Publicación:
Aplicación de la big data en la educación superior

dc.contributor.advisorDaniel José, Salas Álvarezspa
dc.contributor.authorLafont Paez, Carlos Javier
dc.date.accessioned2022-03-01T00:50:49Z
dc.date.available2023-02-28
dc.date.available2022-03-01T00:50:49Z
dc.date.issued2022-02-28
dc.description.abstractEn este artículo se lleva a cabo una revisión sistemática de literatura (RSL) aplicada al estudio del big data como herramienta de análisis y mejoramiento de los procesos de aprendizaje en las instituciones de educación superior. Para ello, fueron seleccionaron varios artículos los cuales cumplen con criterios relacionado acerca del tema en cuestión, y posteriormente se determinó la influencia e importancia del big data en los diferentes entes que conforman las instituciones de educación superior, además de brindar una idea clara sobre la toma de decisiones apoyada en la predicción basada en análisis de grandes volúmenes de datos. Se logró determinar los países con mayor influencia del big data en las instituciones de educación superior, además de inferir algunos en los cuales la implementación de esta tecnología presenta grandes desafíos, los usos de ella y la ayuda al mejoramiento de todos los entes que conforman una institución de educación superior. El desarrollo de esta RSL se basó en la metodología de Barbara Kitchenham para lograr identificar, evaluar, elegir y sintetizar los datos de los artículos recopilados.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) de Sistemasspa
dc.description.modalityMonografíasspa
dc.description.tableofcontentsABSTRACT ................................................................................................................... 9eng
dc.description.tableofcontents1. INTRODUCCIÓN ................................................................................................ 10spa
dc.description.tableofcontents2. OBJETIVOS ......................................................................................................... 11spa
dc.description.tableofcontents2.1 OBJETIVO GENERAL...................................................................................... 11spa
dc.description.tableofcontents2.2 OBJETIVOS ESPECIFICOS ............................................................................. 11spa
dc.description.tableofcontents3. METODOLOGÍA ................................................................................................. 11spa
dc.description.tableofcontents3.1 FASE 1. PLANIFICACIÓN DE LA REVISIÓN ............................................... 13spa
dc.description.tableofcontents3.2 FASE 2. DESARROLLO DE LA REVISIÓN .................................................... 15spa
dc.description.tableofcontents4. RESULTADOS ..................................................................................................... 25spa
dc.description.tableofcontents5. RECOMENDACIONES ....................................................................................... 38spa
dc.description.tableofcontents6. CONCLUSIONES................................................................................................. 40spa
dc.description.tableofcontents7. BIBLIOGRAFÍA................................................................................................... 43spa
dc.format.mimetypeapplication/pdfeng
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4839eng
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería de Sistemasspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccesseng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.keywordsAccreditationeng
dc.subject.keywordsBig dataeng
dc.subject.keywordsHigher educationeng
dc.subject.keywordsInternet of thingseng
dc.subject.keywordsLearningeng
dc.subject.keywordsData Miningeng
dc.subject.proposalAcreditacióneng
dc.subject.proposalAprendizajespa
dc.subject.proposalEducación superiorspa
dc.subject.proposalInternet de las cosasspa
dc.subject.proposalMacrodatosspa
dc.subject.proposalMinería de datosspa
dc.titleAplicación de la big data en la educación superiorspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.redcolhttps://purl.org/redcol/resource_type/TPeng
dc.type.versioninfo:eu-repo/semantics/submittedVersioneng
dcterms.referencesArquitectura para la Gestión de Datos Imperfectos en la Era de Big Data. Revista Venezolana de Computación, 3(2), 47–56. http://concisa.net.ve/memorias/CoNCISa2016/CoNCISa2016-p047-056.pdfspa
dcterms.referencesCarrizo, D., & Moller, C. (2018). Estructuras metodológicas de revisiones sistemáticas de literatura en Ingeniería de Software: un estudio de mapeo sistemático. Ingeniare. Revista Chilena de Ingeniería, 26, 45–54. https://doi.org/10.4067/s0718- 33052018000500045spa
dcterms.referencesHeredia-Mayorga, H. (2020). Big data en la educación. Horizontes. Revista de Investigación En Ciencias de La Educación, 4(16), 523–535. https://doi.org/10.33996/revistahorizontes.v4i16.134spa
dcterms.referencesLiang, J., Yang, J., Wu, Y., Li, C., & Zheng, L. (2016). Big data application in education: Dropout prediction in edx MOOCs. Proceedings - 2016 IEEE 2nd International Conference on Multimedia Big Data, BigMM 2016, 440–443. https://doi.org/10.1109/BigMM.2016.70spa
dcterms.referencesLiu, D. Y. T., Richards, D., Dawson, P., Froissard, J. C., & Atif, A. (2016). Knowledge acquisition for learning analytics: Comparing teacher-derived, algorithm-derived, and hybrid models in the moodle engagement analytics plugin. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9806 LNCS, 183–197. https://doi.org/10.1007/978-3-319-42706- 5_14spa
dcterms.referencesMatsebula, F., & Mnkandla, E. (2017). A big data architecture for lMatsebula, F., & Mnkandla, E. (2017). A big data architecture for learning analytics in higher education. 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, 951–956. https://doi.org/10.1109/AFRCON. 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, 951–956.spa
dcterms.referencesNamiot, D., & Sneps-Sneppe, M. (2017). On internet of things and big data in university courses. International Journal of Embedded and Real-Time Communication Systems, 8(1), 18–30. https://doi.org/10.4018/IJERTCS.2017010102spa
dcterms.referencesRay, S., & Saeed, M. (2018). Applications of educational data mining and learning analytics tools in handling big data in higher education. Applications of Big Data Analytics: Trends, Issues, and Challenges, 135–160. https://doi.org/10.1007/978-3- 319-76472-6_7spa
dcterms.referencesYang, C. Y., Liu, J. Y., & Huang, S. (2020). RESEARCH on EARLY WARNING SYSTEM of COLLEGE STUDENTS’ BEHAVIOR BASED on BIG DATA ENVIRONMENT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W10), 659–665. https://doi.org/10.5194/isprs-archives-XLII-3-W10-659-2020spa
dcterms.referencesAlSoufi, A. (2018). The role of big data in university strategy and performance eco system: A case study. Advances in Intelligent Systems and Computing, 745, 665–670. https://doi.org/10.1007/978-3-319-77703-0_66spa
dcterms.referencesAng, K. L. M., Ge, F. L., & Seng, K. P. (2020). Big Educational Data Analytics: Survey, Architecture and Challenges. IEEE Access, 8, 116392–116414. https://doi.org/10.1109/ACCESS.2020.2994561spa
dcterms.referencesAseeri, M., & Kang, K. (2020). Technological and human factors for supporting big data analytics in Saudi Arabian higher education. 26th Americas Conference on Information Systems, AMCIS 2020, 0–5.spa
dcterms.referencesAshaari, M. A., Amran, A., Ahmad, N. H., Bakri, H., & Nazri, S. (2020). Big Data Analytics Technology Capability and Data-Driven Decision Making in Malaysian Higher Education Institutions: A Conceptual Framework. IOP Conference Series: Materials Science and Engineering, 874(1). https://doi.org/10.1088/1757-899X/874/1/012021spa
dcterms.referencesCabanban-Casem, C. L. (2019). Analytical visualization of higher education institutions’ big data for decision making. ACM International Conference Proceeding Series, 61– 64. https://doi.org/10.1145/3314527.3314537spa
dcterms.referencesChaurasia, S. S., & Frieda Rosin, A. (2017). From Big Data to Big Impact: analytics for teaching and learning in higher education. Industrial and Commercial Training, 49(7– 8), 321–328. https://doi.org/10.1108/ICT-10-2016-0069spa
dcterms.referencesDaniel, B. K. (2016). Big data and learning analytics in higher education: Current theory and practice. Big Data and Learning Analytics in Higher Education: Current Theory and Practice, 1–272. https://doi.org/10.1007/978-3-319-06520-5spa
dcterms.referencesDapiton, E. P., & Canlas, R. B. (2020). Value creation of big data utilization: The next frontier for productive scholarship among Filipino academics. European Journal of Educational Research, 9(1), 423–431. https://doi.org/10.12973/eu-jer.9.1.423spa
dcterms.referencesFu, C., Jiang, H., & Chen, X. (2021). Big data intelligence for smart educational management systems. Journal of Intelligent and Fuzzy Systems, 40(2), 2881–2890. https://doi.org/10.3233/JIFS-189328spa
dcterms.referencesGong, B., Jing, F., & Liu, L. (2020). Research on the relationship between teachers’ and students’ behavior and the measures to improve the teaching quality. Proceedings - 2020 International Conference on Big Data and Informatization Education, ICBDIE 2020, 334–337. https://doi.org/10.1109/ICBDIE50010.2020.00084spa
dcterms.referencesHasan, R., Palaniappan, S., Mahmood, S., Naidu, V. R., Agarwal, A., Singh, B., Sarker, K. U., Abbas, A., & Sattar, M. U. (2020). A Review: Emerging Trends of Big Data in Higher Educational Institutions. In Lecture Notes in Networks and Systems (Vol. 106). Springer Singapore. https://doi.org/10.1007/978-981-15-2329-8_29spa
dcterms.referencesHolloway, K. (2020). Big Data and learning analytics in higher education: Legal and ethical considerations. Journal of Electronic Resources Librarianship, 32(4), 276–285. https://doi.org/10.1080/1941126X.2020.1821992spa
dcterms.referencesIjab, M. T., Salleh, M. A. M., Wahab, S. M. A., & Bakar, A. A. (2019). Investigating Big Data Analytics Readiness in. 6th International Conference on Research and Innovation in Information Systems (ICRIIS).spa
dcterms.referencesJha, S., Jha, M., & O’Brien, L. (2018). A Step towards Big Data Architecture for Higher Education Analytics. Proceedings - 2018 5th Asia-Pacific World Congress on Computer Science and Engineering, APWC on CSE 2018, 178–183. https://doi.org/10.1109/APWConCSE.2018.00036spa
dcterms.referencesJin, X. (2020). The application of big data thinking in ideological and political education. Journal of Physics: Conference Series, 1616(1). https://doi.org/10.1088/1742- 6596/1616/1/012008spa
dcterms.referencesLiu, D. Y. T., Bartimote-Aufflick, K., Pardo, A., & Bridgeman, A. J. (2017). Data-driven personalization of student learning support in higher education. Studies in Systems, Decision and Control, 94, 143–169. https://doi.org/10.1007/978-3-319-52977-6_5spa
dcterms.referencesLodge, J. M., Alhadad, S. S. J., Lewis, M. J., & Gašević, D. (2017). Inferring Learning from Big Data: The Importance of a Transdisciplinary and Multidimensional Approach. Technology, Knowledge and Learning, 22(3), 385–400. https://doi.org/10.1007/s10758-017-9330-3spa
dcterms.referencesLuo, W. (2021). Using Big Data Technology to Study the Countermeasures to Improve the Teaching Ability of P.E. Teachers in Applied Universities in China. Journal of Physics: Conference Series, 1744(4). https://doi.org/10.1088/1742- 6596/1744/4/042007spa
dcterms.referencesMoynihan, G. P., Chau, A., Vereen, S., & Batson, R. G. (2017). Application of big data in university construction projects. 67th Annual Conference and Expo of the Institute of Industrial Engineers 2017, 85–90.spa
dcterms.referencesMuhammad, R. N., Tasmin, R., & Nor Aziati, A. H. (2020). Sustainable Competitive Advantage of Big Data Analytics in Higher Education Sector: An Overview. Journal of Physics: Conference Series, 1529(4), 0–7. https://doi.org/10.1088/1742- 6596/1529/4/042100spa
dcterms.referencesNan, X. (2020). Research on the characteristic model of survival and development behavior of math teachers in higher vocational colleges based on big data technology. Journal of Physics: Conference Series, 1648(3). https://doi.org/10.1088/1742- 6596/1648/3/032107spa
dcterms.referencesOng, V. K. (2016). Big Data and Its Research Implications for Higher Education: Cases from UK Higher Education Institutions. Proceedings - 2015 IIAI 4th International Congress on Advanced Applied Informatics, IIAI-AAI 2015, 487–491. https://doi.org/10.1109/IIAI-AAI.2015.178spa
dcterms.referencesPopescu, F., Iskandaryan, R., & Weber, T. (2019). Big data and international accreditations in higher education: A Dutch - Russian case study. IoTBDS 2019 - Proceedings of the 4th International Conference on Internet of Things, Big Data and Security, May, 207– 214. https://doi.org/10.5220/0007572102070214spa
dcterms.referencesSegooa, M. A., & Mathias Kalema, B. (2019). The big potential of big data towards universities outcome based funding. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, January, 574–578. https://doi.org/10.1109/CCWC.2019.8666626spa
dcterms.referencesTang, X. (2020). Research on Higher Education Human Resource Department’s Knowledge Management of Teachers in the Era of Big Data. Proceedings - 2020 International Conference on Big Data and Informatization Education, ICBDIE 2020, 83–86. https://doi.org/10.1109/ICBDIE50010.2020.00026eng
dcterms.referencesTasmin, R., Muhammad, R. N., & Nor Aziati, A. H. (2020). Big Data Analytics Applicability in Higher Learning Educational System. IOP Conference Series: Materials Science and Engineering, 917(1). https://doi.org/10.1088/1757- 899X/917/1/012064eng
dcterms.referencesTernier, S., Scheffel, M., & Drachsler, H. (2018). Towards a cloud-based big data infrastructure for higher education institutions. In Lecture Notes in Educational Technology. Springer Singapore. https://doi.org/10.1007/978-981-13-0650-1_10eng
dcterms.referencesTian, Y. (2020). Research on the construction and characteristic development of college english teachers based on big data analysis. Journal of Physics: Conference Series, 1648(3). https://doi.org/10.1088/1742-6596/1648/3/032166eng
dcterms.referencesViloria, A., Senior Naveda, A., Hernández Palma, H., Niebles Núẽz, W., & Niebles Núẽz, L. (2020). Using Big Data to Determine Potential Dropouts in Higher Education. Journal of Physics: Conference Series, 1432(1). https://doi.org/10.1088/1742- 6596/1432/1/012077eng
dcterms.referencesWaheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104. https://doi.org/10.1016/j.chb.2019.106189eng
dcterms.referencesWang, M. (2020). A relationship model between teachers’ scientific research output and teaching ability based on big data analysis. IOP Conference Series: Materials Science and Engineering, 750(1), 4–10. https://doi.org/10.1088/1757-899X/750/1/012085eng
dcterms.referencesYasuura, H., Kyung, C. M., Liu, Y., & Lin, Y. L. (2017). Smart sensors at the IoT frontier. Smart Sensors at the IoT Frontier, 1–378. https://doi.org/10.1007/978-3-319-55345-0spa
dcterms.referencesZeineddine, H., Braendle, U., & Farah, A. (2021). Enhancing prediction of student success: Automated machine learning approach. Computers and Electrical Engineering, 89(November 2020), 106903. https://doi.org/10.1016/j.compeleceng.2020.106903eng
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfeng
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaeng
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
lafontpaezcarlosjavier.pdf
Tamaño:
974.07 KB
Formato:
Adobe Portable Document Format
Descripción:
Informe final
No hay miniatura disponible
Nombre:
formato de autorizacion.pdf
Tamaño:
252.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: