Publicación:
Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno

dc.audience
dc.contributor.advisorCasiano Jiménez, Gladyz Rocío
dc.contributor.authorCorzo Valderrama, Giovanny
dc.contributor.juryOrtega Lopez, César
dc.contributor.juryAlcalá Varilla, Luis Arturo
dc.date.accessioned2025-02-06T12:09:11Z
dc.date.available2025-02-06T12:09:11Z
dc.date.issued2025-02-05
dc.description.abstractEn esta investigación, se estudian los energéticos de la heterobicapa (4x4)AlN/(5x5)grafeno, con y sin defectos. La heterobicapa (4x4) AlN/(5x5) grafeno se modela, usando el esquema del slab periódico: una monocapa de (4x4) AlN, se acopla a una monocapa de (5×5)grafeno, las cuales presentan un mismatch inferior al 1%. La monocapa (5×5) grafeno, solo se considera como el sustrato para la monocapa de (4x4) AlN hexagonal planar. Para incluir la periodicidad en el sistema heterobicapa, el slab contiene una región vacía lo suficientemente grande (≈20 Å) de modo que no se den interacciones entre el sistema heterobicapa y su imagen. Aquí, se prueban cuatro (4) stacking diferentes AA, AA', A^' B y A'B' de los cuales se escogen las configuraciones: AA y AA’, puesto que estos stacking poseen las energías de enlace más favorables, y corresponden a un átomo de nitrógeno o un átomo de aluminio justo en el centro de un hexágono de grafeno, respectivamente. Así mismo, hasta donde se conoce, las configuraciones AA y AA’ no se han reportado en la literatura científica. Se encuentra que los valores obtenidos para la energía de enlace, energías de formación, trabajo de adhesión , para las configuraciones AA y AA’ libres de defectos, son -19.13 , -16.69 , 19.13 y -46.42 meV/Å^2 , y -20.42 , -16.77 , 16.77 respectivamente. Asimismo, los valores obtenidos, para las configuraciones AA y AA’ con vacancia de aluminio, son -18.94 , -16.84 , 16.84 y -46.30 meV/Å^2 , y -19.54 , -17.40 , 17.40 respectivamente. Finalmente, los valores obtenidos para las configuraciones AA y AA’ con vacancia de Nitrógeno, son -25.40 , -27.49 , 27.49 y -56.95 meV/Å^2 , y -26.99 , -28.87 , 28.87 respectivamente.spa
dc.description.degreelevelPregrado
dc.description.degreenameFísico(a)
dc.description.modalityArtículo
dc.description.tableofcontents1. Introducción
dc.description.tableofcontents2. Marco teórico
dc.description.tableofcontents2.1 El problema de la estructura de la materia
dc.description.tableofcontents2.2 Aproximación adiabática (Born-Oppenheimer)
dc.description.tableofcontents2.3 Enfoques químicos
dc.description.tableofcontents2. 4 Teoría Funcional de la Densidad (DFT)
dc.description.tableofcontents2.5 Aproximación densidad local (LDA)
dc.description.tableofcontents2.6 Aproximación gradiente generalizado (GGA)
dc.description.tableofcontents2.7 La aproximación del pseudopotencial
dc.description.tableofcontents2.7.1 Pseudopotenciales que conservan la norma
dc.description.tableofcontents2.7.2 Pseudopotenciales ultrasuaves
dc.description.tableofcontents2.8 Conjuntos base
dc.description.tableofcontents2.8.1. Conjuntos de Base de Ondas Planas (Plane-Wave Basis Sets)
dc.description.tableofcontents2.8.2. Conjuntos de Base de Funciones de Bloch
dc.description.tableofcontents2.8.3. Conjuntos de Base de Funciones Gaussianas
dc.description.tableofcontents2.8.4. Conjuntos de Base de Funciones Atómicas
dc.description.tableofcontents2.9 Dispersión
dc.description.tableofcontents2.9.1 Corrección D2/D3 de Grimme
dc.description.tableofcontents2.10 Carga Bader
dc.description.tableofcontents3. Detalles computacionales
dc.description.tableofcontents4. Resultados y análisis
dc.description.tableofcontents4.1 Construcción de la heterobicapa/Apilamientos (stacking) o configuraciones/Propiedades estructurales de las configuraciones escogidas.
dc.description.tableofcontents4.2 Energéticos en la heterobicapa (4x4) AlN/(5x5) grafeno, con y sin defectos
dc.description.tableofcontents4.3 Energía de Formación
dc.description.tableofcontents4.4 Energía de Enlace
dc.description.tableofcontents4.5 Trabajo de Adhesión
dc.description.tableofcontents5. Conclusiones
dc.description.tableofcontents6. Referencias
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9020
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programFísica
dc.relation.references[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
dc.relation.references[2] Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., & Lu, J. (2016). Monolayer phosphorene–metal contacts. Chemistry of Materials, 28(6), 2100–2109. https://doi.org/10.1021/acs.chemmater.5b04899
dc.relation.references[3] Demirci, S., Avazlı, N., Durgun, E., & Cahangirov, S. (2017). Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95(11), 115409. https://doi.org/10.1103/PhysRevB.95.115409
dc.relation.references[4] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
dc.relation.references[5] Duan, X., Wang, C., Pan, A., Yu, R., & Duan, X. (Año de publicación). Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Volumen(Número), páginas. https://doi.org/[DOI
dc.relation.references[6] Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3), 116–130. https://doi.org/10.1016/j.mattod.2016.10.002
dc.relation.references[7] Gao, Z., Zhou, Z., & Tománek, D. (Año de publicación). Degenerately doped transition metal dichalcogenides as Ohmic homojunction contacts to transition metal dichalcogenide semiconductors. [Nombre de la revista], Volumen(Número), páginas. https://doi.org/[DOI]
dc.relation.references[8] Gao, J., Xu, Z., Chen, S., Bharathi, M. S., & Zhang, Y.-W. (2018). Computational understanding of the growth of 2D materials. Advanced Theory and Simulations, 1(8), 1800085. https://doi.org/10.1002/adts.201800085
dc.relation.references[9] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4
dc.relation.references[10] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674
dc.relation.references[11] Diaz, H. C., Avila, J., Chen, C., Addou, R., Asensio, M. C., & Batzill, M. (2015). Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. ACS Nano, 9(1), 1086–1091. https://doi.org/10.1021/nn505980q
dc.relation.references[12] Casiano-Jiménez, G., Ortega-López, C., Rodríguez-Martínez, J. A., Moreno-Armenta, M. G., & Espitia-Rico, M. J. (2022). Electronic structure of graphene on the hexagonal boron nitride surface: A density functional theory study. Coatings, 12(2), 237. https://doi.org/10.3390/coatings12020237
dc.relation.references[13] Neupane, H. K., & Adhikari, N. P. (2021). Effect of vacancy defects in 2D vdW graphene/h-BN heterostructure: First-principles study. AIP Advances, 11(8), 085218. https://doi.org/10.1063/5.0059814
dc.relation.references[14] Deng, Z., & Wang, X. (2019). Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure. RSC Advances, 9(45), 26052–26060. https://doi.org/10.1039/C9RA05164K
dc.relation.references[15] Deng, Z., Wang, X., & Cui, J. (2019). Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Advances, 9(24), 13702–13709. https://doi.org/10.1039/C9RA01947H
dc.relation.references[16] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794
dc.relation.references[17] Chung, K., Lee, C.-H., & Yi, G.-C. (2010). Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 330(6004), 655–657. https://doi.org/10.1126/science.1195403
dc.relation.references[18] Schulz, H., & Thiemann, K. H. (1977). Crystal structure refinement of AlN and GaN. Solid State Communications, 23(4), 493-496. https://doi.org/10.1016/0038-1098(77)90959-0
dc.relation.references[19] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 176, 109231. https://doi.org/10.1016/j.vacuum.2020.109231
dc.relation.references[20] Tsipas, P., Kassavetis, S., Tsoutsou, D., Xenogiannopoulou, E., Golias, E., Giamini, S. A., Grazianetti, C., Chiappe, D., Molle, A., Fanciulli, M., & Dimoulas, A. (2013). Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Applied Physics Letters, 103(25), 251605. https://doi.org/10.1063/1.4851239
dc.relation.references[21] Kim, D.-H., Min, S.-J., Oh, J.-M., & Koo, S.-M. (2020). Fabrication and characterization of oxygenated AlN/4H-SiC heterojunction diodes. Materials, 13(19), 4335. https://doi.org/10.3390/ma13194335
dc.relation.references[22] Portail, M., Frayssinet, E., Michon, A., Rennesson, S., Semond, F., Courville, A., Zielinski, M., Comyn, R., Nguyen, L., Cordier, Y., & Vennéguès, P. (2022). CVD elaboration of 3C-SiC on AlN/Si heterostructures: Structural trends and evolution during growth. Crystals, 12(11), 1605. https://doi.org/10.3390/cryst12111605
dc.relation.references[23] Suemitsu, M., & Fukidome, H. (2010). Epitaxial graphene on silicon substrates. Journal of Physics D: Applied Physics, 43(37), 374012. https://doi.org/10.1088/0022-3727/43/37/374012
dc.relation.references[24] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794
dc.relation.references[25] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002.
dc.relation.references[26] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.
dc.relation.references[27] 2Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124
dc.relation.references[28] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.
dc.relation.references[29] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339
dc.relation.references[30] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2
dc.relation.references[31] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. In Math 23 (1977), 22-116.
dc.relation.references[32] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
dc.relation.references[33] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133.
dc.relation.references[34] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.
dc.relation.references[35] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865
dc.relation.references[36] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN.
dc.relation.references[37] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.
dc.relation.references[38] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.
dc.relation.references[39] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620.
dc.relation.references[40] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods.
dc.relation.references[41] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.
dc.relation.references[42] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.
dc.relation.references[43] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30.
dc.relation.references[44] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487.
dc.relation.references[45] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006).
dc.relation.references[46] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15.
dc.relation.references[47] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201.
dc.relation.references[48] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.
dc.relation.references[49] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.
dc.relation.references[50] Garrity, K. F., Bennett, J. W., Rabe, K. M., & Vanderbilt, D. (2014). Pseudopotentials for high-throughput DFT calculations. Computational Materials Science, 81, 446–452. https://doi.org/10.1016/j.commatsci.2013.08.053
dc.relation.references[51] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
dc.relation.references[52] Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495
dc.relation.references[53] Bai, Y., Deng, K., & Kan, E. (2015). Electronic and magnetic properties of an AlN monolayer doped with first-row elements: A first-principles study. RSC Advances, 5(25), 19273–19278. https://doi.org/10.1039/c4ra13522a
dc.relation.references[54] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
dc.relation.references[55] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674
dc.relation.references[56] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794
dc.relation.references[57] Fan, Y., Ma, X., Liu, X., Wang, J., Ai, H., & Zhao, M. (2018). Theoretical design of an InSe/GaTe vdW heterobilayer: A potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 122(49), 28283–28290. https://doi.org/10.1021/acs.jpcc.8b07692
dc.relation.references[58] Ferdous, N., Islam, M. S., Park, J., & Hashimoto, A. (2019). Tunable electronic properties in stanene and two-dimensional silicon-carbide heterobilayer: A first-principles investigation. AIP Advances, 9(2), 025120. https://doi.org/10.1063/1.5066029
dc.relation.references[59] Peng, Q., Wang, Z., Sa, B., Wu, B., & Sun, Z. (2016). Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 6, Article 31994. https://doi.org/10.1038/srep31994
dc.relation.references[60] Casiano Jiménez, G., Morinson-Negrete, J. D., Peniche Blanquicett, F., Ortega-López, C., & Espitia-Rico, M. J. (2022). Effects of mono-vacancies and co-vacancies of nitrogen and boron on the energetics and electronic properties of heterobilayer h-BN/graphene. Materials, 15(18), 6369. https://doi.org/10.3390/ma15186369
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsHeterobilayer
dc.subject.keywordsAlN (Aluminum Nitride)
dc.subject.keywordsStructural defects
dc.subject.keywordsbinding energy
dc.subject.keywordsFormation energy
dc.subject.keywordsAdhesion work
dc.subject.keywordsStacking
dc.subject.keywordsSingle vacancies
dc.subject.keywordsVan der Waals interactions
dc.subject.keywordsPseudopotentials
dc.subject.keywordsGrimme Correction
dc.subject.proposalHeterobicapa
dc.subject.proposalAlN (Nitruro de Aluminio)
dc.subject.proposalDefectos estructurales
dc.subject.proposalEnergía de enlace
dc.subject.proposalEnergía de formación
dc.subject.proposalTrabajo de adhesión
dc.subject.proposalStacking
dc.subject.proposalMonovacancias
dc.subject.proposalInteracciones Van der Waals
dc.subject.proposalQuantum Espresso
dc.subject.proposalPseudopotenciales
dc.subject.proposalCorrección de Grimme
dc.titleUn estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Corzo Valderrama, Giovanny.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
443.85 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: