Publicación: Aplicación de la big data en la educación superior
dc.contributor.advisor | Daniel José, Salas Álvarez | spa |
dc.contributor.author | Lafont Paez, Carlos Javier | |
dc.date.accessioned | 2022-03-01T00:50:49Z | |
dc.date.available | 2023-02-28 | |
dc.date.available | 2022-03-01T00:50:49Z | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | En este artículo se lleva a cabo una revisión sistemática de literatura (RSL) aplicada al estudio del big data como herramienta de análisis y mejoramiento de los procesos de aprendizaje en las instituciones de educación superior. Para ello, fueron seleccionaron varios artículos los cuales cumplen con criterios relacionado acerca del tema en cuestión, y posteriormente se determinó la influencia e importancia del big data en los diferentes entes que conforman las instituciones de educación superior, además de brindar una idea clara sobre la toma de decisiones apoyada en la predicción basada en análisis de grandes volúmenes de datos. Se logró determinar los países con mayor influencia del big data en las instituciones de educación superior, además de inferir algunos en los cuales la implementación de esta tecnología presenta grandes desafíos, los usos de ella y la ayuda al mejoramiento de todos los entes que conforman una institución de educación superior. El desarrollo de esta RSL se basó en la metodología de Barbara Kitchenham para lograr identificar, evaluar, elegir y sintetizar los datos de los artículos recopilados. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) de Sistemas | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | ABSTRACT ................................................................................................................... 9 | eng |
dc.description.tableofcontents | 1. INTRODUCCIÓN ................................................................................................ 10 | spa |
dc.description.tableofcontents | 2. OBJETIVOS ......................................................................................................... 11 | spa |
dc.description.tableofcontents | 2.1 OBJETIVO GENERAL...................................................................................... 11 | spa |
dc.description.tableofcontents | 2.2 OBJETIVOS ESPECIFICOS ............................................................................. 11 | spa |
dc.description.tableofcontents | 3. METODOLOGÍA ................................................................................................. 11 | spa |
dc.description.tableofcontents | 3.1 FASE 1. PLANIFICACIÓN DE LA REVISIÓN ............................................... 13 | spa |
dc.description.tableofcontents | 3.2 FASE 2. DESARROLLO DE LA REVISIÓN .................................................... 15 | spa |
dc.description.tableofcontents | 4. RESULTADOS ..................................................................................................... 25 | spa |
dc.description.tableofcontents | 5. RECOMENDACIONES ....................................................................................... 38 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES................................................................................................. 40 | spa |
dc.description.tableofcontents | 7. BIBLIOGRAFÍA................................................................................................... 43 | spa |
dc.format.mimetype | application/pdf | eng |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4839 | eng |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería de Sistemas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | eng |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | eng |
dc.subject.keywords | Accreditation | eng |
dc.subject.keywords | Big data | eng |
dc.subject.keywords | Higher education | eng |
dc.subject.keywords | Internet of things | eng |
dc.subject.keywords | Learning | eng |
dc.subject.keywords | Data Mining | eng |
dc.subject.proposal | Acreditación | eng |
dc.subject.proposal | Aprendizaje | spa |
dc.subject.proposal | Educación superior | spa |
dc.subject.proposal | Internet de las cosas | spa |
dc.subject.proposal | Macrodatos | spa |
dc.subject.proposal | Minería de datos | spa |
dc.title | Aplicación de la big data en la educación superior | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | eng |
dc.type.content | Text | eng |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | eng |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | eng |
dc.type.version | info:eu-repo/semantics/submittedVersion | eng |
dcterms.references | Arquitectura para la Gestión de Datos Imperfectos en la Era de Big Data. Revista Venezolana de Computación, 3(2), 47–56. http://concisa.net.ve/memorias/CoNCISa2016/CoNCISa2016-p047-056.pdf | spa |
dcterms.references | Carrizo, D., & Moller, C. (2018). Estructuras metodológicas de revisiones sistemáticas de literatura en Ingeniería de Software: un estudio de mapeo sistemático. Ingeniare. Revista Chilena de Ingeniería, 26, 45–54. https://doi.org/10.4067/s0718- 33052018000500045 | spa |
dcterms.references | Heredia-Mayorga, H. (2020). Big data en la educación. Horizontes. Revista de Investigación En Ciencias de La Educación, 4(16), 523–535. https://doi.org/10.33996/revistahorizontes.v4i16.134 | spa |
dcterms.references | Liang, J., Yang, J., Wu, Y., Li, C., & Zheng, L. (2016). Big data application in education: Dropout prediction in edx MOOCs. Proceedings - 2016 IEEE 2nd International Conference on Multimedia Big Data, BigMM 2016, 440–443. https://doi.org/10.1109/BigMM.2016.70 | spa |
dcterms.references | Liu, D. Y. T., Richards, D., Dawson, P., Froissard, J. C., & Atif, A. (2016). Knowledge acquisition for learning analytics: Comparing teacher-derived, algorithm-derived, and hybrid models in the moodle engagement analytics plugin. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9806 LNCS, 183–197. https://doi.org/10.1007/978-3-319-42706- 5_14 | spa |
dcterms.references | Matsebula, F., & Mnkandla, E. (2017). A big data architecture for lMatsebula, F., & Mnkandla, E. (2017). A big data architecture for learning analytics in higher education. 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, 951–956. https://doi.org/10.1109/AFRCON. 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, 951–956. | spa |
dcterms.references | Namiot, D., & Sneps-Sneppe, M. (2017). On internet of things and big data in university courses. International Journal of Embedded and Real-Time Communication Systems, 8(1), 18–30. https://doi.org/10.4018/IJERTCS.2017010102 | spa |
dcterms.references | Ray, S., & Saeed, M. (2018). Applications of educational data mining and learning analytics tools in handling big data in higher education. Applications of Big Data Analytics: Trends, Issues, and Challenges, 135–160. https://doi.org/10.1007/978-3- 319-76472-6_7 | spa |
dcterms.references | Yang, C. Y., Liu, J. Y., & Huang, S. (2020). RESEARCH on EARLY WARNING SYSTEM of COLLEGE STUDENTS’ BEHAVIOR BASED on BIG DATA ENVIRONMENT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W10), 659–665. https://doi.org/10.5194/isprs-archives-XLII-3-W10-659-2020 | spa |
dcterms.references | AlSoufi, A. (2018). The role of big data in university strategy and performance eco system: A case study. Advances in Intelligent Systems and Computing, 745, 665–670. https://doi.org/10.1007/978-3-319-77703-0_66 | spa |
dcterms.references | Ang, K. L. M., Ge, F. L., & Seng, K. P. (2020). Big Educational Data Analytics: Survey, Architecture and Challenges. IEEE Access, 8, 116392–116414. https://doi.org/10.1109/ACCESS.2020.2994561 | spa |
dcterms.references | Aseeri, M., & Kang, K. (2020). Technological and human factors for supporting big data analytics in Saudi Arabian higher education. 26th Americas Conference on Information Systems, AMCIS 2020, 0–5. | spa |
dcterms.references | Ashaari, M. A., Amran, A., Ahmad, N. H., Bakri, H., & Nazri, S. (2020). Big Data Analytics Technology Capability and Data-Driven Decision Making in Malaysian Higher Education Institutions: A Conceptual Framework. IOP Conference Series: Materials Science and Engineering, 874(1). https://doi.org/10.1088/1757-899X/874/1/012021 | spa |
dcterms.references | Cabanban-Casem, C. L. (2019). Analytical visualization of higher education institutions’ big data for decision making. ACM International Conference Proceeding Series, 61– 64. https://doi.org/10.1145/3314527.3314537 | spa |
dcterms.references | Chaurasia, S. S., & Frieda Rosin, A. (2017). From Big Data to Big Impact: analytics for teaching and learning in higher education. Industrial and Commercial Training, 49(7– 8), 321–328. https://doi.org/10.1108/ICT-10-2016-0069 | spa |
dcterms.references | Daniel, B. K. (2016). Big data and learning analytics in higher education: Current theory and practice. Big Data and Learning Analytics in Higher Education: Current Theory and Practice, 1–272. https://doi.org/10.1007/978-3-319-06520-5 | spa |
dcterms.references | Dapiton, E. P., & Canlas, R. B. (2020). Value creation of big data utilization: The next frontier for productive scholarship among Filipino academics. European Journal of Educational Research, 9(1), 423–431. https://doi.org/10.12973/eu-jer.9.1.423 | spa |
dcterms.references | Fu, C., Jiang, H., & Chen, X. (2021). Big data intelligence for smart educational management systems. Journal of Intelligent and Fuzzy Systems, 40(2), 2881–2890. https://doi.org/10.3233/JIFS-189328 | spa |
dcterms.references | Gong, B., Jing, F., & Liu, L. (2020). Research on the relationship between teachers’ and students’ behavior and the measures to improve the teaching quality. Proceedings - 2020 International Conference on Big Data and Informatization Education, ICBDIE 2020, 334–337. https://doi.org/10.1109/ICBDIE50010.2020.00084 | spa |
dcterms.references | Hasan, R., Palaniappan, S., Mahmood, S., Naidu, V. R., Agarwal, A., Singh, B., Sarker, K. U., Abbas, A., & Sattar, M. U. (2020). A Review: Emerging Trends of Big Data in Higher Educational Institutions. In Lecture Notes in Networks and Systems (Vol. 106). Springer Singapore. https://doi.org/10.1007/978-981-15-2329-8_29 | spa |
dcterms.references | Holloway, K. (2020). Big Data and learning analytics in higher education: Legal and ethical considerations. Journal of Electronic Resources Librarianship, 32(4), 276–285. https://doi.org/10.1080/1941126X.2020.1821992 | spa |
dcterms.references | Ijab, M. T., Salleh, M. A. M., Wahab, S. M. A., & Bakar, A. A. (2019). Investigating Big Data Analytics Readiness in. 6th International Conference on Research and Innovation in Information Systems (ICRIIS). | spa |
dcterms.references | Jha, S., Jha, M., & O’Brien, L. (2018). A Step towards Big Data Architecture for Higher Education Analytics. Proceedings - 2018 5th Asia-Pacific World Congress on Computer Science and Engineering, APWC on CSE 2018, 178–183. https://doi.org/10.1109/APWConCSE.2018.00036 | spa |
dcterms.references | Jin, X. (2020). The application of big data thinking in ideological and political education. Journal of Physics: Conference Series, 1616(1). https://doi.org/10.1088/1742- 6596/1616/1/012008 | spa |
dcterms.references | Liu, D. Y. T., Bartimote-Aufflick, K., Pardo, A., & Bridgeman, A. J. (2017). Data-driven personalization of student learning support in higher education. Studies in Systems, Decision and Control, 94, 143–169. https://doi.org/10.1007/978-3-319-52977-6_5 | spa |
dcterms.references | Lodge, J. M., Alhadad, S. S. J., Lewis, M. J., & Gašević, D. (2017). Inferring Learning from Big Data: The Importance of a Transdisciplinary and Multidimensional Approach. Technology, Knowledge and Learning, 22(3), 385–400. https://doi.org/10.1007/s10758-017-9330-3 | spa |
dcterms.references | Luo, W. (2021). Using Big Data Technology to Study the Countermeasures to Improve the Teaching Ability of P.E. Teachers in Applied Universities in China. Journal of Physics: Conference Series, 1744(4). https://doi.org/10.1088/1742- 6596/1744/4/042007 | spa |
dcterms.references | Moynihan, G. P., Chau, A., Vereen, S., & Batson, R. G. (2017). Application of big data in university construction projects. 67th Annual Conference and Expo of the Institute of Industrial Engineers 2017, 85–90. | spa |
dcterms.references | Muhammad, R. N., Tasmin, R., & Nor Aziati, A. H. (2020). Sustainable Competitive Advantage of Big Data Analytics in Higher Education Sector: An Overview. Journal of Physics: Conference Series, 1529(4), 0–7. https://doi.org/10.1088/1742- 6596/1529/4/042100 | spa |
dcterms.references | Nan, X. (2020). Research on the characteristic model of survival and development behavior of math teachers in higher vocational colleges based on big data technology. Journal of Physics: Conference Series, 1648(3). https://doi.org/10.1088/1742- 6596/1648/3/032107 | spa |
dcterms.references | Ong, V. K. (2016). Big Data and Its Research Implications for Higher Education: Cases from UK Higher Education Institutions. Proceedings - 2015 IIAI 4th International Congress on Advanced Applied Informatics, IIAI-AAI 2015, 487–491. https://doi.org/10.1109/IIAI-AAI.2015.178 | spa |
dcterms.references | Popescu, F., Iskandaryan, R., & Weber, T. (2019). Big data and international accreditations in higher education: A Dutch - Russian case study. IoTBDS 2019 - Proceedings of the 4th International Conference on Internet of Things, Big Data and Security, May, 207– 214. https://doi.org/10.5220/0007572102070214 | spa |
dcterms.references | Segooa, M. A., & Mathias Kalema, B. (2019). The big potential of big data towards universities outcome based funding. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, January, 574–578. https://doi.org/10.1109/CCWC.2019.8666626 | spa |
dcterms.references | Tang, X. (2020). Research on Higher Education Human Resource Department’s Knowledge Management of Teachers in the Era of Big Data. Proceedings - 2020 International Conference on Big Data and Informatization Education, ICBDIE 2020, 83–86. https://doi.org/10.1109/ICBDIE50010.2020.00026 | eng |
dcterms.references | Tasmin, R., Muhammad, R. N., & Nor Aziati, A. H. (2020). Big Data Analytics Applicability in Higher Learning Educational System. IOP Conference Series: Materials Science and Engineering, 917(1). https://doi.org/10.1088/1757- 899X/917/1/012064 | eng |
dcterms.references | Ternier, S., Scheffel, M., & Drachsler, H. (2018). Towards a cloud-based big data infrastructure for higher education institutions. In Lecture Notes in Educational Technology. Springer Singapore. https://doi.org/10.1007/978-981-13-0650-1_10 | eng |
dcterms.references | Tian, Y. (2020). Research on the construction and characteristic development of college english teachers based on big data analysis. Journal of Physics: Conference Series, 1648(3). https://doi.org/10.1088/1742-6596/1648/3/032166 | eng |
dcterms.references | Viloria, A., Senior Naveda, A., Hernández Palma, H., Niebles Núẽz, W., & Niebles Núẽz, L. (2020). Using Big Data to Determine Potential Dropouts in Higher Education. Journal of Physics: Conference Series, 1432(1). https://doi.org/10.1088/1742- 6596/1432/1/012077 | eng |
dcterms.references | Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104. https://doi.org/10.1016/j.chb.2019.106189 | eng |
dcterms.references | Wang, M. (2020). A relationship model between teachers’ scientific research output and teaching ability based on big data analysis. IOP Conference Series: Materials Science and Engineering, 750(1), 4–10. https://doi.org/10.1088/1757-899X/750/1/012085 | eng |
dcterms.references | Yasuura, H., Kyung, C. M., Liu, Y., & Lin, Y. L. (2017). Smart sensors at the IoT frontier. Smart Sensors at the IoT Frontier, 1–378. https://doi.org/10.1007/978-3-319-55345-0 | spa |
dcterms.references | Zeineddine, H., Braendle, U., & Farah, A. (2021). Enhancing prediction of student success: Automated machine learning approach. Computers and Electrical Engineering, 89(November 2020), 106903. https://doi.org/10.1016/j.compeleceng.2020.106903 | eng |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | eng |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: