Este ítem es privado
Publicación: Caracterización y manejo químico de aislados de Colletotrichum spp. Causantes de la antracnosis del ñame (Dioscorea spp.) en el departamento de Córdoba
dc.contributor.advisor | Campo Arana, Rodrigo Orlando | |
dc.contributor.author | Royet Barroso, Jhoandys de Jesús | |
dc.date.accessioned | 2022-06-10T18:31:20Z | |
dc.date.available | 2022-06-10T18:31:20Z | |
dc.date.issued | 2022-06-08 | |
dc.description.abstract | The yam crop is of great importance for the economy of tropical and subtropical countries located in Africa, Asia, Central and South America, and is part of the human diet, being valued for its contribution of carbohydrates and vitamins. The most widely planted species have been affected by phytosanitary problems caused by fungi and viruses, where the most limiting disease is anthracnose (Colletotrichum gloeosporioides), causing losses of up to 85%. Disease management has been done through the application of fungicides and cultural practices without achieving an effective management of the disease; due to the lack of knowledge of the disease and the increasing levels of resistance of the genus to different fungicides, in this sense, the monitoring of resistance to fungicides is crucial to achieve an effective management of the disease and no previous report has explored the resistance in the populations of Colletotrichum in yams in Colombia. Therefore, the following research was conducted to evaluate the sensitivity of Colletotrichum spp. to fungicides with different modes of action. The research was carried out in two phases, one in the field and the other in the laboratory; in the field, the different symptoms associated with anthracnose were identified and described, then isolates of each type of lesion were obtained and the macroscopic and microscopic characteristics of the isolates were described. The virulence and severity of the isolates was determined by in vitro inoculation of four promising accessions of yam D. alata and three of D. rotundata. Genetic variability was determined by sequencing the ITS region of the 5,8S gene. Finally, the sensitivity of the strains to fungicides was determined by in vitro assays. Field observations allowed the classification of nine types of symptoms in yam cultivars (seven lesions and two necroses). Eleven monosporic isolates were obtained and classified into three groups according to morphological and cultural characteristics, with a correlation coefficient r = 0.90, which showed differences between pathogenicity and virulence in resistant and susceptible hosts. Partial sequencing of the ITS region identified C. gloeosporioides and C. fructicola associated with yam anthracnose in the department of Córdoba. Disease severity showed statistical differences, allowing the classification of accessions as highly resistant, resistant and highly susceptible. Finally, the sensitivity of the isolates according to LD50 values, azoxystrobin and difenoconazole were most effective against the isolates of Colletotrichum spp, tested in this study, followed by chlorothalonil and captan, while the least effective fungicides were mancozeb and benomyl. This research confirmed the variability in symptomatology, morphological and molecular traits, virulence and fungicide sensitivity of Colletotrichum spp. associated with yam anthracnose, which can be exploited to improve disease management strategies. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agronómicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | El cultivo de ñame es de gran importancia para la economía de los países tropicales y subtropicales ubicados en África, Asia, América central y del sur, hace parte de la dieta humana, siendo valorado por su aporte de carbohidratos y vitaminas. Las especies más sembradas se han visto afectadas por problemas fitosanitarios causados por hongos y virus; donde la enfermedad más limitante es la antracnosis (Colletotrichum gloeosporioides), causando pérdidas hasta de un 85%. El manejo de la enfermedad se ha hecho mediante la aplicación de fungicidas y prácticas culturales sin alcanzar un manejo eficaz de esta; debido al desconocimiento de la enfermedad y el aumento de los niveles de resistencia del género a diferentes fungicidas, en este sentido, el monitoreo de la resistencia a los fungicidas es crucial para lograr un manejo efectivo de la enfermedad y ningún informe anterior ha explorado la resistencia en las poblaciones de Colletotrichum en ñame en Colombia. Por lo tanto, se plantea la siguiente investigación, cuyo objetivo es contribuir en el manejo integrado de la antracnosis del ñame Colletotrichum spp., mediante la caracterización de los síntomas de la enfermedad, de su agente causal y la sensibilidad a fungicidas comúnmente empleados en su manejo. La investigación se realizó en dos fases, una en campo y otra en laboratorio; en campo se identificaron y describieron los diferentes síntomas asociados a la antracnosis, luego se obtuvieron los aislados de cada tipo de lesión y se describieron las características macroscópicas y microscópicas de los aislados. La virulencia y severidad de los aislados fue determinada mediante la inoculación in vitro de cuatro accesiones promisorias de ñame D. alata y tres de D. rotundata. La variabilidad genética se determinó secuenciando la región ITS del gen 5,8S. Finalmente, se determinó la sensibilidad de las cepas a los fungicidas mediante ensayos “in vitro”. Las observación en campo permitieron clasificar nueve tipos de síntomas en los cultivares de ñame (siete lesiones y dos necrosis). Se obtuvieron 11 aislados monospóricos, que se clasificaron en tres grupos según características morfológicas y culturales, los cuales presentaron diferencias entre su patogenicidad y virulencia en hospederos resistentes y susceptibles. La secuenciación parcial de la región ITS identificaron a C. gloeosporioides y C. fructicola asociados a la antracnosis del ñame en el departamento de Córdoba. La severidad de la enfermedad mostró diferencias estadísticas, perimiendo clasificar las accesiones como altamente resistente, resistentes y altamente susceptibles. Por último, la sensibilidad de los aislados según los valores de DL50, el azoxystrobin y el difenoconazol fueron más efectivos contra los aislados de Colletotrichum spp, probados en este estudio, seguidos por el clorotalonil y el captan, mientras que los fungicidas menos eficaces fueron el mancozeb y el benomyl. Está investigación confirmó la variabilidad en la sintomatología, los rasgos morfológicos, moleculares, la virulencia y la sensibilidad a los fungicidas de las especies de Colletotrichum asociadas a la antracnosis del ñame, las cuales se pueden aprovechar para mejorar las estrategias de manejo de la enfermedad. | spa |
dc.description.tableofcontents | RESUMEN.............................................................................................................................................7 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ........................................................................................................................9 | spa |
dc.description.tableofcontents | 2. PLANTEAMIENTO DEL PROBLEMA............................................................................11 | spa |
dc.description.tableofcontents | 3. OBJETIVOS.................................................................................................................................13 | spa |
dc.description.tableofcontents | 3.1. OBJETIVO GENERAL...........................................................................................................13 | spa |
dc.description.tableofcontents | 3.2. OBJETIVOS ESPECÍFICOS.................................................................................................................................13 | spa |
dc.description.tableofcontents | 4. MARCO TEÓRICO.................................................................................................................................14 | spa |
dc.description.tableofcontents | 4.1. IMPORTANCIA DEL CULTIVO DE ÑAME.................................................................................................................................14 | spa |
dc.description.tableofcontents | 4.2. LIMITANTES DEL CULTIVO..................................................................................................................................15 | spa |
dc.description.tableofcontents | 4.3. LA ANTRACNOSIS.................................................................................................................................16 | spa |
dc.description.tableofcontents | 4.3.1. Etiología o agente causal.................................................................................................................................16 | spa |
dc.description.tableofcontents | 4.3.2. Biología de Colletotrichum spp..................................................................................................................................17 | spa |
dc.description.tableofcontents | 4.3.3. Síntomas de la antracnosis en ñame.................................................................................................................................19 | spa |
dc.description.tableofcontents | 4.3.4. Caracterización e identificación del genero Colletotrichum...............................................................................21 | spa |
dc.description.tableofcontents | 4.3.6. Sensibilidad de Colletotrichum spp a fungicidas 23 | spa |
dc.description.tableofcontents | 5. METODOLÓGÍA............................................................................................................................................................24 | spa |
dc.description.tableofcontents | 5.1. LOCALIZACIÓN.................................................................................................................................24 | spa |
dc.description.tableofcontents | 5.2. PROCEDIMIENTO.................................................................................................................................24 | spa |
dc.description.tableofcontents | 6. RESULTADOS Y DISCUSIONES.................................................................................................................................31 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES.................................................................................................................................64 | spa |
dc.description.tableofcontents | 8. RECOMENDACIONES.................................................................................................................................64 | spa |
dc.description.tableofcontents | 9. BIBLIOGRAFÍA.................................................................................................................................64 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/5200 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Agronómicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | “In vitro” fungicide sensitivity | eng |
dc.subject.keywords | Fungal morphology | eng |
dc.subject.keywords | Pathogenicity | eng |
dc.subject.keywords | Genetic variability | eng |
dc.subject.proposal | Sensibilidad “in vitro” a fungicidas | spa |
dc.subject.proposal | Morfología de hongos | spa |
dc.subject.proposal | Patogenicidad | spa |
dc.subject.proposal | Variabilidad genética | spa |
dc.title | Caracterización y manejo químico de aislados de Colletotrichum spp. Causantes de la antracnosis del ñame (Dioscorea spp.) en el departamento de Córdoba | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abang, M. M., Asiedu, R., Hoffmann, P., Wolf, G. A., Mignouna, H. D., & Winter, S. (2006). Pathogenic and genetic variability among Colletotrichum gloeosporioides isolates from different yam hosts in the agroecological zones in Nigeria. Journal of Phytopathology, 154(1), 51-61. | spa |
dcterms.references | Abang, M. M., Fagbola, O., Smalla, K., & Winter, S. (2005). Two genetically distinct populations of Colletotrichum gloeosporioides Penz. causing anthracnose disease of yam (Dioscorea spp.). Journal of Phytopathology, 153(3), 137-142. | spa |
dcterms.references | Abang, M. M., Winter, S., Green, K. R., Hoffmann, P., Mignouna, H. D., & Wolf, G. A. (2001). Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathology, 51(1), 63-71.. | spa |
dcterms.references | Abang, M., Winter, S., Mignouna, H., Green, K. y Asiedu, R. (2003). Molecular taxonomic, epidemiological and popultion genetic approaches to understanding yam anthracnose disease. African Journal of Biotechnology 2, 486-496. | spa |
dcterms.references | Abang, M.M., Abraham, W.R., Asiedu, R., Hoffmann, P., Wolf, G., Winter, S. (2009). Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycological research 113, 130-140. | spa |
dcterms.references | Aduramigba, A. O., Asiedu, R., Odebode, A. C., & Owolade, O. F. (2012). Genetic diversity of Colletotrichum gloeosporioides in Nigeria using amplified fragment length polymorphism (AFLP) markers. African Journal of Biotechnology, 11(33), 8189-8195. | spa |
dcterms.references | Afanador, K.L., Minz, D., Maymon, M., Freeman, S. (2003). Characterization of Colletotrichum isolates from tamarillo,passiflora, and mango in Colombia and identification of a unique specie from the genus. Phytopathology 93: 579-587. | spa |
dcterms.references | Agrios, G. N. (2005). Plant pathology. Academic press,. | spa |
dcterms.references | Agronet (Red de Información y Comunicación Estratégica del Sector Agropecuario –Colombia). (2018). Disponible en: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | spa |
dcterms.references | Álvarez, E., Ospina,C.A., Mejia, J.F., Llano, G. (2005). Caracterización morfológica, patogénica y genética del agente causal de la antracnosis (Colletotrichum gloeosporioides) en Guanábana (Annona muricata) en el Valle del cauca. CIAT.Fitopatologia Colombiana, Vol. 28, No.1 | spa |
dcterms.references | Alzate, D.A., G.I. Mier, L. Afanador, D.L. Durango, y C.M. García. (2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo (Cymbopogon citratus). | spa |
dcterms.references | Amusa, N., Adegbite, A., Muhammed, S. y Baiyewu, R. (2003). Yam diseases and its management in Nigeria. African Journal of Biotechnology 2, 497-502. | spa |
dcterms.references | ANALDEX - Asociación Nacional de Comercio Exterior. (2019). Informe de exportaciones de hortalizas, plantas raíces y tubérculos alimenticios en el primer semestre de 2019. Disponible en: https://www.analdex.org/2019/08/29/informe-de-exportaciones-de-hortalizas-plantas-raices-y-tuberculos-alimenticios-en-el-primer-semestre-de-2019/ | spa |
dcterms.references | Anastassiadou, M., Arena, M., Auteri, D., Brancato, A., Bura, L., ... & Villamar‐Bouza, L. (2020). Peer review of the pesticide risk assessment of the active substance captan. EFSA Journal, 18(9), e06230. | spa |
dcterms.references | Andres, C., AdeOluwa, O. O., and Bhullar, G. S. (2017). “Yam (Dioscorea spp.),” in Encyclopedia of Applied Plant Sciences, Vol. 3., eds B. Thomas, B. G. Murray, and D. J. Murphy (Waltham, MA: Academic Press), 435–441. | spa |
dcterms.references | Appiah, Z., Kofi, A., Emmanuel, M., David, A. y Esther, M. (2016). Variability of Colletotrichum gloeosporioides isolates the causal agent of anthracnose disease of cassava and yam plants in Ghana. International Journal of Phytopathology, 5(1), 01-09.. | spa |
dcterms.references | Arce, C., Varela, I., & Torres, S. (2019). Inhibición del crecimiento micelial de hongos asociados a antracnosis en ñame (Dioscorea alata). Agronomía Mesoamericana, 381-393. | spa |
dcterms.references | Arya, R., Sheela, M., Jeeva, M. y Abhilash, P. (2019). Identification of Host Plant Resistance to Anthracnose in Greater Yam (Dioscorea alata L.). Int. J. Curr. Microbiol. App. Sci, 8(8), 1690-1696. | spa |
dcterms.references | Ayodele, M.A., Hughes, J.D. and Asiedu, R. (2006). Yam antracnose disease: field symptoms and laboratory diagnostics. IITA. | spa |
dcterms.references | Azeddine, S., Billard, A., Bach, J., Lanen, C., Walker, A. S., Debieu, D., & Sabine, H. F. D. (2014). Botrytis pseudocinerea is resistant to the fungicide fenhexamid due to detoxification by the cytochrome P450 monooxygenase CYP684. In 10es Rencontres de Phytopathologie-Mycologie de la Société Française de Phytopathologie (SFP) (pp. p-83). | spa |
dcterms.references | Baggio, J. S., Wang, N. Y., Peres, N. A., & Amorim, L. (2018). Baseline sensitivity of Colletotrichum acutatum isolates from Brazilian strawberry fields to azoxystrobin, difenoconazole, and thiophanate-methyl. Tropical Plant Pathology, 43(6), 533-542. | spa |
dcterms.references | Barak, E., & Edgington, L. V. (1984). Glutathione synthesis in response to captan: a possible mechanism for resistance of Botrytis cinerea to the fungicide. Pesticide Biochemistry and Physiology, 21(3), 412-416. | spa |
dcterms.references | Barcelos, Q.L., Pinto, J.M.A., Vaillancourt, L.J., Souza, E.A. (2014). Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil. PLoS One 9, 1e15. | spa |
dcterms.references | Barimani, M., Pethybridge, S.J., Vaghefi, N., Hay, F.S., Taylor, P.W.J. (2013). A new anthracnose disease of pyrethrum caused by Colletotrichum tanaceti sp. nov. Plant Pathol. 62,1248e1257. | spa |
dcterms.references | Barnett, H. y Hunter, B. (1998). Illustrated Genera of Imperfect Fungi. 4. a edición. Saint Paul: American Phytopathological Society. | spa |
dcterms.references | Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr‐Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science: formerly Pesticide Science, 58(7), 649-662. | spa |
dcterms.references | Beltrán, J. (2000). Caracterización y diagnóstico del género Colletotrichum causante de la antracnosis en ñame y otros cultivos. En ñame: producción de semilla por biotecnología (eds) Guzmán M y Buitrago G. Universidad Nacional. Bogotá, Colombia. | spa |
dcterms.references | Brent, K. J., & Hollomon, D. W. (1995). Fungicide resistance in crop pathogens: how can it be managed? (Vol. 1, p. 48). Brussels: GIFAP. | spa |
dcterms.references | Brown, AE., Sreenivasaprasad, S., Timmer LW, (1996). Molecular characterization of slow‐growing orange and key lime anthracnose strains of Colletotrichum from Citrus as C. acutatum. Phytopathology 86, 523–7. | spa |
dcterms.references | Brown, J. K. (2006). Surveys of variation in virulence and fungicide resistance and their application to disease control. In The epidemiology of plant diseases (pp. 81-115). Springer, Dordrecht. | spa |
dcterms.references | Campo, R. O., & Royet, J. D. J. (2020). La antracnosis del ñame y estrategias de manejo: una revisión. Temas Agrarios, 25(2), 190-201. | spa |
dcterms.references | Campo, R.O, Luna, J. y Jiménez, Y. (2009). Selección de genotipos de ñame Dioscorea spp. resistente a la antracnosis Colletotrichum gloeosporioides Penz. Fitopatología Colombiana 33(1):7-10. | spa |
dcterms.references | Campo, R.O. (2000). La antracnosis, enfermedad limitante del cultivo del ñame. En ñame: producción de semilla por biotecnología (eds) Guzmán M y Buitrago G. Universidad Nacional. Bogota, Colombia p 67- 70. | spa |
dcterms.references | Campo, R.O. (2011). Manejo integrado de la antracnosis (Colletotrichum spp.) en ñame (Dioscorea alata) mediante el uso de alternativas para reducir el inóculo primario, la dispersión y el establecimiento del patógeno. informe final de proyecto. universidad de córdoba, col. doi:10.13140/rg.2.1.2576.9846 | spa |
dcterms.references | Campo, R.O. y Luna, J. (1998). Evaluación de la antracnosis en ñame Dioscorea alata var. Diamante 22 en monocultivo e intercalado con la variedad concha de coco. Ascolfi Informa 24 (5): 26-27 p. | spa |
dcterms.references | Campo, R.O., Luna, J.M. y Jimenez, Y.M. (2009). Selección de genotipos de ñame Dioscorea spp. resistente a la antracnosis Colletotrichum gloeosporioides Penz. Fitopatología Colombiana 33(1):7-10. | spa |
dcterms.references | Cao, X. R., Xu, X. M., Che, H. Y., West, J. S., & Luo, D. Q. (2019). Characteristics and distribution of Colletotrichum species in coffee plantations in Hainan, China. Plant Pathology, 68(6), 1146-1156. | spa |
dcterms.references | Castellanos, G., Jara, C., & Mosquera, G. (2011). Guías Prácticas de Laboratorio para el Manejo de Patógenos del Frijol. Centro Internacional de Agricultura Tropical. Publicación CIAT No. 375. | spa |
dcterms.references | Castro, L., Saquero, M. y Herrera, J. (2003). Caracterización morfológica y patogénica de Colletotrichum sp. como agente causal de la antracnosis en ñame Dioscorea sp. Revista colombiana de Biotecnologia, (1), 24-35 | spa |
dcterms.references | Cerón, L.E., Higuera, B.L., Sánchez, J., Bustamante, S., Buitrago, G. (2006). Crecimiento y desarrollo de Colletotrichum gloeosporioides f. alatae durante su cultivo en medios líquidos. Acta Biológica Colombiana 11, 99-109. | spa |
dcterms.references | Chacko, R. J., Weidemann, G. J., Tebeest, D. O., & Correll, J. C. (1994). The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange in Colletotrichum gloeosporioides. Biological control, 4(4), 382-389. | spa |
dcterms.references | Chechi, A., Stahlecker, J., Dowling, M. E., & Schnabel, G. (2019). Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide biochemistry and physiology, 158, 18-24. | spa |
dcterms.references | Chen, F., Tsuji, S. S., Li, Y., Hu, M., Bandeira, M. A., Câmara, M. P. S., ... & Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide biochemistry and physiology, 162, 60-68. | spa |
dcterms.references | Chen, S. N., Luo, C. X., Hu, M. J., & Schnabel, G. (2016). Sensitivity of Colletotrichum species, including C. fioriniae and C. nymphaeae, from peach to demethylation inhibitor fungicides. Plant disease, 100(12), 2434-2441. | spa |
dcterms.references | Chen, S. N., Shang, Y., Wang, Y., Schnabel, G., Lin, Y., Yin, L. F., & Luo, C. X. (2014). Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin. Plant disease, 98(11), 1555-1560. | spa |
dcterms.references | Chen, S., Hu, M., Schnabel, G., Yang, D., Yan, X., & Yuan, H. (2020). Paralogous CYP51 genes of Colletotrichum spp. mediate differential sensitivity to sterol demethylation inhibitors. Phytopathology, 110(3), 615-625. | spa |
dcterms.references | Chen, S., Wang, Y., Schnabel, G., Peng, C. A., Lagishetty, S., Smith, K., & Yuan, H. (2018). Inherent resistance to 14α-demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology, 108(11), 1263-1275. | spa |
dcterms.references | Chen, X. Y., Dai, D. J., Zhao, S. F., Shen, Y., Wang, H. D., & Zhang, C. Q. (2020). Genetic Diversity of Colletotrichum spp. Causing Strawberry Anthracnose in Zhejiang, China. Plant Disease, 104(5), 1351-1357. | spa |
dcterms.references | CORPORACIÓN PBA. (2009). Programa de investigación participativa para la producción y transformación sostenible del nombre (Dioscorea sp) en la Costa Atlántica. 58 p. | spa |
dcterms.references | Cosseboom, S. D., & Hu, M. (2021). Diversity, Pathogenicity, and Fungicide Sensitivity of Fungal Species Associated with Late-Season Rots of Wine Grape in the Mid-Atlantic United States. Plant Disease, (ja). | spa |
dcterms.references | Cox, K. D. (2015). Fungicide resistance in Venturia inaequalis, the causal agent of apple scab, in the United States. In Fungicide resistance in plant pathogens (pp. 433-447). Springer, Tokyo. | spa |
dcterms.references | Damm, U., Cannon, P.F., Woudenberg, J.H.C., Crous, P.W. (2012). The Colletotrichum acutatum species complex. Stud. Mycol. 73, 37e113. | spa |
dcterms.references | De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31(3), 155-168. | spa |
dcterms.references | Dean, R., Van kan, J. A. L., Pretorius, Z. A., Hammond-kosack, K. E., Pietro, A. D., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, J. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13, 414-430. | spa |
dcterms.references | Deising HB., Werner S. y Wernitz M. (2000). The role of fungal appressoria in plant infection. Microbes Infect; 2:1631–41. | spa |
dcterms.references | Dhavale, R. A., Mulekar, V. G., Jaiswal, K. L., Bhosale, A. R., & Rothe, A. S. (2019). In vitro evaluation of non-systemic fungicides against Colletotrichum gloeosporioides causing fruit rot in banana. Journal of Pharmacognosy and Phytochemistry, 8(5), 1486-1488. | spa |
dcterms.references | Dixon, E., Barlow, W., Walles, G., Amsden, B., Hirsch, R. L., Pearce, R., & Pfeufer, E. E. (2020). Cytochrome b mutations F129L and G143A confer resistance to azoxystrobin in Cercospora nicotianae, the frogeye leaf spot pathogen of tobacco. Plant disease, 104(6), 1781-1788. | spa |
dcterms.references | Dongo, A. B. (2017). Descripción metodológica del anàlisis Clúster utilizando el algoritmo de Ward. | spa |
dcterms.references | dos Santos, W. A., Bezerra, P. A., da Silva, A. C., Veloso, J. S., Câmara, M. P. S., & Doyle, V. P. (2020). Optimal markers for the identification of Colletotrichum species. Molecular Phylogenetics and Evolution, 143, 106694. | spa |
dcterms.references | Egesi, C. N., Odu, B. O., Ogunyemi, S., Asiedu, R., & Hughes, J. (2007). Evaluation of wáter yam (Dioscorea alata L.) germplasm for reaction to yam anthracnose and virus diseases and their effect on yield. Journal of Phytopathology, 155(9), 536–543. http://doi.org/10.1111/j.1439-0434.200 | spa |
dcterms.references | Espinel, P. (2019). Procedimiento para efectuar una Clasificación Ascendente Jerárquica de un Conjunto de Puntos utilizando el Método de Ward. Infociencia, 9(1), 13-18. | spa |
dcterms.references | Espinoza, D., Silva, H. V., Leyva, S. G., Marbán, N., & Rebollar, Á. (2017). Sensitivity of Colletotrichum acutatum isolates obtained from strawberry to tiophanate-methyl and azoxystrobin fungicides. Revista mexicana de fitopatología, 35(2), 186-203. | spa |
dcterms.references | FAO. (2020). Datos sobre alimentación y agricultura. Recuperado el 2 de septiembre de 2021, de http://www.fao.org/faostat/es/#data | spa |
dcterms.references | Fernández, E., Rentería, M. E., Ramírez, I., Moreno, S. F., Ochoa, A., & Guillén, D. (2020). Colletotrichum karstii: causal agent of anthracnose of Dendrobium nobile in Mexico. Canadian Journal of Plant Pathology, 1-6. | spa |
dcterms.references | Ferreira, J. B., Abreu, M. S. D., Pereira, I. S., Fernandes, K. D., & Pereira, R. B. (2009). Sensibilidade de Colletotrichum gloeosporioides (mancha manteigosa do cafeeiro) a diferentes concentrações de fungicidas. Ciência e Agrotecnologia, 33, 2052-2058. | spa |
dcterms.references | Forcelini, B. B., Seijo, T. E., Amiri, A., & Peres, N. A. (2016). Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Disease, 100(10), 2050-2056. | spa |
dcterms.references | Fox, R. T. V., & Narra, H. P. (2006). Plant disease diagnosis. In The epidemiology of plant diseases (pp. 1-42). Springer, Dordrecht. | spa |
dcterms.references | FRAC (2018). Importance of Multisite Fungicides in Managing Pathogen Resistance. Online publication. https://www.frac.info/docs/default-source/publications/state ment-on-multisite-fungicides/frac-statement-on-multisite-fungicides-2018.pdf? sfvrsn=3c25489a_2. | spa |
dcterms.references | Frąc, M., Gryta, A., Oszust, K., & Kotowicz, N. (2016). Fast and accurate microplate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity. Frontiers in microbiology, 7, 489. | spa |
dcterms.references | FRAC. (2021). Grupos de modo de acción. Disponible en: https://www.frac.info/fungicide-resistance-management/by-frac-mode-of-action-group | spa |
dcterms.references | Frézal, L., Desquilbet, L., Jacqua, G. y Neema, C. (2012). Quantification of the aggressiveness of a foliar pathogen, Colletotrichum gloeosporioides, responsible for water yam (Dioscorea alata) anthracnose. European journal of plant pathology, 134(2), 267-279. | spa |
dcterms.references | Frézal, L., Jacqua, G., & Neema, C. (2018). Adaptation of a fungal pathogen to host quantitative resistance. Frontiers in plant science, 9, 1554. | spa |
dcterms.references | Frossard E, Aighewi BA, Aké S, Barjolle D, Baumann P, Bernet T, Dao D, Diby LN, Floquet A, Hgaza VK, Ilboudo LJ, Kiba DI, Mongbo RL, Nacro HB, Nicolay GL, Oka E, Ouattara YF, Pouya N, Senanayake RL, Six J and Traoré OI (2017) The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa. Front. Plant Sci. 8:1953. doi: 10.3389/fpls.2017.01953 | spa |
dcterms.references | Fuentes, D., Silva, H. V., Guarnaccia, V., Mora, J. A., Aranda, S., Bautista, N., & Téliz, D. (2020). Colletotrichum species causing anthracnose on avocado fruit in Mexico: current status. Plant Pathology. | spa |
dcterms.references | Fuentes, D., Silva, H., Guarnaccia, V., Mora, J., Aranda, S., Bautista, N. y Téliz, D. (2020). Colletotrichum species causing anthracnose on avocado fruit in Mexico: current status. Plant Pathology. | spa |
dcterms.references | Fuentes, S. (2015). Caracterización morfológica, patogénica y molecular de especies de colletrotrichum asociados al follaje del cultivo de ñame (Dioscorea spp.) (Doctoral dissertation). | spa |
dcterms.references | Gama, A. B., Baggio, J. S., Rebello, C. S., Lourenco, S. D. A., Gasparoto, M. C. D. G., da Silva Junior, G. J., ... & Amorim, L. (2020). Sensitivity of Colletotrichum acutatum Isolates from Citrus to Carbendazim, Difenoconazole, Tebuconazole, and Trifloxystrobin. Plant disease, 104(6), 1621-1628. | spa |
dcterms.references | Gao, Y. Y., He, L. F., Li, B. X., Mu, W., Lin, J., & Liu, F. (2017). Sensitivity of Colletotrichum acutatum to six fungicides and reduction in incidence and severity of chili anthracnose using pyraclostrobin. Australasian Plant Pathology, 46(6), 521-528. | spa |
dcterms.references | Ghini, R., & Kimati, H. (2000). Resistência de fungos a fungicidas. Jaguariúna: Embrapa Meio Ambiente. | spa |
dcterms.references | Giorgio, T., Adler, L. S., & Sandler, H. A. (2020). Colletotrichum Species Isolated from Massachusetts Cranberries Differ in Response to the Fungicide Azoxystrobin. | spa |
dcterms.references | González, M. (2012). El Ñame (Dioscorea spp.). Características, usos y valor medicinal. Aspectos de importancia en el desarrollo de su cultivo. Cultivos Tropicales, 33(4), 05-15. | spa |
dcterms.references | Green KR, Abang MM, Iloba C, 1998. Characterization of Colletotrichum gloeosporioides from yam (Dioscorea spp.) in Nigeria. In: Proceedings of the 7th International Congress of Plant Pathology, Edinburgh, UK, Abstract 2.2.128. | spa |
dcterms.references | Green, K. R., and Simons, S. A. (1994). ‘Dead skin’ on yams (Dioscorea alata) caused by Colletotrichum gloeosporioides. Plant Pathol. 43, 1062–1065. doi: 10.1111/j.1365-3059.1994.tb01660.x | spa |
dcterms.references | GREEN, K. y SIMONS, S. (1994). Quantitative methods for assessing the severity of antracnose on yam (Dioscorea alata). Trop. Sci. 34: 216-224.. | spa |
dcterms.references | Guarnaccia, V., Groenewald, J. Z., Polizzi, G., & Crous, P. W. (2017). High species diversity in Colletotrichum associated with citrus diseases in Europe. Persoonia: Molecular Phylogeny and Evolution of Fungi, 39, 32. | spa |
dcterms.references | Guillén, D., Cadenas, C. I., Alia, I., López, V., Andrade, M., & Juárez, P. (2017). Inhibición colonial in vitro de un aislado de Colletotrichum acutatum Simmonds a tratamientos con fungicidas. Centro Agrícola, 44(4), 11-16. | spa |
dcterms.references | Gullino, M. L., Tinivella, F., Garibaldi, A., Kemmitt, G. M., Bacci, L., & Sheppard, B. (2010). Mancozeb: past, present, and future. Plant Disease, 94(9), 1076-1087. | spa |
dcterms.references | Gwa, I. V., Bem, A. A., & Okoro, J. K. (2015). Yams (Dioscorea rotundata Poir and D. alata Lam.) fungi etiology in Katsina-ala local government area of Benue state, Nigeria. Journal of Phytopathology and Plant Health, 3, 38-43. | spa |
dcterms.references | Gwa, V. I., & Ekefan, E. J. (2017). Fungal Organisms Isolated from Rotted White Yam (Dioscorea rotundata) Tubers and Antagonistic Potential of Trichoderma harzianum against Colletotrichum Species. Agri Res & Tech: Open Access J, 10(3), 555787. | spa |
dcterms.references | HAN, Y. C., ZENG, X. G., XIANG, F. Y., ZHANG, Q. H., Cong, G. U. O., CHEN, F. Y., & GU, Y. C. (2018). Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. Journal of integrative agriculture, 17(6), 1391-1400. | spa |
dcterms.references | Hu, M. J., Grabke, A., Dowling, M. E., Holstein, H. J., & Schnabel, G. (2015). Resistance in Colletotrichum siamense from peach and blueberry to thiophanate-methyl and azoxystrobin. Plant Disease, 99(6), 806-814. | spa |
dcterms.references | Hu, M., & Chen, S. (2021). Non-target site mechanisms of fungicide resistance in crop pathogens: A review. Microorganisms, 9(3), 502. | spa |
dcterms.references | Hua, S., Chen, Z., Li, L., Lin, K., Zhang, Y., Yang, J. y Chen, S. (2020). Differences in immunity between pathogen-resistant and-susceptible yam cultivars reveal insights into disease prevention underlying ethylene supplementation. Journal of Plant Biochemistry and Biotechnology, 1-11. | spa |
dcterms.references | Huanyu, L., Tingting, F., Yun, Z., Tianyou, L., Yuan, L., & Bingliang, X. (2017). Effect Comparison of Five Methods to Extract Fungal Genomic DNA as PCR Templates. Chinese Agricultural Science Bulletin, 2017(16), 7. | spa |
dcterms.references | Hulvey, J., Popko Jr, J. T., Sang, H., Berg, A., & Jung, G. (2012). Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Applied and environmental microbiology, 78(18), 6674-6682. | spa |
dcterms.references | IDEAM. (2020). Consulta y Descarga de Datos Hidrometeorológicos. Recuperado el 14 de enero de 2020, de http://dhime.ideam.gov.co/atencionciudadano/ | spa |
dcterms.references | Inglis, P. W., Pappas, M. D. C. R., Resende, L. V., & Grattapaglia, D. (2018). Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS One, 13(10), e0206085. | spa |
dcterms.references | Islam, A., Schreinemachers, P. and Kumar, S. (2020). Farmers’ knowledge, perceptions and management of chili pepper anthracnose disease in Bangladesh. Crop Protection, 133,105,139. | spa |
dcterms.references | Ivors, K. (2016). PROTOCOL 06-03.1: Modified CTAB extraction of fungal DNA. In Laboratory protocols for Phytophthora species. APS. | spa |
dcterms.references | Jabs, T., Cronshaw, K., & Freund, A. (2001). New strobilurin resistance mechanism in apple scab (Venturia inaequalis). Mitt. Deutsch. Phytomed. Ges, 31, 15-16. | spa |
dcterms.references | Jagtap, N. M., Ambadkar, C. V., & Bhalerao, G. A. (2015). In vitro evaluation of different fungicides against Colletotrichum gloeosporioides causing anthracnose of pomegranate. International Journal of Agricultural Sciences, 11(2), 273-276. | spa |
dcterms.references | Jehani, M. D., Patel, P. R., & Chaudhary, A. K. (2019). Evaluation of bioagents against Colletotrichum capsici caused anthracnose disease of yam (Dioscorea alata L.). Journal of Pharmacognosy and Phytochemistry, 8(3), 4788-4790. | spa |
dcterms.references | Jiménez, Y.M., Campo, R.O., Lopez, L.L. (2009). Caracterización morfológica de aislamientos de Colletotrichum spp. causantes de la antracnosis del ñame Dioscorea alata L. Fitopatología Colombiana 33(1):1-6 | spa |
dcterms.references | Jung, G., Sang, H.,, Hulvey, J., Chang, T., y Popko, J. (2017). Multidrug Resistance Conferred by Xenobiotic Detoxification in the Ascomycete Fungus Sclerotinia homoeocarpa. In: Deising HB; Fraaije B; Mehl A; Oerke EC; Sierotzki H; Stammler G (Eds), "Modern Fungicides and Antifungal Compounds", Vol. VIII, pp. 101-106. © 2017 Deutsche Phytomedizinische Gesellschaft, Braunschweig, ISBN: 978-3-941261-15-0 | spa |
dcterms.references | Jurick, W. M., Macarisin, O., Gaskins, V. L., Janisiewicz, W. J., Peter, K. A., & Cox, K. D. (2019). Baseline sensitivity of Penicillium spp. to difenoconazole. Plant disease, 103(2), 331-337. | spa |
dcterms.references | Katediya, M. A., Jaiman, R. K., & Kumar, S. (2019). Management of chilli anthracnose caused by Colletotrichum capasici. Journal of Pharmacognosy and Phytochemistry, 8(3), 2697-2701. | spa |
dcterms.references | Kay, M., Elkin, L. A., Higgins, J. J., and Wobbrock, J. O. (2021). ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R package version 0.11.1, https://github.com/mjskay/ARTool. DOI: 10.5281/zenodo.594511. | spa |
dcterms.references | Kim, S., Park, S. Y., Kim, H., Kim, D., Lee, S. W., Kim, H. T. & Choi, W. (2014). Isolation and characterization of the Colletotrichum acutatum ABC transporter CaABC1. The plant pathology journal, 30(4), 375. | spa |
dcterms.references | King, K. M., Bucur, D. E., Ritchie, F., Hawkins, N. J., Kaczmarek, A. M., Duan, Y. & Fraaije, B. A. (2021). Fungicide resistance status and chemical control options for the brassica pathogen Pyrenopeziza brassicae. Plant Pathology. | spa |
dcterms.references | Kumar, G. (2014). Colletotrichum gloeosporioides: Biology, Pathogenicity and Management in India. J Plant Physiol Pathol 2:2. | spa |
dcterms.references | Kunova, A., Pizzatti, C., Bonaldi, M., & Cortesi, P. (2014). Sensitivity of nonexposed and exposed populations of Magnaporthe oryzae from rice to tricyclazole and azoxystrobin. Plant Disease, 98(4), 512-518. | spa |
dcterms.references | Kwodaga, J. K., Sowley, E. N. K., & Badii, B. K. (2020). Morphological and molecular characterisation of Colletotrichum gloeosporioides (Penz) isolates obtained from Dioscorea rotundata (Poir). African Journal of Biotechnology, 19(5), 231-239. ISO 690 | spa |
dcterms.references | Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., ... & Chapeland, F. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest management science, 58(9), 876-888. | spa |
dcterms.references | Liang, S. H. E. N., Yuxuan, M. A., Min, F. U., Ni, H. O. N. G., & Guoping, W. A. N. G. (2020). Sensitivity of difenoconazole to Colletotrichum fructicola at major pear cultivation areas in South China. 农药学学报, 22(1), 54-59. | spa |
dcterms.references | Lin, C. H., Wu, W. Q., Liao, X. M., Liu, W. B., Miao, W. G., & Zheng, F. C. (2018). First Report of Leaf Anthracnose Caused by Colletotrichum alatae on Water Yam (Dioscorea alata) in China. Plant Disease, 102(1), 248. | spa |
dcterms.references | Liu, F., Tang, G., Zheng, X., Sun, X., Qi, X. y Zhang, S. (2016). Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Scientific reports, 6, 32761. | spa |
dcterms.references | López, S. P., & Castaño, J. (2020). In vitro effect of four fungicides on Colletotrichum gloeosporioides causing anthracnosis on the Red Globe grape variety. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 747-758. | spa |
dcterms.references | Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in applied microbiology, 90, 29-92. | spa |
dcterms.references | Luna, L. L., Tamara, R. E., & García, J. A. (2018). Efecto de tipo de tutores y densidad de siembra sobre el rendimiento de ñame espino (Dioscorea rotundata Poir.). Fave. Sección ciencias agrarias, 17(2), 53-62. | spa |
dcterms.references | Luo, Q., Schoeneberg, A., & Hu, M. (2020). Resistance to azoxystrobin and thiophanate-methyl is widespread in Colletotrichum spp. isolates from the Mid-Atlantic Strawberry Fields. Plant Disease, (ja). | spa |
dcterms.references | Manamgoda, D.S., Udayanga, D., Cai, L., Chukeatirote, E., Hyde, K.D., (2013). Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Divers. 61, 107e115. | spa |
dcterms.references | Marroquín, N. G., Rodríguez, S. L. B., Gutiérrez, Y. A. P., & Hurtado, G. B. (2016). Caracterización molecular de Colletotrichum gloeosporioides aislado de plantas de ñame de la Costa Atlántica Colombiana utilizando la técnica “DNA Amplification Fingerprinting (DAF)”. Revista Colombiana de Biotecnología, 18(1), 95-103. | spa |
dcterms.references | Martin, P. L., Krawczyk, T., Pierce, K., Thomas, C. A., Khodadadi, F., Aćimović, S., & Peter, K. (2021). Fungicide sensitivity of Colletotrichum species causing bitter rot of apple in the Mid-Atlantic United States. Plant Disease, (ja). | spa |
dcterms.references | Maymon, M., Zveibil, A., Pivonia, S., Minz, D., & Freeman, S. (2006). Identification and characterization of benomyl-resistant and-sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology, 96(5), 542-548. | spa |
dcterms.references | Mehl, A., & Manger-Jacob, F. (2015). Banana Diseases. In Fungicide Resistance in Plant Pathogens (pp. 467-479). Springer, Tokyo. | spa |
dcterms.references | Mendgen, K., Hahn, M., (2002). Review: plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 7, 352e356. | spa |
dcterms.references | Mercado, A. Q., Dangon-Bernier, F., & Páez-Redondo, A. (2019). Aislamientos endofíticos de Colletotrichum spp. a partir de hojas y ramas de mango (Mangifera indica L.) cultivar Azúcar en el municipio de Ciénaga, Magdalena, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 65-77. | spa |
dcterms.references | Mignouna, H. D., Abang, M. M., Green, K. R., & Asiedu, R. (2001). Inheritance of resistance in water yam (Dioscorea alata) to anthracnose (Colletotrichum gloeosporioides). Theoretical and Applied Genetics, 103(1), 52-55. | spa |
dcterms.references | Mignouna, H. D., Abang, M. M., Onasanya, A., & Asiedu, R. (2002). Identification and application of RAPD markers for anthracnose resistance in water yam (Dioscorea alata). Annals of Applied Biology, 141(1), 61-66. | spa |
dcterms.references | Mignouna, H., Mank, R., Ellis, T., Van Den Bosch, N., Asiedu, R., Abang, M., & Peleman, J. (2002). A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theoretical and Applied Genetics, 105(5), 726-735. | spa |
dcterms.references | Mignouna, H., Mank, R., Ellis, T., Van Den Bosch, N., Asiedu, R., Abang, M. y Peleman, J. (2002). A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theoretical and Applied Genetics, 105(5), 726-735. | spa |
dcterms.references | Mignucci JS, Hepperly PR, Green J, Torres‐Lopez R, Figueroa LA (1988). Yam protection. II. Anthracnose, yield and profit of monocultures and interplantings. Journal of Agriculture of the University of Puerto Rico 72, 179–89. | spa |
dcterms.references | Ministerio de Agricultura y Desarrollo Rural - MADR. (2021). Cadena Productiva del Ñame. Dirección de Cadenas Agrícolas y Forestales. Internet. p 12-22. https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03 | spa |
dcterms.references | Mo, J., Zhao, G., Li, Q., Solangi, G. S., Tang, L., Guo, T., & Hsiang, T. (2018). Identification and characterization of Colletotrichum species associated with mango anthracnose in Guangxi, China. Plant disease, 102(7), 1283-1289. | spa |
dcterms.references | Moges, A. D., Admassu, B., Belew, D., Yesuf, M., Njuguna, J., Kyalo, M., & Ghimire, S. R. (2016). Development of microsatellite markers and analysis of genetic diversity and population structure of Colletotrichum gloeosporioides from Ethiopia. PloS one, 11(3), e0151257. | spa |
dcterms.references | Moral, J., Agustí-Brisach, C., Agalliu, G., de Oliveira, R., Pérez-Rodríguez, M., Roca, L. F., ... & Trapero, A. (2018). Preliminary selection and evaluation of fungicides and natural compounds to control olive anthracnose caused by Colletotrichum species. Crop Protection, 114, 167-176. | spa |
dcterms.references | Moreira, R. R., Hamada, N. A., Peres, N. A., & De Mio, L. L. M. (2019). Sensitivity of the Colletotrichum acutatum species complex from apple trees in Brazil to Dithiocarbamates, Methyl Benzimidazole Carbamates, and Quinone outside inhibitor fungicides. Plant disease, 103(10), 2569-2576. | spa |
dcterms.references | Münch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N., & Deising, H. B. (2008). The hemibiotrophic lifestyle of Colletotrichum species. Journal of plant physiology, 165(1), 41-51. | spa |
dcterms.references | Murray, M. G., and William F. Thompson. (1980). "Rapid isolation of high molecular weight plant DNA." Nucleic acids research 8.19 4321-4326. | spa |
dcterms.references | Nakaune, R., & Nakano, M. (2007). Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genetics and Biology, 44(12), 1324-1335. | spa |
dcterms.references | NCBI (National Center for Biotechnology Information). Taxonomy Browswe. Disponible en: http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=474922. | spa |
dcterms.references | Neema, C. y Frezal, L. (2018). Adaptation of a fungal pathogen to host quantitative resistance. Frontiers in plant science, 9, 1554. | spa |
dcterms.references | NEGRETE, J. Y REDONDO, A. (1997). Evaluación de la respuesta a la antracnosis, Colletotrichum gloeosporioides Penz. en ñames promisorios, Dioscorea alata L. en Córdoba. Univ. de Córdoba. | spa |
dcterms.references | Nwadili, C., Augusto, J., Bhattacharjee, R., Atehnkeng, J., Lopez, A., Onyeka, T. y Bandyopadhyay, R. (2017). Comparative reliability of screening parameters for anthracnose resistance in water yam (Dioscorea alata). Plant disease, 101(1), 209-216. | spa |
dcterms.references | Omrane, S., Audéon, C., Ignace, A., Duplaix, C., Aouini, L., Kema, G. & Fillinger, S. (2017). Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. MSphere, 2(5), e00393-17. | spa |
dcterms.references | Omrane, S., Sghyer, H., Audéon, C., Lanen, C., Duplaix, C., Walker, A. S., & Fillinger, S. (2015). Fungicide efflux and the MgMFS 1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environmental Microbiology, 17(8), 2805-2823. | spa |
dcterms.references | Onyeka, T. J., Petro, D., Ano, G., Etienne, S., & Rubens, S. (2006). Resistance in water yam (Dioscorea alata) cultivars in the French West Indies to anthracnose disease based on tissue culture‐derived whole‐plant assay. Plant pathology, 55(5), 671-678. | spa |
dcterms.references | Osorio, C. (1989). Control químico de la antracnosis del ñame causada por Colletotrichum gloeosporioides, Penz (No. Doc. 25497) CO-BAC, Bogotá). | spa |
dcterms.references | Osorio, L. F., Pattison, J. A., Peres, N. A., & Whitaker, V. M. (2014). Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides. Phytopathology, 104(1), 67-74. | spa |
dcterms.references | Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of applied microbiology, 111(2), 443-455. | spa |
dcterms.references | Pardo, C., Calderón, C., Rincón, A., Cárdenas, M., Danies, G., López, L. y Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227-237. | spa |
dcterms.references | Pardo‐De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López‐Kleine, L., ... & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227-237. | spa |
dcterms.references | Patel, P., Rajkumar, B. K., Parmar, P., Shah, R., & Krishnamurthy, R. (2018). Assessment of genetic diversity in Colletotrichum falcatum Went accessions based on RAPD and ISSR markers. Journal of Genetic Engineering and Biotechnology, 16(1), 153-159. | spa |
dcterms.references | Patrice, N. D. J., Placide, D., Madjerembe, A., Rony, M. T. P., Gabriel, D., Ulrich, B. F., ... & Zachee, A. (2021). In vitro, In vivo and In situ, Effect of Mancozeb 80 WP on Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., Causative Agent of Anthracnose of Cashew (Anacardium occidentale L.) in Chad and Cameroon. International Journal of Pathogen Research, 1-14. | spa |
dcterms.references | Penet, L., Briand, S., Petro, D., Bussière, F., & Guyader, S. (2017). Data on microsatellite markers in Colletotrichum gloeosporioides sl, polymorphism levels and diversity range. Data in brief, 12, 644-648. | spa |
dcterms.references | Penet, L., Cornet, D., Blazy, J.-M., Alleyne, A., Barthe, E., Bussière, F., (2016). Varietal dynamics and yam agro-diversity demonstrate complex trajectories intersecting farmers’ strategies, networks, and disease experience. Front. Plant Sci. 7:1962. doi: 10.3389/fpls.2016.01962 | spa |
dcterms.references | Penet, L., Guyader, S., Pétro, D., Salles, M. and Bussière, F. (2014). Direct splash dispersal prevails over indirect and subsequent spread during rains in Colletotrichum gloeosporioides infecting yams. PLoS One, 9(12), e115757 | spa |
dcterms.references | Pereira, L. F., de Souza, E. A., Pereira, F. A. C., & Gonçalves, F. M. A. (2019). Investigating variability and behaviour of Colletotrichum gloeosporioides strains from lesions of coffee blister spot. Journal of Phytopathology, 167(11-12), 645-654. | spa |
dcterms.references | PÉREZ D.; CAMPO, R.; JARMA, A. 2015. Respuesta fisiológica del ñame espino (Dioscorea rotundata Poir) a las densidades de siembra. Rev. Cienc. Agr. 32(2):104 - 112. doi: http://dx.doi.org/10.22267/rcia.153202.18 | spa |
dcterms.references | PÉREZ, D. J., & CAMPO, R. O. (2016). Efecto de la densidad poblacional sobre el rendimiento de ñame espino (Dioscorea rotundata Poir.) tipo exportación. Revista Colombiana de Ciencias Hortícolas, 10(1), 89-98. | spa |
dcterms.references | Pérez, D. R., Vega, V. M., García, Y. B., & Cabrera, A. R. (2019). Efecto del momento de plantación de plantas producidas in vitro de ñame 'Blanco de Guinea', sobre la producción de minitubérculos. Agricultura Tropical, 5(1), 25-33. | spa |
dcterms.references | Perez, P. M., & Alberto, R. T. (2020). Chemical Management of Anthracnose-Twister (Colletotrichum gloeosporioides and Fusarium fujikuroi) Disease of Onion (Allium cepa). Plant Pathology & Quarantine, 10(1), 198-216. | spa |
dcterms.references | Pétro, D., Onyeka, T., Etienne, S. y Rubens, S. (2011). An intraspecific genetic map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Euphytica, 179(3), 405-416. | spa |
dcterms.references | Photita, W., Taylor, P. W., Ford, R., Hyde, K. D., & Lumyong, S. (2005). Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Diversity. | spa |
dcterms.references | Pinzón Gutiérrez, Y. A. (2014). Caracterización morfológica y molecular de Colletotrichum gloeosporioides aislado de ñame (Dioscorea spp.) y establecimiento de una escala de virulencia para su caracterización patogénica (Doctoral dissertation, Universidad Nacional de Colombia). | spa |
dcterms.references | Pinzón, Y. A., Bustamante, S. L., & Buitrago, G. (2013). Differential molecular diagnosis Colletotrichum gloeosporioides and Fusarium oxysporum in yam (Dioscorea sp.). Revista Colombiana de Biotecnología, 15(1), 52-60. | spa |
dcterms.references | Pinzón, Y., Bustamante, S. y Buitrago, G. (2009). Evaluación de métodos para la conservación de hongos fitopatógenos del ñame (Dioscorea sp.). Revista Colombiana de Biotecnología. 11 (2): 8-18. | spa |
dcterms.references | Poti, T., Mahawan, K., Cheewangkoon, R., Arunothayanan, H., Akimitsu, K., & Nalumpang, S. (2020). Detection and molecular characterization of carbendazim‐resistant Colletotrichum truncatum isolates causing anthracnose of soybean in Thailand. Journal of Phytopathology, 168(5), 267-278. | spa |
dcterms.references | Rabha, A. J., Naglot, A., Sharma, G. D., Gogoi, H. K., Gupta, V. K., Shreemali, D. D., & Veer, V. (2016). Morphological and molecular diversity of endophytic Colletotrichum gloeosporioides from tea plant, Camellia sinensis (L.) O. Kuntze of Assam, India. Journal of Genetic Engineering and Biotechnology, 14(1), 181-187. | spa |
dcterms.references | Ramdial, H., Hosein, F. N., & Rampersad, S. N. (2016). Detection and molecular characterization of benzimidazole resistance among Colletotrichum truncatum isolates infecting bell pepper in Trinidad. Plant disease, 100(6), 1146-1152. | spa |
dcterms.references | Reina, Y. C. (2012). El Cultivo de ñame en el caribe colombiano. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 168. | spa |
dcterms.references | Reis, E. M., Guerra, W. D., Reis, A. C., Zanatta, M., Carmona, M., & Sautura, F. (2021). Fungi Resistance to Multissite Fungicides. Journal of Agricultural Science, 13(11). | spa |
dcterms.references | Ripoche, A., Jacqua, G., Bussière, F., Guyader, S., and Sierra, J. (2007). Survival of Colletotrichum gloeosporioides (causal agent of yam anthracnose) on yam residues decomposing in soil. Appl. Soil Ecol. 38, 270–278. doi: 10.1016/j.apsoil.2007.10.015 | spa |
dcterms.references | Roca, M. G., Davide, L. C., Davide, L. M., Mendes-Costa, M. C., Schwan, R. F., & Wheals, A. E. (2004). Conidial anastomosis fusion between Colletotrichum species. Mycological Research, 108(11), 1320-1326. | spa |
dcterms.references | Rodríguez, R., Ramírez, M. T., De La Vega, O. M., & Simpson, J. (2003). Variation in genotype, pathotype and anastomosis groups of Colletotrichum lindemuthianum isolates from Mexico. Plant Pathology, 52(2), 228-235. | spa |
dcterms.references | Roohparvar, R., Mehrabi, R., Van Nistelrooy, J. G., Zwiers, L. H., & De Waard, M. A. (2008). The drug transporter MgMfs1 can modulate sensitivity of field strains of the fungal wheat pathogen Mycosphaerella graminicola to the strobilurin fungicide trifloxystrobin. Pest Management Science: formerly Pesticide Science, 64(7), 685-693. | spa |
dcterms.references | Rosado, Y. (2016). Evaluación de fungicidas orgánicos y convencionales para el control de enfermedades follares en ñame (Dioscorea alata L.) (Doctoral dissertation). | spa |
dcterms.references | Sabria, A. F., & Vengadaramana, A. (2019). PCR-RFLP based genetic diversity of Colletotrichum musae isolates of banana in Jaffna district. | spa |
dcterms.references | Samaras, Α., Ntasiou, P., Myresiotis, C., & Karaoglanidis, G. (2020). Multidrug resistance of Penicillium expansum to fungicides: whole transcriptome analysis of MDR strains reveals overexpression of efflux transporter genes. International Journal of Food Microbiology, 335, 108896. | spa |
dcterms.references | Sánchez, P. (2021). Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold. Journal of Fungi, 7(9), 783. | spa |
dcterms.references | Sang, H., Hulvey, J. P., Green, R., Xu, H., Im, J., Chang, T., & Jung, G. (2018). A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. MBio, 9(4), e00457-18. | spa |
dcterms.references | Sangakkara, U. R., and Frossard, E. (2014). Home gardens and Dioscorea species – a case study from the climatic zones of Sri Lanka. J. Agric. Rural Dev. Trop. 115, 55–65. | spa |
dcterms.references | Santacruz, C. (2013). Caracterizacion morfologica, patogénica y molecular de especies de Colletotrichum spp. causantes de la antracnosis del fruto de aji y pimenton Capsicum spp. el Valle del Cauca. | spa |
dcterms.references | Santos, R. F., Fraaije, B. A., Garrido, L. D. R., Monteiro‐Vitorello, C. B., & Amorim, L. (2020). Multiple resistance of Plasmopara viticola to QoI and CAA fungicides in Brazil. Plant Pathology, 69(9), 1708-1720. | spa |
dcterms.references | Schnabel, G., Hu, M. J., & Fernández-Ortuño, D. (2015). Monitoring resistance by bioassay: relating results to field use using culturing methods. In Fungicide Resistance in Plant Pathogens (pp. 281-293). Springer, Tokyo. | spa |
dcterms.references | Sharma, G., Maymon, M., & Freeman, S. (2017). Epidemiology, pathology and identification of Colletotrichum including a novel species associated with avocado (Persea americana) anthracnose in Israel. Scientific reports, 7(1), 1-16. | spa |
dcterms.references | Shin, J. H., Fu, T., Park, K. H., & Kim, K. S. (2017). The effect of fungicides on mycelial growth and conidial germination of the ginseng root rot fungus, Cylindrocarpon destructans. Mycobiology, 45(3), 220-225. | spa |
dcterms.references | Siddiqui, M. A., Ali, Z., Chittiboyina, A. G., & Khan, I. A. (2018). Hepatoprotective Effect of Steroidal Glycosides From Dioscorea villosa on Hydrogen Peroxide-Induced Hepatotoxicity in HepG2 Cells. Frontiers in pharmacology, 9. | spa |
dcterms.references | Sierotzki, H. (2015). Respiration inhibitors: complex III. In Fungicide resistance in plant pathogens (pp. 119-143). Springer, Tokyo. | spa |
dcterms.references | Smith, B. J., & Black, L. L. (1990). Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. | spa |
dcterms.references | Soares, A. C. F., Sousa, C. D. S., Garrido, M. D. S., Perez, J. O., & Almeida, N. S. D. (2006). Actinomicetos do solo com atividade in vitro contra patógenos do inhame Curvularia eragrostides e Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 37(4), 456-461. | spa |
dcterms.references | Sun, W., Wang, B., Yang, J., Wang, W., Liu, A., Leng, L. y Chen, S. (2017). Weighted gene co-expression network analysis of the dioscin rich medicinal plant Dioscorea nipponica. Frontiers in plant science, 8, 789. | spa |
dcterms.references | Suwannarat, S., Steinkellner, S., Songkumarn, P., & Sangchote, S. (2017). Diversity of Colletotrichum spp. isolated from chili pepper fruit exhibiting symptoms of anthracnose in Thailand. Mycological Progress, 16(7), 677-686. | spa |
dcterms.references | Tamara, R. E., Luna, L. L., Espitia, A., Novoa, R. S., Regino, S. M., & De la Ossa, V. A. (2021). Respuesta del ñame espino a diferentes densidades de siembra y altura de espalderas: densidades de siembra en Dioscorea rotundata. Revista de Investigaciones Altoandinas, 23(4), 210-219. | spa |
dcterms.references | Torres, C., Tapia, R., Higuera, I., Martin, R., Nexticapan, A., & Perez, D. (2015). Sensitivity of Colletotrichum truncatum to four fungicides and characterization of thiabendazole-resistant isolates. Plant Disease, 99(11), 1590-1595. | spa |
dcterms.references | Tovar, J. M., Mora, J. A., Nava, C., Lima, N. B., Michereff, S. J., Sandoval, J. S., ... & Leyva-Mir, S. G. (2020). Distribution and pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico. Plant Disease, 104(1), 137-146. | spa |
dcterms.references | Trejo, G. I., Ramírez, J. E., & Rodríguez, N. L. (2017). Diagnóstico por Amplificación Isotérmica Mediada por Horquillas (LAMP) Dirigida al Género de Hongo Colletotrichum spp. AGROECOSISTEMAS TROPICALES, 55. | spa |
dcterms.references | Tripathy, S. K., Maharana, M., Ithape, D. M., Lenka, D., Mishra, D., Prusti, A., ... & Raj, K. R. R. (2017). Exploring rapid and efficient protocol for isolation of fungal DNA. International Journal of Current Microbiology and Applied Sciences, 6(3), 951-960. | spa |
dcterms.references | Tugizimana, F., Djami, A. T., Fahrmann, J. F., Steenkamp, P. A., Piater, L. A., & Dubery, I. A. (2019). Time-resolved decoding of metabolic signatures of in vitro growth of the hemibiotrophic pathogen Colletotrichum sublineolum. Scientific reports, 9(1), 1-12. | spa |
dcterms.references | Uddin, M., Shefat, S., Afroz, M. and Moon, N. (2018). Management of anthracnose disease of mango caused by Colletotrichum gloeosporioides: A review. Acta Scientific Agriculture, 2(10): 169-177. | spa |
dcterms.references | Usman, H. M., Tan, Q., Karim, M. M., Adnan, M., Yin, W. X., Zhu, F. X., & Luo, C. X. (2021). Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. Plant Disease, 105(11), 3459-3465. | spa |
dcterms.references | Villani, S. M., Biggs, A. R., Cooley, D. R., Raes, J. J., & Cox, K. D. (2015). Prevalence of myclobutanil resistance and difenoconazole insensitivity in populations of Venturia inaequalis. Plant disease, 99(11), 1526-1536. | spa |
dcterms.references | Villani, S. M., Hulvey, J., Hily, J. M., & Cox, K. D. (2016). Overexpression of the CYP51A1 gene and repeated elements are associated with differential sensitivity to DMI fungicides in Venturia inaequalis. Phytopathology, 106(6), 562-571. | spa |
dcterms.references | Wei, L., Zheng, H., Zhang, P., Chen, W., Zheng, J., Chen, C., & Cao, A. (2021). Molecular and biochemical characterization of Colletotrichum gloeosporioides isolates resistant to azoxystrobin from grape in China. Plant Pathology. | spa |
dcterms.references | Wei, X., Xu, Z., Zhang, N., Yang, W., Liu, D., & Ma, L. (2021). Synergistic action of commercially available fungicides for protecting wheat from common root rot caused by Bipolaris sorokiniana in China. Plant Disease, 105(3), 667-674. | spa |
dcterms.references | Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180. http://doi.org/10.3114/sim0011 | spa |
dcterms.references | White, T. J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols (innis, M. Am, Gelfrand, D. H., Sninsky, J. J. and White, J., eds.). Academic Press, San Diego, California. p. 315-322. | spa |
dcterms.references | Winch JE, Newhook FJ, Jackson GVH, Cole JS, 1984. Studies of Colletotrichum gloeosporioides disease on yam (Dioscorea alata) in the Solomon Islands. Plant Pathology 33, 467–77. | spa |
dcterms.references | Wong, F. P., De la Cerda, K. A., Hernandez-Martinez, R., & Midland, S. L. (2008). Detection and characterization of benzimidazole resistance in California populations of Colletotrichum cereale. Plant disease, 92(2), 239-246. | spa |
dcterms.references | Wumbei, A., Bawa, J. K. A., Akudugu, M. A., & Spanoghe, P. (2019). Absence of Effects of Herbicides Use on Yam Rots: A Case Study in Wulensi, Ghana. Agriculture, 9(5), 95. | spa |
dcterms.references | Xavier, K. V., & Vallad, G. E. (2020). Efficacy of Biological and Conventional Fungicide Programs for Foliar Disease Management on Pomegranate (Punica granatum) in Florida. Plant Health Progress, 21(3), 199-204. | spa |
dcterms.references | Xavier, K. V., Kc, A. N., Peres, N. A., Deng, Z., Castle, W., Lovett, W., & Vallad, G. E. (2019). Characterization of Colletotrichum Species Causing Anthracnose of Pomegranate in the Southeastern United States. Plant Disease, 103(11), 2771-2780. | spa |
dcterms.references | Young, D. H. (2015). Anti-tubulin agents. In Fungicide resistance in plant pathogens (pp. 93-103). Springer, Tokyo. | spa |
dcterms.references | Zhang, C., Imran, M., Xiao, L., Hu, Z., Li, G., Zhang, F., & Liu, X. (2021). Difenoconazole resistance shift in Botrytis cinerea from Tomato in China associated with inducible expression of CYP51. Plant Disease, 105(2), 400-407. | spa |
dcterms.references | Zhang, L., Song, L., Xu, X., Zou, X., Duan, K., & Gao, Q. (2020). Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in Eastern China. Plant disease, 104(7), 1960-1968. | spa |
dcterms.references | Zhang, Y., Wang, H., Wang, X., Hu, B., Zhang, C., Jin, W., ... & Hong, Q. (2017). Identification of the key amino acid sites of the carbendazim hydrolase (MheI) from a novel carbendazim-degrading strain Mycobacterium sp. SD-4. Journal of hazardous materials, 331, 55-62. | spa |
dcterms.references | Zhou, Y., Xu, J., Zhu, Y., Duan, Y., & Zhou, M. (2016). Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule. Phytopathology, 106(8), 807-813. | spa |
dcterms.references | Ziogas, B. N., & Malandrakis, A. A. (2015). Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In Fungicide resistance in plant pathogens (pp. 199-216). Springer, Tokyo. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: