Publicación: Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
dc.audience | ||
dc.contributor.advisor | Casiano Jiménez, Gladyz Rocío | |
dc.contributor.author | Corzo Valderrama, Giovanny | |
dc.contributor.jury | Ortega Lopez, César | |
dc.contributor.jury | Alcalá Varilla, Luis Arturo | |
dc.date.accessioned | 2025-02-06T12:09:11Z | |
dc.date.available | 2025-02-06T12:09:11Z | |
dc.date.issued | 2025-02-05 | |
dc.description.abstract | En esta investigación, se estudian los energéticos de la heterobicapa (4x4)AlN/(5x5)grafeno, con y sin defectos. La heterobicapa (4x4) AlN/(5x5) grafeno se modela, usando el esquema del slab periódico: una monocapa de (4x4) AlN, se acopla a una monocapa de (5×5)grafeno, las cuales presentan un mismatch inferior al 1%. La monocapa (5×5) grafeno, solo se considera como el sustrato para la monocapa de (4x4) AlN hexagonal planar. Para incluir la periodicidad en el sistema heterobicapa, el slab contiene una región vacía lo suficientemente grande (≈20 Å) de modo que no se den interacciones entre el sistema heterobicapa y su imagen. Aquí, se prueban cuatro (4) stacking diferentes AA, AA', A^' B y A'B' de los cuales se escogen las configuraciones: AA y AA’, puesto que estos stacking poseen las energías de enlace más favorables, y corresponden a un átomo de nitrógeno o un átomo de aluminio justo en el centro de un hexágono de grafeno, respectivamente. Así mismo, hasta donde se conoce, las configuraciones AA y AA’ no se han reportado en la literatura científica. Se encuentra que los valores obtenidos para la energía de enlace, energías de formación, trabajo de adhesión , para las configuraciones AA y AA’ libres de defectos, son -19.13 , -16.69 , 19.13 y -46.42 meV/Å^2 , y -20.42 , -16.77 , 16.77 respectivamente. Asimismo, los valores obtenidos, para las configuraciones AA y AA’ con vacancia de aluminio, son -18.94 , -16.84 , 16.84 y -46.30 meV/Å^2 , y -19.54 , -17.40 , 17.40 respectivamente. Finalmente, los valores obtenidos para las configuraciones AA y AA’ con vacancia de Nitrógeno, son -25.40 , -27.49 , 27.49 y -56.95 meV/Å^2 , y -26.99 , -28.87 , 28.87 respectivamente. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Artículo | |
dc.description.tableofcontents | 1. Introducción | |
dc.description.tableofcontents | 2. Marco teórico | |
dc.description.tableofcontents | 2.1 El problema de la estructura de la materia | |
dc.description.tableofcontents | 2.2 Aproximación adiabática (Born-Oppenheimer) | |
dc.description.tableofcontents | 2.3 Enfoques químicos | |
dc.description.tableofcontents | 2. 4 Teoría Funcional de la Densidad (DFT) | |
dc.description.tableofcontents | 2.5 Aproximación densidad local (LDA) | |
dc.description.tableofcontents | 2.6 Aproximación gradiente generalizado (GGA) | |
dc.description.tableofcontents | 2.7 La aproximación del pseudopotencial | |
dc.description.tableofcontents | 2.7.1 Pseudopotenciales que conservan la norma | |
dc.description.tableofcontents | 2.7.2 Pseudopotenciales ultrasuaves | |
dc.description.tableofcontents | 2.8 Conjuntos base | |
dc.description.tableofcontents | 2.8.1. Conjuntos de Base de Ondas Planas (Plane-Wave Basis Sets) | |
dc.description.tableofcontents | 2.8.2. Conjuntos de Base de Funciones de Bloch | |
dc.description.tableofcontents | 2.8.3. Conjuntos de Base de Funciones Gaussianas | |
dc.description.tableofcontents | 2.8.4. Conjuntos de Base de Funciones Atómicas | |
dc.description.tableofcontents | 2.9 Dispersión | |
dc.description.tableofcontents | 2.9.1 Corrección D2/D3 de Grimme | |
dc.description.tableofcontents | 2.10 Carga Bader | |
dc.description.tableofcontents | 3. Detalles computacionales | |
dc.description.tableofcontents | 4. Resultados y análisis | |
dc.description.tableofcontents | 4.1 Construcción de la heterobicapa/Apilamientos (stacking) o configuraciones/Propiedades estructurales de las configuraciones escogidas. | |
dc.description.tableofcontents | 4.2 Energéticos en la heterobicapa (4x4) AlN/(5x5) grafeno, con y sin defectos | |
dc.description.tableofcontents | 4.3 Energía de Formación | |
dc.description.tableofcontents | 4.4 Energía de Enlace | |
dc.description.tableofcontents | 4.5 Trabajo de Adhesión | |
dc.description.tableofcontents | 5. Conclusiones | |
dc.description.tableofcontents | 6. Referencias | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9020 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896 | |
dc.relation.references | [2] Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., & Lu, J. (2016). Monolayer phosphorene–metal contacts. Chemistry of Materials, 28(6), 2100–2109. https://doi.org/10.1021/acs.chemmater.5b04899 | |
dc.relation.references | [3] Demirci, S., Avazlı, N., Durgun, E., & Cahangirov, S. (2017). Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95(11), 115409. https://doi.org/10.1103/PhysRevB.95.115409 | |
dc.relation.references | [4] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193 | |
dc.relation.references | [5] Duan, X., Wang, C., Pan, A., Yu, R., & Duan, X. (Año de publicación). Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Volumen(Número), páginas. https://doi.org/[DOI | |
dc.relation.references | [6] Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3), 116–130. https://doi.org/10.1016/j.mattod.2016.10.002 | |
dc.relation.references | [7] Gao, Z., Zhou, Z., & Tománek, D. (Año de publicación). Degenerately doped transition metal dichalcogenides as Ohmic homojunction contacts to transition metal dichalcogenide semiconductors. [Nombre de la revista], Volumen(Número), páginas. https://doi.org/[DOI] | |
dc.relation.references | [8] Gao, J., Xu, Z., Chen, S., Bharathi, M. S., & Zhang, Y.-W. (2018). Computational understanding of the growth of 2D materials. Advanced Theory and Simulations, 1(8), 1800085. https://doi.org/10.1002/adts.201800085 | |
dc.relation.references | [9] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4 | |
dc.relation.references | [10] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674 | |
dc.relation.references | [11] Diaz, H. C., Avila, J., Chen, C., Addou, R., Asensio, M. C., & Batzill, M. (2015). Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. ACS Nano, 9(1), 1086–1091. https://doi.org/10.1021/nn505980q | |
dc.relation.references | [12] Casiano-Jiménez, G., Ortega-López, C., Rodríguez-Martínez, J. A., Moreno-Armenta, M. G., & Espitia-Rico, M. J. (2022). Electronic structure of graphene on the hexagonal boron nitride surface: A density functional theory study. Coatings, 12(2), 237. https://doi.org/10.3390/coatings12020237 | |
dc.relation.references | [13] Neupane, H. K., & Adhikari, N. P. (2021). Effect of vacancy defects in 2D vdW graphene/h-BN heterostructure: First-principles study. AIP Advances, 11(8), 085218. https://doi.org/10.1063/5.0059814 | |
dc.relation.references | [14] Deng, Z., & Wang, X. (2019). Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure. RSC Advances, 9(45), 26052–26060. https://doi.org/10.1039/C9RA05164K | |
dc.relation.references | [15] Deng, Z., Wang, X., & Cui, J. (2019). Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Advances, 9(24), 13702–13709. https://doi.org/10.1039/C9RA01947H | |
dc.relation.references | [16] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794 | |
dc.relation.references | [17] Chung, K., Lee, C.-H., & Yi, G.-C. (2010). Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 330(6004), 655–657. https://doi.org/10.1126/science.1195403 | |
dc.relation.references | [18] Schulz, H., & Thiemann, K. H. (1977). Crystal structure refinement of AlN and GaN. Solid State Communications, 23(4), 493-496. https://doi.org/10.1016/0038-1098(77)90959-0 | |
dc.relation.references | [19] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 176, 109231. https://doi.org/10.1016/j.vacuum.2020.109231 | |
dc.relation.references | [20] Tsipas, P., Kassavetis, S., Tsoutsou, D., Xenogiannopoulou, E., Golias, E., Giamini, S. A., Grazianetti, C., Chiappe, D., Molle, A., Fanciulli, M., & Dimoulas, A. (2013). Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Applied Physics Letters, 103(25), 251605. https://doi.org/10.1063/1.4851239 | |
dc.relation.references | [21] Kim, D.-H., Min, S.-J., Oh, J.-M., & Koo, S.-M. (2020). Fabrication and characterization of oxygenated AlN/4H-SiC heterojunction diodes. Materials, 13(19), 4335. https://doi.org/10.3390/ma13194335 | |
dc.relation.references | [22] Portail, M., Frayssinet, E., Michon, A., Rennesson, S., Semond, F., Courville, A., Zielinski, M., Comyn, R., Nguyen, L., Cordier, Y., & Vennéguès, P. (2022). CVD elaboration of 3C-SiC on AlN/Si heterostructures: Structural trends and evolution during growth. Crystals, 12(11), 1605. https://doi.org/10.3390/cryst12111605 | |
dc.relation.references | [23] Suemitsu, M., & Fukidome, H. (2010). Epitaxial graphene on silicon substrates. Journal of Physics D: Applied Physics, 43(37), 374012. https://doi.org/10.1088/0022-3727/43/37/374012 | |
dc.relation.references | [24] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794 | |
dc.relation.references | [25] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002. | |
dc.relation.references | [26] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497. | |
dc.relation.references | [27] 2Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124 | |
dc.relation.references | [28] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991. | |
dc.relation.references | [29] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339 | |
dc.relation.references | [30] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2 | |
dc.relation.references | [31] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. In Math 23 (1977), 22-116. | |
dc.relation.references | [32] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864. | |
dc.relation.references | [33] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133. | |
dc.relation.references | [34] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079. | |
dc.relation.references | [35] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865 | |
dc.relation.references | [36] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN. | |
dc.relation.references | [37] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895. | |
dc.relation.references | [38] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993. | |
dc.relation.references | [39] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620. | |
dc.relation.references | [40] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods. | |
dc.relation.references | [41] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory. | |
dc.relation.references | [42] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. | |
dc.relation.references | [43] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30. | |
dc.relation.references | [44] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487. | |
dc.relation.references | [45] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006). | |
dc.relation.references | [46] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15. | |
dc.relation.references | [47] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201. | |
dc.relation.references | [48] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173. | |
dc.relation.references | [49] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506. | |
dc.relation.references | [50] Garrity, K. F., Bennett, J. W., Rabe, K. M., & Vanderbilt, D. (2014). Pseudopotentials for high-throughput DFT calculations. Computational Materials Science, 81, 446–452. https://doi.org/10.1016/j.commatsci.2013.08.053 | |
dc.relation.references | [51] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 | |
dc.relation.references | [52] Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495 | |
dc.relation.references | [53] Bai, Y., Deng, K., & Kan, E. (2015). Electronic and magnetic properties of an AlN monolayer doped with first-row elements: A first-principles study. RSC Advances, 5(25), 19273–19278. https://doi.org/10.1039/c4ra13522a | |
dc.relation.references | [54] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849 | |
dc.relation.references | [55] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674 | |
dc.relation.references | [56] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794 | |
dc.relation.references | [57] Fan, Y., Ma, X., Liu, X., Wang, J., Ai, H., & Zhao, M. (2018). Theoretical design of an InSe/GaTe vdW heterobilayer: A potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 122(49), 28283–28290. https://doi.org/10.1021/acs.jpcc.8b07692 | |
dc.relation.references | [58] Ferdous, N., Islam, M. S., Park, J., & Hashimoto, A. (2019). Tunable electronic properties in stanene and two-dimensional silicon-carbide heterobilayer: A first-principles investigation. AIP Advances, 9(2), 025120. https://doi.org/10.1063/1.5066029 | |
dc.relation.references | [59] Peng, Q., Wang, Z., Sa, B., Wu, B., & Sun, Z. (2016). Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 6, Article 31994. https://doi.org/10.1038/srep31994 | |
dc.relation.references | [60] Casiano Jiménez, G., Morinson-Negrete, J. D., Peniche Blanquicett, F., Ortega-López, C., & Espitia-Rico, M. J. (2022). Effects of mono-vacancies and co-vacancies of nitrogen and boron on the energetics and electronic properties of heterobilayer h-BN/graphene. Materials, 15(18), 6369. https://doi.org/10.3390/ma15186369 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Heterobilayer | |
dc.subject.keywords | AlN (Aluminum Nitride) | |
dc.subject.keywords | Structural defects | |
dc.subject.keywords | binding energy | |
dc.subject.keywords | Formation energy | |
dc.subject.keywords | Adhesion work | |
dc.subject.keywords | Stacking | |
dc.subject.keywords | Single vacancies | |
dc.subject.keywords | Van der Waals interactions | |
dc.subject.keywords | Pseudopotentials | |
dc.subject.keywords | Grimme Correction | |
dc.subject.proposal | Heterobicapa | |
dc.subject.proposal | AlN (Nitruro de Aluminio) | |
dc.subject.proposal | Defectos estructurales | |
dc.subject.proposal | Energía de enlace | |
dc.subject.proposal | Energía de formación | |
dc.subject.proposal | Trabajo de adhesión | |
dc.subject.proposal | Stacking | |
dc.subject.proposal | Monovacancias | |
dc.subject.proposal | Interacciones Van der Waals | |
dc.subject.proposal | Quantum Espresso | |
dc.subject.proposal | Pseudopotenciales | |
dc.subject.proposal | Corrección de Grimme | |
dc.title | Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: