Publicación: Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill)
dc.audience | ||
dc.contributor.advisor | Oviedo Zumaqué, Luis Eliecer | |
dc.contributor.author | Carmona Camargo, Jesús Del Carmen | |
dc.contributor.jury | Agamez Ramos, Elkin Yabid | |
dc.contributor.jury | Aleman Romero, Arnulfo Leonardo | |
dc.date.accessioned | 2024-01-30T15:22:05Z | |
dc.date.available | 2024-01-30T15:22:05Z | |
dc.date.issued | 2023-01-29 | |
dc.description.abstract | El estudio se centra en evaluar la eficacia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante para el crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill). El objetivo principal es analizar cómo este extracto afecta positivamente el rendimiento y desarrollo de las plantas de tomate, considerando su potencial como una alternativa beneficiosa para mejorar la producción agrícola. Se realizó un diseño completamente al azar-DCA con 4 tratamientos y 4 repeticiones, con un total de 16 unidades experimentales. Los datos de las variables de respuesta, altura de la planta, número de frutos por planta y número de racimos por planta, se analizaron mediante el análisis de varianza Anova. Las medias se analizaron mediante diferencia mínima significativa (DMS) y prueba de Tukey para conocer el mejor tratamiento. Todas las pruebas se realizaron con un nivel de significancia del 5%. Se utilizó el software estadístico R. Las concentraciones empleadas y las cepas inoculadas ejercieron una influencia positiva en el crecimiento y desarrollo de las plantas, evidenciando la efectividad de la concentración de 3 ml.L-1 del extracto. Estos resultados respaldan la importancia de considerar cuidadosamente las concentraciones utilizadas en futuras investigaciones y destacan el potencial beneficio de esta estrategia de inoculación en la agricultura y la mejora de los rendimientos vegetales. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Magíster en Biotecnología | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Resumen .................... 11 | |
dc.description.tableofcontents | Introducción ............................. 12 | |
dc.description.tableofcontents | 1. Objetivos ................................. 14 | |
dc.description.tableofcontents | 1.1 Objetivo general ...................................... 14 | |
dc.description.tableofcontents | 1.2 Objetivos específicos............................... 14 | |
dc.description.tableofcontents | 2. Marco teórico ..................................................... 15 | |
dc.description.tableofcontents | 2.1 Planta de tomate Cherry .............................. 15 | |
dc.description.tableofcontents | 2.3. Estimulación biológica del crecimiento vegetal................... 15 | |
dc.description.tableofcontents | 2.4. La rizosfera y su efecto en los microorganismos del suelo ......... 16 | |
dc.description.tableofcontents | 2.5. Efectos benéficos de las bacterias de la rizosfera sobre la planta .. 17 | |
dc.description.tableofcontents | 2.6. Fijación no simbiótica de nitrógeno atmosférico. ................ 19 | |
dc.description.tableofcontents | 2.7. Producción de auxinas ............................ 20 | |
dc.description.tableofcontents | 2.8. Solubilización de fosfatos ................... 22 | |
dc.description.tableofcontents | 3. Metodología ................................................................ 24 | |
dc.description.tableofcontents | 3.1 Tipo de estudio ...................................... 24 | |
dc.description.tableofcontents | 3.2 Área de estudio ............................................................. 24 | |
dc.description.tableofcontents | 3.3 Determinación de la concentración de bacterias promotoras del crecimiento vegetal presentes en el extracto de pringamoza (Cnidoscolus urens) ................. 24 | |
dc.description.tableofcontents | 3.3.1 Recolección de plantas de pringamoza (Cnidoscolus urens) para la preparación del extracto ……….…………………24 | |
dc.description.tableofcontents | 3.3.2 Preparación del extracto de pringamoza (Cnidoscolus urens) .. 25 | |
dc.description.tableofcontents | 3.3.3 Análisis de Microorganismos eficientes ......... 25 | |
dc.description.tableofcontents | 3.4 Análisis químico del potencial bioestimulante del extracto de Pringamoza (Cnidoscolus urens) ………………………….25 | |
dc.description.tableofcontents | 3.4.1 Evaluación de la actividad Solubilizadora de fósforo .... 25 | |
dc.description.tableofcontents | 3.4.2 Evaluación de la actividad fijadora de Nitrógeno ............ 26 | |
dc.description.tableofcontents | 3.4.3 Evaluación de la producción de Ácido Indol Acético-AIA ....... 26 | |
dc.description.tableofcontents | 3.5 Evaluación del efecto de la inoculación con extracto de pringamoza (Cnidoscolus urens) sobre el crecimiento y desarrollo de plantas de tomate (Solanum lycopersicum L) en condiciones de invernadero. ......... 26 | |
dc.description.tableofcontents | 3.5.1 Tratamiento para eliminar la capa de plaguicida y/o fungicida protectante de la semilla................. 26 | |
dc.description.tableofcontents | 3.5.2 Inoculación, germinación de las semillas y trasplante de las plantulas ... 27 | |
dc.description.tableofcontents | 3.6 Diseño experimental .............. 27 | |
dc.description.tableofcontents | 3.7 Parámetros biométricos y rendimientos de tomate .......... 27 | |
dc.description.tableofcontents | 3.8 Análisis estadístico ....... 27 | |
dc.description.tableofcontents | 4. Resultados y análisis ........... 29 | |
dc.description.tableofcontents | 4.1 Determinación de la concentración de bacterias promotoras del crecimiento vegetal presentes en el extracto de pringamoza (Cnidoscolus urens) ....................... 29 | |
dc.description.tableofcontents | 4.1.1 Análisis de Microorganismos eficientes ............... 29 | |
dc.description.tableofcontents | 4.2 Evaluación del efecto de la inoculación con extracto de pringamoza (Cnidoscolus urens) sobre el crecimiento y desarrollo de plantas de tomate (Solanum lycopersicum L) en condiciones de invernadero. ............. 30 | |
dc.description.tableofcontents | 4.3 Altura de la planta ........................................... 32 | |
dc.description.tableofcontents | 4.4 Numero de frutos por planta................................. 33 | |
dc.description.tableofcontents | 4.5 Numero de racimos por planta .................... 34 | |
dc.description.tableofcontents | 5. Conclusiones ............. 38 | |
dc.description.tableofcontents | 6. Recomendaciones ............................................................. 39 | |
dc.description.tableofcontents | 7. Referencias bibliográficas ............................... 40 | |
dc.description.tableofcontents | ANEXOS ................................................................. 51 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8146 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Cordoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Biotecnología | |
dc.relation.references | Aguilar-Piedras, J. J., Xiqui-Vásquez, M. L., García-García, S., & Baca, B. E. (2008). Indole-acetic acid production in Azospirillum | Producción del ácido indol-3-acético en Azospirillum. Revista Latinoamericana de Microbiologia, 50(1–2), 29–37. https://www.researchgate.net/profile/Beatriz-Baca/publication/287473721_Indole-acetic_acid_production_in_Azospirillum/links/5681538608ae1975838f77a5/Indole-acetic-acid-production-in-Azospirillum.pdf | |
dc.relation.references | Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173–181. https://doi.org/10.1016/j.micres.2006.04.001 | |
dc.relation.references | Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20(1), 57–61. https://doi.org/10.1016/j.sjbs.2012.10.004 | |
dc.relation.references | Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., Noguera-Artiaga, L., Carbonell-Barrachina, Á. A., Núñez-Delicado, E., & Acosta-Motos, J. R. (2022). Novel combination of ethylene oxidisers to delay losses on postharvest quality, volatile compounds and sensorial analysis of tomato fruit. LWT, 170, 114054. https://doi.org/10.1016/J.LWT.2022.114054 | |
dc.relation.references | Aloo, B. N., Dessureault-Rompré, J., Tripathi, V., Nyongesa, B. O., & Were, B. A. (2023). Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. In Frontiers in Microbiology (Vol. 14). https://doi.org/10.3389/fmicb.2023.1171104 | |
dc.relation.references | Anwarzai, N., Kattegoudar, J., Anjanappa, M., Sood, M., Reddy, A., & Kumar, S. M. (2020). Evaluation of Cherry Tomato (Solanum lycopersicum L. var. cerasiforme) Genotypes for Yield and Quality Parameters. International Journal of Current Microbiology and Applied Sciences, 9(3), 467–472. https://doi.org/10.20546/ijcmas.2020.903.054 | |
dc.relation.references | Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. In Biotechnology Advances (Vol. 16, Issue 4, pp. 729–770). Elsevier Sci Ltd. https://doi.org/10.1016/S0734-9750(98)00003-2 | |
dc.relation.references | Bhatia, R., Gulati, D., & Sethi, G. (2021). Biofilms and nanoparticles: applications in agriculture. In Folia Microbiologica (Vol. 66, Issue 2, pp. 159–170). Springer Science and Business Media B.V. https://doi.org/10.1007/s12223-021-00851-7 | |
dc.relation.references | Bhatia, R., Ruppel, S., & Narula, N. (2008). Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India. Journal of Basic Microbiology, 48(6), 455–463. https://doi.org/10.1002/jobm.200800059 | |
dc.relation.references | Bishnoi, U. (2015). PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. Advances in Botanical Research, 75, 81–113. https://doi.org/10.1016/bs.abr.2015.09.006 | |
dc.relation.references | Bouabid, K., Lamchouri, F., Toufik, H., & Faouzi, M. E. A. (2020). Phytochemical investigation, in vitro and in vivo antioxidant properties of aqueous and organic extracts of toxic plant: Atractylis gummifera L. In Journal of Ethnopharmacology (Vol. 253, p. 112640). Elsevier. https://doi.org/10.1016/j.jep.2020.112640 | |
dc.relation.references | Brunel, C., Pouteau, R., Dawson, W., Pester, M., Ramirez, K. S., & van Kleunen, M. (2020). Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. In Trends in Plant Science (Vol. 25, Issue 10, pp. 1017–1029). https://doi.org/10.1016/j.tplants.2020.04.015 | |
dc.relation.references | Chacón-Pacheco, J., Viloria-Rivas, J., & Ramos-Madera, C. (2017). Murciélagos asociados al campus de la Universidad de Córdoba, Montería, Colombia. Revista Colombiana de Ciencia Animal - RECIA, 9(1), 25–30. https://doi.org/10.24188/recia.v9.n1.2017.494 | |
dc.relation.references | Chang, C. H., & Yang, S. S. (2009). Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100(4), 1648–1658. https://doi.org/10.1016/j.biortech.2008.09.009 | |
dc.relation.references | Chaves-Bedoya, G., & Ortíz-Rojas, L. Y. (2022). Estudio fitoquímico de Cnidoscolus urens (L.) Arthur procedente de la región de Cúcuta (Colombia). Información Tecnológica, 33(6), 21–30. https://doi.org/10.4067/s0718-07642022000600021 | |
dc.relation.references | Compant, S., Clément, C., & Sessitsch, A. (2010a). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. In Soil Biology and Biochemistry (Vol. 42, Issue 5, pp. 669–678). https://doi.org/10.1016/j.soilbio.2009.11.024 | |
dc.relation.references | Compant, S., Clément, C., & Sessitsch, A. (2010b). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. In Soil Biology and Biochemistry (Vol. 42, Issue 5, pp. 669–678). https://doi.org/10.1016/j.soilbio.2009.11.024 | |
dc.relation.references | Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201–213). Springer Netherlands. https://doi.org/10.1007/978-94-017-1570-6_23 | |
dc.relation.references | de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. In Microorganisms (Vol. 11, Issue 4). https://doi.org/10.3390/microorganisms11041088 | |
dc.relation.references | Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? In FEMS Microbiology Ecology (Vol. 72, Issue 3, pp. 313–327). https://doi.org/10.1111/j.1574-6941.2010.00860.x | |
dc.relation.references | Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. In Annals of Applied Biology (Vol. 157, Issue 3, pp. 361–379). https://doi.org/10.1111/j.1744-7348.2010.00439.x | |
dc.relation.references | Egamberdieva, D. (2010). Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant, Soil and Environment, 56(12), 570–573. https://doi.org/10.17221/75/2010-pse | |
dc.relation.references | El Khetabi, A., El Ghadraoui, L., Ouaabou, R., Ennahli, S., Barka, E. A., & Lahlali, R. (2023). Antifungal activities of aqueous extracts of moroccan medicinal plants against Monilinia spp. agent of brown rot disease. Journal of Natural Pesticide Research, 5, 100038. https://doi.org/10.1016/J.NAPERE.2023.100038 | |
dc.relation.references | FAOSTAT. (2022). FAOSTAT. Organización de Las Naciones Unidas Para La Agricultura y La Alimentación, 2022. Producción de Yuca En Todos Los Países, 1961–2020. https://www.fao.org/faostat/en/#data/QCL | |
dc.relation.references | Feng, X., Ray, P. P., Jarrett, J. P., Karpinski, L., Jones, B., & Knowlton, K. F. (2018). Short communication: Effect of abomasal inorganic phosphorus infusion on phosphorus absorption in large intestine, milk production, and phosphorus excretion of dairy cattle. Journal of Dairy Science, 101(8), 7208–7211. https://doi.org/10.3168/jds.2018-14515 | |
dc.relation.references | Figueira, J., Câmara, H., Pereira, J., & Câmara, J. S. (2014). Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data. Food Chemistry, 145, 653–663. https://doi.org/10.1016/j.foodchem.2013.08.061 | |
dc.relation.references | Garbanzo-León, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geograficas, 2017(93), 20–41. https://doi.org/10.14350/rig.54706 | |
dc.relation.references | Gil, R., Bojacá, C. R., & Schrevens, E. (2019). Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences, 88, 1–9. https://doi.org/10.1016/j.njas.2019.02.002 | |
dc.relation.references | Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. In Microbiological Research (Vol. 206, pp. 131–140). https://doi.org/10.1016/j.micres.2017.08.016 | |
dc.relation.references | Gupta, R., Kumari, A., Sharma, S., Alzahrani, O. M., Noureldeen, A., & Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35–42. https://doi.org/10.1016/j.sjbs.2021.09.075 | |
dc.relation.references | Gutiérrez-Santa Ana, A., Carrillo-Cerda, H. A., Rodriguez-Campos, J., Kirchmayr, M. R., Contreras-Ramos, S. M., & Velázquez-Fernández, J. B. (2020). Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani. 3 Biotech, 10(7). https://doi.org/10.1007/s13205-020-02290-6 | |
dc.relation.references | Hellal, F., & Mahfouz, S. (2011). Partial substitution of mineral nitrogen fertilizer by bio-fertilizer on (Anethum graveolens L.) plant. Agriculture and Biology Journal of North America, 2(4), 652–660. https://doi.org/10.5251/abjna.2011.2.4.652.660 | |
dc.relation.references | Jahanian, A., Chaichi, M., & Rezaei, K. (2012). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination and Primary Growth of Artichoke (Cynara scolymus). International Journal of Agriculture and Crop Sciences, 923–929. https://www.cabdirect.org/cabdirect/abstract/20123364547 | |
dc.relation.references | Jiménez-Arellanes, M. A., García-Martínez, I., & Rojas-Tomé, S. (2014). Potencial biológico de especies medicinales del género Cnidoscolus (Euphorbiacea). Revista Mexicana de Ciencias Farmaceuticas, 45(4). https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000400003 | |
dc.relation.references | Khan, M. S., Zaidi, A., & Wani, P. A. (2009). Role of phosphate solubilizing microorganisms in sustainable agriculture - A review. In Sustainable Agriculture (pp. 551–570). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_34 | |
dc.relation.references | Kochar, M., & Srivastava, S. (2012). Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum. Journal of Basic Microbiology, 52(2), 123–131. https://doi.org/10.1002/jobm.201100038 | |
dc.relation.references | Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. In Biocatalysis and Agricultural Biotechnology (Vol. 23). https://doi.org/10.1016/j.bcab.2019.101487 | |
dc.relation.references | Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. In Plant and Soil (Vol. 321, Issues 1–2, pp. 83–115). https://doi.org/10.1007/s11104-009-0042-x | |
dc.relation.references | Lara, M. C., García, T. L. P., & Oviedo, Z. L. E. (2010). Medio de cultivo utilizando residuos- sólidos para el crecimiento de una bacteria nativa con potencial biofertilizante Using a solid waste culture medium for growing a native strain having biofertiliser potential. Revita Colombiana de Biotecnología, 12(1), 103–112. http://www.scielo.org.co/scielo.php?pid=S0123-34752010000100011&script=sci_arttext | |
dc.relation.references | Lara, M. C., Villalba, A. M., & Oviedo, Z. L. E. (2008). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6–14. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/711 | |
dc.relation.references | Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., & Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199. https://doi.org/10.1016/j.still.2020.104577 | |
dc.relation.references | Li, Z., Wang, Y., Liu, Z., Han, F., Chen, S., & Zhou, W. (2023). Integrated application of phosphorus-accumulating bacteria and phosphorus-solubilizing bacteria to achieve sustainable phosphorus management in saline soils. Science of The Total Environment, 885, 163971. https://doi.org/10.1016/J.SCITOTENV.2023.163971 | |
dc.relation.references | Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecology and Biogeography, 19(6), 769–782. https://doi.org/10.1111/j.1466-8238.2010.00563.x | |
dc.relation.references | Machaca, M. L. (2017). Bacterias solubilizadoras de fosfato del género Bacillus en suelos de la provincia de El Collao (Puno) y su efecto en la germinación y crecimiento de quinua. https://alicia.concytec.gob.pe/vufind/Record/RNAP_b63d597c3fe9f55a697194a713ea52df | |
dc.relation.references | Mamta, Rahi, P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R. K., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46(2), 222–229. https://doi.org/10.1016/j.apsoil.2010.08.008 | |
dc.relation.references | Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014 | |
dc.relation.references | Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33(11), 1437–1445. https://doi.org/10.1016/S0038-0717(01)00052-9 | |
dc.relation.references | Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, 10(3), 293–319. https://doi.org/10.4067/S0718-95162010000100006 | |
dc.relation.references | Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259–266. https://doi.org/10.1016/j.ejsobi.2009.02.003 | |
dc.relation.references | Palacio-Rodríguez, R., Nava-Reyes, B., Sánchez-Galván, H., Quezada-Rivera, J. J., & Sáenz-Mata, J. (2022). Efecto de la inoculación de rizobacterias promotoras del crecimiento vegetal de tomate en condiciones de casa sombra comercial. Revista Mexicana de Ciencias Agrícolas, 13(28), 231–242. https://doi.org/10.29312/remexca.v13i28.3278 | |
dc.relation.references | Pathania, P., Bhatia, R., & Khatri, M. (2020). Cross-competence and affectivity of maize rhizosphere bacteria Bacillus sp. MT7 in tomato rhizosphere. Scientia Horticulturae, 272. https://doi.org/10.1016/j.scienta.2020.109480 | |
dc.relation.references | Pathania, P., Gulati, D., Setia, H., & Bhatia, R. (2023). Characterization and performance evaluation of plant growth promoting bacteria in tomato rhizosphere. South African Journal of Botany, 161, 388–394. https://doi.org/10.1016/j.sajb.2023.08.037 | |
dc.relation.references | Pérez, E., Sulbarán, M., Ball, M. M., & Yarzábal, L. A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39(11), 2905–2914. https://doi.org/10.1016/j.soilbio.2007.06.017 | |
dc.relation.references | Pérez, F. L. P., & Oviedo, Z. L. E. (2019). CARACTERIZACIÓN DE BACTERIAS NATIVAS CON POTENCIAL BIOFERTILIZANTE AISLADAS DE SUELOS DEL DEPARTAMENTO DE SUCRE. In Biotecnología aplicada al sector agropecuario en el departamento de Sucre. https://doi.org/10.21892/9789585547063.11 | |
dc.relation.references | Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van Der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. In Nature Reviews Microbiology (Vol. 11, Issue 11, pp. 789–799). https://doi.org/10.1038/nrmicro3109 | |
dc.relation.references | Poonguzhali, S., Madhaiyan, M., & Sa, T. (2007). Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Research in Microbiology, 158(3), 287–294. https://doi.org/10.1016/j.resmic.2006.11.013 | |
dc.relation.references | Reyes, I., Alvarez, L., El-Ayoubi, H., & Valery, A. (2008). Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Bioagro, 20(1). http://ve.scielo.org/scielo.php?pid=S1316-33612008000100005&script=sci_arttext | |
dc.relation.references | Ryu, R. J., & Patten, C. L. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrr in Enterobacter cloacae UW5. Journal of Bacteriology, 190(21), 7200–7208. https://doi.org/10.1128/JB.00804-08 | |
dc.relation.references | Saravanakumar, D., Vijayakumar, C., Kumar, N., & Samiyappan, R. (2007). PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 26(4), 556–565. https://doi.org/10.1016/j.cropro.2006.05.007 | |
dc.relation.references | Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? In Trends in Plant Science (Vol. 23, Issue 1, pp. 25–41). https://doi.org/10.1016/j.tplants.2017.09.003 | |
dc.relation.references | Schneijderberg, M., Cheng, X., Franken, C., de Hollander, M., van Velzen, R., Schmitz, L., Heinen, R., Geurts, R., van der Putten, W. H., Bezemer, T. M., & Bisseling, T. (2020). Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME Journal, 14(10), 2433–2448. https://doi.org/10.1038/s41396-020-0695-2 | |
dc.relation.references | Shang, X. chao, Zhang, M., Zhang, Y., Hou, X., & Yang, L. (2023). Waste seaweed compost and rhizosphere bacteria Pseudomonas koreensis promote tomato seedlings growth by benefiting properties, enzyme activities and rhizosphere bacterial community in coastal saline soil of Yellow River Delta, China. Waste Management, 172, 33–42. https://doi.org/10.1016/j.wasman.2023.09.003 | |
dc.relation.references | Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. In Applied Sciences (Switzerland) (Vol. 10, Issue 20, pp. 1–20). https://doi.org/10.3390/app10207326 | |
dc.relation.references | Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. In Agriculture, Ecosystems and Environment (Vol. 140, Issues 3–4, pp. 339–353). https://doi.org/10.1016/j.agee.2011.01.017 | |
dc.relation.references | Solís, S., Contreras-Ramos, S. M., Bacame-Valenzuela, F. J., Reyes-Vidal, Y., González-Jasso, E., & Bustos, E. (2023). Comparison of the effects of biological and electrical stimulation on the growth of Zea mays. Electrochimica Acta, 448, 142193. https://doi.org/10.1016/j.electacta.2023.142193 | |
dc.relation.references | Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. In FEMS Microbiology Reviews (Vol. 31, Issue 4, pp. 425–448). https://doi.org/10.1111/j.1574-6976.2007.00072.x | |
dc.relation.references | Sriwati, R., Maulidia, V., Intan, N., Oktarina, H., Syamsuddin, Khairan, K., Skala, L., & Mahmud, T. (2023). Endophytic bacteria as biological agents to control fusarium wilt disease and promote tomato plant growth. Physiological and Molecular Plant Pathology, 125, 101994. https://doi.org/10.1016/j.pmpp.2023.101994 | |
dc.relation.references | Sukumar, P., Legué, V., Vayssières, A., Martin, F., Tuskan, G. A., & Kalluri, U. C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant, Cell and Environment, 36(5), 909–919. https://doi.org/10.1111/pce.12036 | |
dc.relation.references | Tejera-Hernández, B., Heydrich-Pérez, M., & Rojas-Badía, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357. https://doi.org/10.15517/am.v24i2.12535 | |
dc.relation.references | Timmusk, S., Grantcharova, N., & Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 71(11), 7292–7300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005 | |
dc.relation.references | Trujillo, M. ., Pedraza, R., Abud, Y. ., & Ochoa, M. . (2013). Perspectivas del Empleo de Rizobacterias Como Agentes de Control Biológico en Cultivos de Importancia Económica. Revista Biológicas, 12(1), 65–71. https://www.redalyc.org/pdf/612/61224107.pdf | |
dc.relation.references | Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998 | |
dc.relation.references | Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166 | |
dc.relation.references | Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166 | |
dc.relation.references | Woodward, A., Botany, B. B.-A. of, & 2005, U. (2005). Auxin: regulation, action, and interaction. Academic.Oup.ComAW Woodward, B BartelAnnals of Botany, 2005•academic.Oup.Com. https://academic.oup.com/aob/article-abstract/95/5/707/201283 | |
dc.relation.references | Yepes, E. J. A. (2014). EFECTO DE LA INOCULACIÓN DE BACTERIAS NATIVAS SOBRE EL CRECIMIENTO Y DESARROLLO DE PLANTAS DE AJÍ (Capsicum annuum L.) EN CONDICIONES DE UMBRÁCULO. Universidad de Córdoba. | |
dc.relation.references | Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5. https://doi.org/10.1038/srep13438 | |
dc.relation.references | Zhang, G., Shi, L., Liu, C., Huang, Z., Zheng, Y., & Dong, L. (2023). Rhizosphere effects on the microbial community: Specificity and conservatism across geographically disjunct Panax species. Applied Soil Ecology, 192, 105075. https://doi.org/10.1016/j.apsoil.2023.105075 | |
dc.relation.references | Zhu, U., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., Cao, X., Han, X., Wang, X., van der Knaap, E., Zhang, Z., Cui, X., Klee, H., Fernie, A. R., Luo, J., & Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1–2), 249-261.e12. https://doi.org/10.1016/j.cell.2017.12.019 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Biofertilizer | |
dc.subject.keywords | Phosphorus-solubilizing bacteria | |
dc.subject.keywords | Nitrogen-fixing bacteria | |
dc.subject.keywords | Indole Acetic Acid | |
dc.subject.proposal | Biofertilizante | |
dc.subject.proposal | Bacterias solubilizadoras de fósforo | |
dc.subject.proposal | Bacterias fijadoras de Nitrógeno | |
dc.subject.proposal | Ácido Indol Acético | |
dc.title | Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: