Publicación: Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae
dc.contributor.author | Infante J, Cherlys | spa |
dc.date.accessioned | 2014-05-04 00:00:00 | |
dc.date.accessioned | 2022-06-17T20:08:54Z | |
dc.date.available | 2014-05-04 00:00:00 | |
dc.date.available | 2022-06-17T20:08:54Z | |
dc.date.issued | 2014-05-04 | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | 10.21897/rmvz.107 | |
dc.identifier.eissn | 1909-0544 | |
dc.identifier.issn | 0122-0268 | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/5319 | |
dc.identifier.url | https://doi.org/10.21897/rmvz.107 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.relation.bitstream | https://revistamvz.unicordoba.edu.co/article/download/107/176 | |
dc.relation.citationedition | Núm. 2 , Año 2014 : Revista MVZ Córdoba Volumen 19(2) Mayo-Agosto 2014 | spa |
dc.relation.citationendpage | 4149 | |
dc.relation.citationissue | 2 | spa |
dc.relation.citationstartpage | 4141 | |
dc.relation.citationvolume | 19 | spa |
dc.relation.ispartofjournal | Revista MVZ Córdoba | spa |
dc.relation.references | Volesky B. Biosorption and me. Water Res 2007; 41:4017-4029. http://dx.doi.org/10.1016/j.watres.2007.05.062 | spa |
dc.relation.references | Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009; 27:195–226. http://dx.doi.org/10.1016/j.biotechadv.2008.11.002 | spa |
dc.relation.references | Li C, Xu Y, Jiang W, Dong X, Wang D, Liu B. Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Biores Technol 2013; 143:46–52. http://dx.doi.org/10.1016/j.biortech.2013.05.114 | spa |
dc.relation.references | Soares E, Soares H. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: A review. Env Sci Pollut Res 2012; 19:1066-1083. http://dx.doi.org/10.1007/s11356-011-0671-5 | spa |
dc.relation.references | Gohari M, Hosseini S,Sharifnia S, Khatami M. Enhancement of metal ion adsorption capacity of Saccharomyces cerevisiae's cells by using disruption method. J Taiwan Inst Chem E 2013; 44:637–645. http://dx.doi.org/10.1016/j.jtice.2013.01.002 | spa |
dc.relation.references | Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv 2006; 24:427–451. http://dx.doi.org/10.1016/j.biotechadv.2006.03.001 | spa |
dc.relation.references | Mack CL, Wilhelmi B, Duncan JR, Burgess JE.Biosorptive recovery of platinum from platinum group metal refining wastewaters by immobilised Saccharomyces cerevisiae. Water Sci Technol 2011; (63):149-55. http://dx.doi.org/10.2166/wst.2011.025 | spa |
dc.relation.references | Soares E, Soares H. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Appl Microbiol Biotechnol 2013; 97(15):6667-6675. http://dx.doi.org/10.1007/s00253-013-5063-y | spa |
dc.relation.references | Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu I C. Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 2010; 85:763–771. http://dx.doi.org/10.1007/s00253-009-2266-3 | spa |
dc.relation.references | Li T, Liu Y, Peng Q, Hu X, Liao T, Wang H, Lu M. Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chem Eng J 2013; 214:189-197. http://dx.doi.org/10.1016/j.cej.2012.10.055 | spa |
dc.relation.references | Ramírez M, Pereira M, Ferreira S, Vasco O, Ocampo C. Packed bed redistribution system for Cr(III) and Cr(VI) biosorption by Saccharomyces cerevisiae. J Taiwan Inst Chem E 2012; 43: 428–432. http://dx.doi.org/10.1016/j.jtice.2011.12.002 | spa |
dc.relation.references | APHA. Métodos normalizados para el análisis de aguas potables y residuales. Método 3112 B. 3-23, 3-24. 21ª Edición. Espa-a. Editorial Díaz de Santos; 2005. | spa |
dc.relation.references | Özer A, Özer D. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 2003; B100:219–229. http://dx.doi.org/10.1016/S0304-3894(03)00109-2 | spa |
dc.relation.references | Chen C, Wang J. Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2007; 74:911–917. http://dx.doi.org/10.1007/s00253-006-0739-1 | spa |
dc.relation.references | Zhang Y, Fan C, Meng Q, Diao Z, Dong L, Peng X et al. Biosorption of Pb2+ by Saccharomyces cerevisiae in Staticand Dynamic Adsorption Tests. Bull Environ Contam Toxicol 2009; 83:708–712. http://dx.doi.org/10.1007/s00128-009-9847-9 | spa |
dc.relation.references | Skountzou P, Soupioni M, Bekatorou A, Kanellaki M, Koutinas A, Marchant R et al. Lead(II) uptake during baker's yeast production by aerobic fermentation of molasses. Process Biochem 2003; 38:1479-1482. http://dx.doi.org/10.1016/S0032-9592(03)00023-2 | spa |
dc.relation.references | Galedar M, Younesi H. Biosorption of ternary cadmium, nickel and cobalt ions from aqueous solution onto Saccharomyces cerevisiae cells: batch and column studies. Am J Biochem Biotechnol 2013; 9(1):47-60. http://dx.doi.org/10.3844/ajbbsp.2013.47.60 | spa |
dc.relation.references | Machado M, Soares E, Soares H. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 2010; 180(1-3):347-53. http://dx.doi.org/10.1016/j.jhazmat.2010.04.037 | spa |
dc.relation.references | Suazo E, Morales L, Cristiani M, Cristiani E. Efecto del pH sobre la biosorción de níquel (II) por Saccharomyces cerevisiae var. ellipsoideus. Rev CENIC Cienc Quim 2010; 41:1-12. | spa |
dc.relation.references | Zhang Y, Liu W, Zhang L, wang M, Zhao M. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution. Appl Surf Sci 2011; 257:9809–9816. http://dx.doi.org/10.1016/j.apsusc.2011.06.026 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://revistamvz.unicordoba.edu.co/article/view/107 | spa |
dc.subject | Bioremediation | spa |
dc.subject | heavy metals | spa |
dc.subject | biomass | spa |
dc.subject | contaminant removal | spa |
dc.subject | bioaccumulation | spa |
dc.title | Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae | spa |
dc.title.translated | Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae | eng |
dc.type | Artículo de revista | spa |
dc.type | Journal article | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |