Applied Biology, 141(1), 61-66.spa
dcterms.referencesMignouna, H., Mank, R., Ellis, T., Van Den Bosch, N., Asiedu, R., Abang, M., & Peleman, J. (2002). A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theoretical and Applied Genetics, 105(5), 726-735.spa
dcterms.referencesMignouna, H., Mank, R., Ellis, T., Van Den Bosch, N., Asiedu, R., Abang, M. y Peleman, J. (2002). A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theoretical and Applied Genetics, 105(5), 726-735.spa
dcterms.referencesMignucci JS, Hepperly PR, Green J, Torres‐Lopez R, Figueroa LA (1988). Yam protection. II. Anthracnose, yield and profit of monocultures and interplantings. Journal of Agriculture of the University of Puerto Rico 72, 179–89.spa
dcterms.referencesMinisterio de Agricultura y Desarrollo Rural - MADR. (2021). Cadena Productiva del Ñame. Dirección de Cadenas Agrícolas y Forestales. Internet. p 12-22. https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03spa
dcterms.referencesMo, J., Zhao, G., Li, Q., Solangi, G. S., Tang, L., Guo, T., & Hsiang, T. (2018). Identification and characterization of Colletotrichum species associated with mango anthracnose in Guangxi, China. Plant disease, 102(7), 1283-1289.spa
dcterms.referencesMoges, A. D., Admassu, B., Belew, D., Yesuf, M., Njuguna, J., Kyalo, M., & Ghimire, S. R. (2016). Development of microsatellite markers and analysis of genetic diversity and population structure of Colletotrichum gloeosporioides from Ethiopia. PloS one, 11(3), e0151257.spa
dcterms.referencesMoral, J., Agustí-Brisach, C., Agalliu, G., de Oliveira, R., Pérez-Rodríguez, M., Roca, L. F., ... & Trapero, A. (2018). Preliminary selection and evaluation of fungicides and natural compounds to control olive anthracnose caused by Colletotrichum species. Crop Protection, 114, 167-176.spa
dcterms.referencesMoreira, R. R., Hamada, N. A., Peres, N. A., & De Mio, L. L. M. (2019). Sensitivity of the Colletotrichum acutatum species complex from apple trees in Brazil to Dithiocarbamates, Methyl Benzimidazole Carbamates, and Quinone outside inhibitor fungicides. Plant disease, 103(10), 2569-2576.spa
dcterms.referencesMünch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N., & Deising, H. B. (2008). The hemibiotrophic lifestyle of Colletotrichum species. Journal of plant physiology, 165(1), 41-51.spa
dcterms.referencesMurray, M. G., and William F. Thompson. (1980). "Rapid isolation of high molecular weight plant DNA." Nucleic acids research 8.19 4321-4326.spa
dcterms.referencesNakaune, R., & Nakano, M. (2007). Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genetics and Biology, 44(12), 1324-1335.spa
dcterms.referencesNCBI (National Center for Biotechnology Information). Taxonomy Browswe. Disponible en: http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=474922.spa
dcterms.referencesNeema, C. y Frezal, L. (2018). Adaptation of a fungal pathogen to host quantitative resistance. Frontiers in plant science, 9, 1554.spa
dcterms.referencesNEGRETE, J. Y REDONDO, A. (1997). Evaluación de la respuesta a la antracnosis, Colletotrichum gloeosporioides Penz. en ñames promisorios, Dioscorea alata L. en Córdoba. Univ. de Córdoba.spa
dcterms.referencesNwadili, C., Augusto, J., Bhattacharjee, R., Atehnkeng, J., Lopez, A., Onyeka, T. y Bandyopadhyay, R. (2017). Comparative reliability of screening parameters for anthracnose resistance in water yam (Dioscorea alata). Plant disease, 101(1), 209-216.spa
dcterms.referencesOmrane, S., Audéon, C., Ignace, A., Duplaix, C., Aouini, L., Kema, G. & Fillinger, S. (2017). Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. MSphere, 2(5), e00393-17.spa
dcterms.referencesOmrane, S., Sghyer, H., Audéon, C., Lanen, C., Duplaix, C., Walker, A. S., & Fillinger, S. (2015). Fungicide efflux and the MgMFS 1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environmental Microbiology, 17(8), 2805-2823.spa
dcterms.referencesOnyeka, T. J., Petro, D., Ano, G., Etienne, S., & Rubens, S. (2006). Resistance in water yam (Dioscorea alata) cultivars in the French West Indies to anthracnose disease based on tissue culture‐derived whole‐plant assay. Plant pathology, 55(5), 671-678.spa
dcterms.referencesOsorio, C. (1989). Control químico de la antracnosis del ñame causada por Colletotrichum gloeosporioides, Penz (No. Doc. 25497) CO-BAC, Bogotá).spa
dcterms.referencesOsorio, L. F., Pattison, J. A., Peres, N. A., & Whitaker, V. M. (2014). Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides. Phytopathology, 104(1), 67-74.spa
dcterms.referencesPalaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of applied microbiology, 111(2), 443-455.spa
dcterms.referencesPardo, C., Calderón, C., Rincón, A., Cárdenas, M., Danies, G., López, L. y Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227-237.spa
dcterms.referencesPardo‐De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López‐Kleine, L., ... & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227-237.spa
dcterms.referencesPatel, P., Rajkumar, B. K., Parmar, P., Shah, R., & Krishnamurthy, R. (2018). Assessment of genetic diversity in Colletotrichum falcatum Went accessions based on RAPD and ISSR markers. Journal of Genetic Engineering and Biotechnology, 16(1), 153-159.spa
dcterms.referencesPatrice, N. D. J., Placide, D., Madjerembe, A., Rony, M. T. P., Gabriel, D., Ulrich, B. F., ... & Zachee, A. (2021). In vitro, In vivo and In situ, Effect of Mancozeb 80 WP on Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., Causative Agent of Anthracnose of Cashew (Anacardium occidentale L.) in Chad and Cameroon. International Journal of Pathogen Research, 1-14.spa
dcterms.referencesPenet, L., Briand, S., Petro, D., Bussière, F., & Guyader, S. (2017). Data on microsatellite markers in Colletotrichum gloeosporioides sl, polymorphism levels and diversity range. Data in brief, 12, 644-648.spa
dcterms.referencesPenet, L., Cornet, D., Blazy, J.-M., Alleyne, A., Barthe, E., Bussière, F., (2016). Varietal dynamics and yam agro-diversity demonstrate complex trajectories intersecting farmers’ strategies, networks, and disease experience. Front. Plant Sci. 7:1962. doi: 10.3389/fpls.2016.01962spa
dcterms.referencesPenet, L., Guyader, S., Pétro, D., Salles, M. and Bussière, F. (2014). Direct splash dispersal prevails over indirect and subsequent spread during rains in Colletotrichum gloeosporioides infecting yams. PLoS One, 9(12), e115757spa
dcterms.referencesPereira, L. F., de Souza, E. A., Pereira, F. A. C., & Gonçalves, F. M. A. (2019). Investigating variability and behaviour of Colletotrichum gloeosporioides strains from lesions of coffee blister spot. Journal of Phytopathology, 167(11-12), 645-654.spa
dcterms.referencesPÉREZ D.; CAMPO, R.; JARMA, A. 2015. Respuesta fisiológica del ñame espino (Dioscorea rotundata Poir) a las densidades de siembra. Rev. Cienc. Agr. 32(2):104 - 112. doi: http://dx.doi.org/10.22267/rcia.153202.18spa
dcterms.referencesPÉREZ, D. J., & CAMPO, R. O. (2016). Efecto de la densidad poblacional sobre el rendimiento de ñame espino (Dioscorea rotundata Poir.) tipo exportación. Revista Colombiana de Ciencias Hortícolas, 10(1), 89-98.spa
dcterms.referencesPérez, D. R., Vega, V. M., García, Y. B., & Cabrera, A. R. (2019). Efecto del momento de plantación de plantas producidas in vitro de ñame 'Blanco de Guinea', sobre la producción de minitubérculos. Agricultura Tropical, 5(1), 25-33.spa
dcterms.referencesPerez, P. M., & Alberto, R. T. (2020). Chemical Management of Anthracnose-Twister (Colletotrichum gloeosporioides and Fusarium fujikuroi) Disease of Onion (Allium cepa). Plant Pathology & Quarantine, 10(1), 198-216.spa
dcterms.referencesPétro, D., Onyeka, T., Etienne, S. y Rubens, S. (2011). An intraspecific genetic map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Euphytica, 179(3), 405-416.spa
dcterms.referencesPhotita, W., Taylor, P. W., Ford, R., Hyde, K. D., & Lumyong, S. (2005). Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Diversity.spa
dcterms.referencesPinzón Gutiérrez, Y. A. (2014). Caracterización morfológica y molecular de Colletotrichum gloeosporioides aislado de ñame (Dioscorea spp.) y establecimiento de una escala de virulencia para su caracterización patogénica (Doctoral dissertation, Universidad Nacional de Colombia).spa
dcterms.referencesPinzón, Y. A., Bustamante, S. L., & Buitrago, G. (2013). Differential molecular diagnosis Colletotrichum gloeosporioides and Fusarium oxysporum in yam (Dioscorea sp.). Revista Colombiana de Biotecnología, 15(1), 52-60.spa
dcterms.referencesPinzón, Y., Bustamante, S. y Buitrago, G. (2009). Evaluación de métodos para la conservación de hongos fitopatógenos del ñame (Dioscorea sp.). Revista Colombiana de Biotecnología. 11 (2): 8-18.spa
dcterms.referencesPoti, T., Mahawan, K., Cheewangkoon, R., Arunothayanan, H., Akimitsu, K., & Nalumpang, S. (2020). Detection and molecular characterization of carbendazim‐resistant Colletotrichum truncatum isolates causing anthracnose of soybean in Thailand. Journal of Phytopathology, 168(5), 267-278.spa
dcterms.referencesRabha, A. J., Naglot, A., Sharma, G. D., Gogoi, H. K., Gupta, V. K., Shreemali, D. D., & Veer, V. (2016). Morphological and molecular diversity of endophytic Colletotrichum gloeosporioides from tea plant, Camellia sinensis (L.) O. Kuntze of Assam, India. Journal of Genetic Engineering and Biotechnology, 14(1), 181-187.spa
dcterms.referencesRamdial, H., Hosein, F. N., & Rampersad, S. N. (2016). Detection and molecular characterization of benzimidazole resistance among Colletotrichum truncatum isolates infecting bell pepper in Trinidad. Plant disease, 100(6), 1146-1152.spa
dcterms.referencesReina, Y. C. (2012). El Cultivo de ñame en el caribe colombiano. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 168.spa
dcterms.referencesReis, E. M., Guerra, W. D., Reis, A. C., Zanatta, M., Carmona, M., & Sautura, F. (2021). Fungi Resistance to Multissite Fungicides. Journal of Agricultural Science, 13(11).spa
dcterms.referencesRipoche, A., Jacqua, G., Bussière, F., Guyader, S., and Sierra, J. (2007). Survival of Colletotrichum gloeosporioides (causal agent of yam anthracnose) on yam residues decomposing in soil. Appl. Soil Ecol. 38, 270–278. doi: 10.1016/j.apsoil.2007.10.015spa
dcterms.referencesRoca, M. G., Davide, L. C., Davide, L. M., Mendes-Costa, M. C., Schwan, R. F., & Wheals, A. E. (2004). Conidial anastomosis fusion between Colletotrichum species. Mycological Research, 108(11), 1320-1326.spa
dcterms.referencesRodríguez, R., Ramírez, M. T., De La Vega, O. M., & Simpson, J. (2003). Variation in genotype, pathotype and anastomosis groups of Colletotrichum lindemuthianum isolates from Mexico. Plant Pathology, 52(2), 228-235.spa
dcterms.referencesRoohparvar, R., Mehrabi, R., Van Nistelrooy, J. G., Zwiers, L. H., & De Waard, M. A. (2008). The drug transporter MgMfs1 can modulate sensitivity of field strains of the fungal wheat pathogen Mycosphaerella graminicola to the strobilurin fungicide trifloxystrobin. Pest Management Science: formerly Pesticide Science, 64(7), 685-693.spa
dcterms.referencesRosado, Y. (2016). Evaluación de fungicidas orgánicos y convencionales para el control de enfermedades follares en ñame (Dioscorea alata L.) (Doctoral dissertation).spa
dcterms.referencesSabria, A. F., & Vengadaramana, A. (2019). PCR-RFLP based genetic diversity of Colletotrichum musae isolates of banana in Jaffna district.spa
dcterms.referencesSamaras, Α., Ntasiou, P., Myresiotis, C., & Karaoglanidis, G. (2020). Multidrug resistance of Penicillium expansum to fungicides: whole transcriptome analysis of MDR strains reveals overexpression of efflux transporter genes. International Journal of Food Microbiology, 335, 108896.spa
dcterms.referencesSánchez, P. (2021). Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold. Journal of Fungi, 7(9), 783.spa
dcterms.referencesSang, H., Hulvey, J. P., Green, R., Xu, H., Im, J., Chang, T., & Jung, G. (2018). A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. MBio, 9(4), e00457-18.spa
dcterms.referencesSangakkara, U. R., and Frossard, E. (2014). Home gardens and Dioscorea species – a case study from the climatic zones of Sri Lanka. J. Agric. Rural Dev. Trop. 115, 55–65.spa
dcterms.referencesSantacruz, C. (2013). Caracterizacion morfologica, patogénica y molecular de especies de Colletotrichum spp. causantes de la antracnosis del fruto de aji y pimenton Capsicum spp. el Valle del Cauca.spa
dcterms.referencesSantos, R. F., Fraaije, B. A., Garrido, L. D. R., Monteiro‐Vitorello, C. B., & Amorim, L. (2020). Multiple resistance of Plasmopara viticola to QoI and CAA fungicides in Brazil. Plant Pathology, 69(9), 1708-1720.spa
dcterms.referencesSchnabel, G., Hu, M. J., & Fernández-Ortuño, D. (2015). Monitoring resistance by bioassay: relating results to field use using culturing methods. In Fungicide Resistance in Plant Pathogens (pp. 281-293). Springer, Tokyo.spa
dcterms.referencesSharma, G., Maymon, M., & Freeman, S. (2017). Epidemiology, pathology and identification of Colletotrichum including a novel species associated with avocado (Persea americana) anthracnose in Israel. Scientific reports, 7(1), 1-16.spa
dcterms.referencesShin, J. H., Fu, T., Park, K. H., & Kim, K. S. (2017). The effect of fungicides on mycelial growth and conidial germination of the ginseng root rot fungus, Cylindrocarpon destructans. Mycobiology, 45(3), 220-225.spa
dcterms.referencesSiddiqui, M. A., Ali, Z., Chittiboyina, A. G., & Khan, I. A. (2018). Hepatoprotective Effect of Steroidal Glycosides From Dioscorea villosa on Hydrogen Peroxide-Induced Hepatotoxicity in HepG2 Cells. Frontiers in pharmacology, 9.spa
dcterms.referencesSierotzki, H. (2015). Respiration inhibitors: complex III. In Fungicide resistance in plant pathogens (pp. 119-143). Springer, Tokyo.spa
dcterms.referencesSmith, B. J., & Black, L. L. (1990). Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry.spa
dcterms.referencesSoares, A. C. F., Sousa, C. D. S., Garrido, M. D. S., Perez, J. O., & Almeida, N. S. D. (2006). Actinomicetos do solo com atividade in vitro contra patógenos do inhame Curvularia eragrostides e Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 37(4), 456-461.spa
dcterms.referencesSun, W., Wang, B., Yang, J., Wang, W., Liu, A., Leng, L. y Chen, S. (2017). Weighted gene co-expression network analysis of the dioscin rich medicinal plant Dioscorea nipponica. Frontiers in plant science, 8, 789.spa
dcterms.referencesSuwannarat, S., Steinkellner, S., Songkumarn, P., & Sangchote, S. (2017). Diversity of Colletotrichum spp. isolated from chili pepper fruit exhibiting symptoms of anthracnose in Thailand. Mycological Progress, 16(7), 677-686.spa
dcterms.referencesTamara, R. E., Luna, L. L., Espitia, A., Novoa, R. S., Regino, S. M., & De la Ossa, V. A. (2021). Respuesta del ñame espino a diferentes densidades de siembra y altura de espalderas: densidades de siembra en Dioscorea rotundata. Revista de Investigaciones Altoandinas, 23(4), 210-219.spa
dcterms.referencesTorres, C., Tapia, R., Higuera, I., Martin, R., Nexticapan, A., & Perez, D. (2015). Sensitivity of Colletotrichum truncatum to four fungicides and characterization of thiabendazole-resistant isolates. Plant Disease, 99(11), 1590-1595.spa
dcterms.referencesTovar, J. M., Mora, J. A., Nava, C., Lima, N. B., Michereff, S. J., Sandoval, J. S., ... & Leyva-Mir, S. G. (2020). Distribution and pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico. Plant Disease, 104(1), 137-146.spa
dcterms.referencesTrejo, G. I., Ramírez, J. E., & Rodríguez, N. L. (2017). Diagnóstico por Amplificación Isotérmica Mediada por Horquillas (LAMP) Dirigida al Género de Hongo Colletotrichum spp. AGROECOSISTEMAS TROPICALES, 55.spa
dcterms.referencesTripathy, S. K., Maharana, M., Ithape, D. M., Lenka, D., Mishra, D., Prusti, A., ... & Raj, K. R. R. (2017). Exploring rapid and efficient protocol for isolation of fungal DNA. International Journal of Current Microbiology and Applied Sciences, 6(3), 951-960.spa
dcterms.referencesTugizimana, F., Djami, A. T., Fahrmann, J. F., Steenkamp, P. A., Piater, L. A., & Dubery, I. A. (2019). Time-resolved decoding of metabolic signatures of in vitro growth of the hemibiotrophic pathogen Colletotrichum sublineolum. Scientific reports, 9(1), 1-12.spa
dcterms.referencesUddin, M., Shefat, S., Afroz, M. and Moon, N. (2018). Management of anthracnose disease of mango caused by Colletotrichum gloeosporioides: A review. Acta Scientific Agriculture, 2(10): 169-177.spa
dcterms.referencesUsman, H. M., Tan, Q., Karim, M. M., Adnan, M., Yin, W. X., Zhu, F. X., & Luo, C. X. (2021). Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. Plant Disease, 105(11), 3459-3465.spa
dcterms.referencesVillani, S. M., Biggs, A. R., Cooley, D. R., Raes, J. J., & Cox, K. D. (2015). Prevalence of myclobutanil resistance and difenoconazole insensitivity in populations of Venturia inaequalis. Plant disease, 99(11), 1526-1536.spa
dcterms.referencesVillani, S. M., Hulvey, J., Hily, J. M., & Cox, K. D. (2016). Overexpression of the CYP51A1 gene and repeated elements are associated with differential sensitivity to DMI fungicides in Venturia inaequalis. Phytopathology, 106(6), 562-571.spa
dcterms.referencesWei, L., Zheng, H., Zhang, P., Chen, W., Zheng, J., Chen, C., & Cao, A. (2021). Molecular and biochemical characterization of Colletotrichum gloeosporioides isolates resistant to azoxystrobin from grape in China. Plant Pathology.spa
dcterms.referencesWei, X., Xu, Z., Zhang, N., Yang, W., Liu, D., & Ma, L. (2021). Synergistic action of commercially available fungicides for protecting wheat from common root rot caused by Bipolaris sorokiniana in China. Plant Disease, 105(3), 667-674.spa
dcterms.referencesWeir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180. http://doi.org/10.3114/sim0011spa
dcterms.referencesWhite, T. J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols (innis, M. Am, Gelfrand, D. H., Sninsky, J. J. and White, J., eds.). Academic Press, San Diego, California. p. 315-322.spa
dcterms.referencesWinch JE, Newhook FJ, Jackson GVH, Cole JS, 1984. Studies of Colletotrichum gloeosporioides disease on yam (Dioscorea alata) in the Solomon Islands. Plant Pathology 33, 467–77.spa
dcterms.referencesWong, F. P., De la Cerda, K. A., Hernandez-Martinez, R., & Midland, S. L. (2008). Detection and characterization of benzimidazole resistance in California populations of Colletotrichum cereale. Plant disease, 92(2), 239-246.spa
dcterms.referencesWumbei, A., Bawa, J. K. A., Akudugu, M. A., & Spanoghe, P. (2019). Absence of Effects of Herbicides Use on Yam Rots: A Case Study in Wulensi, Ghana. Agriculture, 9(5), 95.spa
dcterms.referencesXavier, K. V., & Vallad, G. E. (2020). Efficacy of Biological and Conventional Fungicide Programs for Foliar Disease Management on Pomegranate (Punica granatum) in Florida. Plant Health Progress, 21(3), 199-204.spa
dcterms.referencesXavier, K. V., Kc, A. N., Peres, N. A., Deng, Z., Castle, W., Lovett, W., & Vallad, G. E. (2019). Characterization of Colletotrichum Species Causing Anthracnose of Pomegranate in the Southeastern United States. Plant Disease, 103(11), 2771-2780.spa
dcterms.referencesYoung, D. H. (2015). Anti-tubulin agents. In Fungicide resistance in plant pathogens (pp. 93-103). Springer, Tokyo.spa
dcterms.referencesZhang, C., Imran, M., Xiao, L., Hu, Z., Li, G., Zhang, F., & Liu, X. (2021). Difenoconazole resistance shift in Botrytis cinerea from Tomato in China associated with inducible expression of CYP51. Plant Disease, 105(2), 400-407.spa
dcterms.referencesZhang, L., Song, L., Xu, X., Zou, X., Duan, K., & Gao, Q. (2020). Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in Eastern China. Plant disease, 104(7), 1960-1968.spa
dcterms.referencesZhang, Y., Wang, H., Wang, X., Hu, B., Zhang, C., Jin, W., ... & Hong, Q. (2017). Identification of the key amino acid sites of the carbendazim hydrolase (MheI) from a novel carbendazim-degrading strain Mycobacterium sp. SD-4. Journal of hazardous materials, 331, 55-62.spa
dcterms.referencesZhou, Y., Xu, J., Zhu, Y., Duan, Y., & Zhou, M. (2016). Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule. Phytopathology, 106(8), 807-813.spa
dcterms.referencesZiogas, B. N., & Malandrakis, A. A. (2015). Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In Fungicide resistance in plant pathogens (pp. 199-216). Springer, Tokyo.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
royetbarrosojhoandys.pdf
Tamaño:
1.75 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
533.82 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: