Publicación: Caracterización clínica y patobiológica de la infección experimental con Edwardsiella tarda Y Edwardsiella anguillarum en alevinos de tilapia (Oreochromis sp.)
dc.contributor.advisor | Barato Gómez, Paola Andrea | |
dc.contributor.author | Hernández Carrascal, Jaime Alberto | |
dc.contributor.sponsor | CORPAVET | |
dc.date.accessioned | 2021-03-09T14:02:52Z | |
dc.date.available | 2021-03-09T14:02:52Z | |
dc.date.issued | 2020-11-30 | |
dc.description.abstract | Edwardsiellosis is a systemic granulomatous disease that affects a wide range of terrestrial and aquatic hosts, including tilapia (Oreochromis sp). Recently, Edwardsiella tarda was phylogenetically reclasiffied in three species: E. tarda, E. anguillarum and E. piscicida. The purpose of this research was to characterize clinically and pathobiologically the experimental infection with E. tarda and E. anguillarum in tilapia fingerlings. An experimental study was carried out with 19 groups, each with two replications, as follows: immersion inoculum (INM) and intragastric (IG) in doses 106 , 107 and 108 cfu/ml for each bacteria (E. anguilllarum and E. tarda) (12 groups), intraperitoneal inoculum (IP) at doses 106 and 107 cfu/ml equally for both microorganisms (4 groups), and three (3) negative control groups with inoculation of sterile physiological buffered solution (PBS) by the respective routes inoculation (IP, IG, or IMM). During the experimental period (30 days) the fish were clinically evaluated (signs and gross lesions). The fingerlings were weighed at three times: at day 0 start of the experiment, at day 15 (first phase) and at day 30, culmination of the experiment (second phase). The fish inoculated with E. anguillarum (18-355) and with E. tarda (18- 294) by IP route after day 4PI and 7PI presented ascites, whitish masses in the peritoneum and spleen, hepatomegaly, splenomegaly, absence of food in the intestine and gallbladder distention. By the IG route with E. anguillarum, 25% of mortality was presented with 106 cfu/ml, 33% with 107 cfu/ml and 58% with 108 cfu/ml; with this same bacterium by the INM route with 106 cfu/ml there was no mortality during the first 15 days, with 107 cfu/ml it was 50% and with 108 cfu/ml it was 55%. With E. tarda by inoculation via IG and INM for a period of 1 to 15 days PI there was no mortality, and during days 15 to 30 PI the fish inoculated by INM with 108 cfu/ml had 43% mortality. At day 30 PI, significant differences (P | eng |
dc.description.abstract | La edwardsielosis es una enfermedad granulomatosa sistémica que afecta un amplio rango de hospederos terrestres y acuáticos, entre ellos la tilapia (Oreochromis sp.). Recientemente se diferenció filogenéticamente Edwardsiella tarda en tres especies: E. tarda, E. anguillarum y E. piscicida. El propósito de esta investigación fue caracterizar clínica y patobiológicamente la infección experimental con E. tarda y E. anguillarum en alevinos de tilapia. Se realizó un estudio de tipo experimental con 19 grupos, cada uno con dos replicas, así: inóculo por inmersión (INM) e intragástrico (IG) en dosis 106 , 107 y 108 ufc/ml para cada bacteria (E. anguilllarum y E. tarda) (12 grupos), inóculo intraperitoneal (IP) en dosis 106 y 107 ufc/ml igualmente para ambos microorganismos (4 grupos) y tres (3) grupos controles negativos con inoculación de solución salina fisiológica estéril (SSF) por las respectivas vías de inoculación (IP, IG, o IMM). Durante el periodo experimental (30 días) los peces fueron evaluados clínicamente (signos y lesiones macroscópicas). Se pesaron los alevinos en tres momentos: al día 0 inicio del experimento, al día 15 (primera fase) y al día 30 culminación del experimento (segunda fase). Los peces inoculados con E. anguillarum (18-355) y con E. tarda (18-294) por vía IP después del día 4PI y 7PI presentaron ascitis, masas blanquecinas en peritoneo y bazo, hepatomegalia, esplenomegalia, ausencia de alimento en el intestino y distensión de la vesícula biliar. Por la vía IG con E. anguillarum el 25% de mortalidad se presentó con 106 ufc/ml, el 33% con 107 ufc/ml y el 58% con 108 ufc/ml; con esta misma bacteria por vía INM con 106 ufc/ml no se presentó mortalidad durante los primeros 15 días de estudio, con107 ufc/ml fue del 50% y con 108 ufc/ml del 55%. Con E. tarda por inoculación vía IG e INM durante un periodo de 1 a 15 días PI no hubo mortalidad y durante los días 15 al 30 PI los peces inoculados por INM con 108 ufc/ml tuvieron el 43% de mortalidad. Al día 30 PI se observaron diferencias significativas (P | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología Tropical | spa |
dc.description.modality | Trabajo de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN........................................................................ 9 | spa |
dc.description.tableofcontents | ABSTRACT.................................................................... 10 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN ........................................................... 11 | spa |
dc.description.tableofcontents | 2. ESTADO DEL ARTE...................................................... 13 | spa |
dc.description.tableofcontents | 2.1 Acuicultura y el impacto económico de las enfermedades ................ 13 | spa |
dc.description.tableofcontents | 2.2 Edwardsielosis como enfermedad en peces y otras especies ............ 15 | spa |
dc.description.tableofcontents | 2.3 Coinfecciones con Edwardsielosis en peces ........................ 16 | spa |
dc.description.tableofcontents | 2.4 Edwardsielosis en la Interfaz animal-humano................... 16 | spa |
dc.description.tableofcontents | 2.5 Edwardsielosis en la interfaz ambiente – animal ........................ 19 | spa |
dc.description.tableofcontents | 2.6 Huéspedes, reservorios y vehículos..................................... 20 | spa |
dc.description.tableofcontents | 2.7 Piscicultura y el impacto económico de edwardsielosis ................... 21 | spa |
dc.description.tableofcontents | 3. OBJETIVOS................................................................ 22 | spa |
dc.description.tableofcontents | 3.1 General ................................. ...........................22 | spa |
dc.description.tableofcontents | 3.2 Específicos.................................................................. 22 | spa |
dc.description.tableofcontents | 4 METODOLOGÍA .................................................. 23 | spa |
dc.description.tableofcontents | 4.1 Tiempo y área del estudio .................................................... 23 | spa |
dc.description.tableofcontents | 4.2 Tipo de estudio ............................................................. 23 | spa |
dc.description.tableofcontents | 4.3 Criterios de selección de los peces. .................................... 23 | spa |
dc.description.tableofcontents | 4.4 Obtención, recepción de los animales experimentales (larvas) y evaluación de su estatus sanitario ................................................ 23 | spa |
dc.description.tableofcontents | 4.5 Bacterias de estudio.................................................................................................... 24 | spa |
dc.description.tableofcontents | 4.6 Modelo de infección in vivo con E. tarda y E. anguillarum por inmersión (INM), inoculación intragástrica (IG) e intraperitoneal (IP) en alevinos de tilapia de 3 a 5 cm de talla y 3 a 5 gr de peso en promedio (Reed, 1938). .............. 26 | spa |
dc.description.tableofcontents | 4.7. Evaluación clínica, necropsia y pesaje de animales experimentales....... 28 | spa |
dc.description.tableofcontents | 4.8 Análisis estadístico .......................................................... 30 | spa |
dc.description.tableofcontents | 5. RESULTADOS................................................................. 31 | spa |
dc.description.tableofcontents | 5.1 Animales experimentales.......................................... 31 | spa |
dc.description.tableofcontents | 5.2 Cuantificación de Edwardsiella tarda (18-294) y Edwardsiella anguillarum (18- 355) para inoculación experimental in vivo............................................ 31 | spa |
dc.description.tableofcontents | 5.3 Replicación experimental de edwardsielosis por Edwardsiella anguillarum en alevinos de tilapia…………………..............33 | spa |
dc.description.tableofcontents | 5.4 Replicación experimental de edwardsielosis por Edwardsiella tarda en alevinos de tilapia……………………………………35 | spa |
dc.description.tableofcontents | 5.5 Reducción de ganancia de peso al final del ensayo (30 días PI) en los peces inoculados con E. anguillarum y E. tarda tanto por vía IG y INM........ 36 | spa |
dc.description.tableofcontents | 6 DISCUSIÓN ...................................................................... 38 | spa |
dc.description.tableofcontents | 7 CONCLUSIONES................................................................. 45 | spa |
dc.description.tableofcontents | 8 RECOMENDACIONES................................................... 46 | spa |
dc.description.tableofcontents | 9 BIBLIOGRAFÍA................................................................ 47 | spa |
dc.description.tableofcontents | 10 ANEXOS....................................................... 58 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4059 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Agrícolas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Microbiología Tropical | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Edwardsiellosis | eng |
dc.subject.keywords | Oreochromis sp | eng |
dc.subject.keywords | Pathobiology | eng |
dc.subject.keywords | Productive parameters | eng |
dc.subject.keywords | Clinical signs | eng |
dc.subject.proposal | Edwardsielosis | spa |
dc.subject.proposal | Oreochromis sp | spa |
dc.subject.proposal | Patobiología | spa |
dc.subject.proposal | Parámetros productivos | spa |
dc.subject.proposal | Granulomas | spa |
dc.title | Caracterización clínica y patobiológica de la infección experimental con Edwardsiella tarda Y Edwardsiella anguillarum en alevinos de tilapia (Oreochromis sp.) | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abayneh T, Colquhoun D, Sorum H. Edwardsiella piscicida sp. Nov., a novel species pathogenic to fish. J. Applied Microbiology. 2012. 644-654. | spa |
dcterms.references | Acevedo R., S. C. Bacterias resistentes a antibióticos en ecosistemas acuáticos. Producción + Limpia. 2015. Vol.10, No.2 - 160-172. | spa |
dcterms.references | Al-Harbi A, Uddin N. Bacterial diversity of tilapia (Oreochromis niloticus) cultured in brackish water in Saudi Arabia. Aquaculture. 2005. 250: 566-572. | spa |
dcterms.references | Al-Harbi AH. Feacal coliforms in pond water, sediments and hybrid tilapia (Oreochromis niloticus x Oreochromis aureus) in Saudi Arabia. Aquaculture Research. 2003. 34: 517-524. | spa |
dcterms.references | Ali F, Hassan M, Saleha A, Siti K, Milud A. (2011). Pathogenicity of Streptococcus agalactiae isolated from a fish in Selangor to Juvenile Red tilapia (Oreochromis sp.). Journal of Animal and Veterinary Advances. 2011. 10: 914- 919. http://doi:10.3923/javaa.2011.914.919. | spa |
dcterms.references | Andersson D, H. D. (2012). Evolution of antibiotic resistance at non-lethal drug concentrations. Drug. Resist, 15: 162– 172. | spa |
dcterms.references | Armwood A, Camus A, López-Porras A, Ware C, Griffin M, Soto E. Pathologic changes in cultured Nile tilapia (Oreochromis niloticus) associated with an outbreak of Edwardsiella anguillarum. J. Fisch Diseases. 2019. 1-7. doi:10.1111/jfd.13058 | spa |
dcterms.references | Austyn J, K.J. Wood. Principles of cellular and molecular immunology. Oxford University Press, Oxford. 1993. | spa |
dcterms.references | Bacharach E., M. N. Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia. MBio. 2016. 1-7. | spa |
dcterms.references | Balbuena O. Suplementación Energética-Proteica.Revista Argentina de producción animal. 2003. 20 (Supl. 1): 18-19. | spa |
dcterms.references | Barato P, Griffin M, Pachón L, Montufar M, Yun S, Soto E. 8th International Symposium on Aquatic Animal Health. Outbreak of edwardsiellosis for Edwardsiella anguillarum in farmed tilapia (Oreochromis sp.). 2018. Prince Edward Island, Canadá: International Symposium on Aquatic Animal Health. | spa |
dcterms.references | Beamish F, Sitja-Bobadilla A, Jebbink, J, P.T.K. Woo. Bioenergetic cost of cryptobiosis in fish: rainbow trout Oncorhynchus mykiss infected with Cryptobia salmositica and with an attenuated live vaccine. Diseases of Aquatic Organisms. El Salvador. 1996. 25pp. | spa |
dcterms.references | Bingle L, Bailey C. y Pallen M. Type VI secretion: A beginner’s guide. Curr. Opin. Microbiology. 2008. 11(1): 3-8. | spa |
dcterms.references | Bong-Tae Kim., C. L.-H. Assessment on the vulnerability of Korean aquaculture to climate change. Marine Policy. 2019. Volume 99, Pages 111-122. | spa |
dcterms.references | Buján N, Mohammed H, Balboa S, Romalde J, Toranzo AE, Arias CR, et al. Genetic studies to re‐affiliate Edwardsiella tarda fish isolates to Edwardsiella piscicida and Edwardsiella anguillarum species. . Systematic and Applied Microbiology. 2018. 41, 30–37. https://doi.org/10.1016/j. | spa |
dcterms.references | Cala D. (09 de 05 de 2020). World Aquaculture Society Meetings. 2020. Obtenido de https://www.was.org/Meetings/ShowAbstract.aspx?Id=109534. | spa |
dcterms.references | Castro N, Toranzo A, Devesa S, González A, Nuñez S. First description of Edwardsiella tarda in Senegalese sole, Solea senegalensis(Kaup). J. Fish Dis. 2012. 35(1):79-82. https://doi.org/10.1111/j.1365-2761.2011.01325.x | spa |
dcterms.references | Clement S. and T. Lovell. Comparison of processing yield and nutrient composition of cultured Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus).Aquaculture. 1994. 119: 299-310. | spa |
dcterms.references | Coles B. S. Isolation of Edwardsiella tarda fromthree Oregon sea mammals. J. Wildl. 1978. | spa |
dcterms.references | Custódio da Costa J, L. V. Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. Science of the Total Environment. 2020. Volume 726, 15 July 2020, 138628. | spa |
dcterms.references | Deem S. Disease Risk Analysis in Wildlife Health Field Studies. En a. K. Cook R., Emerging disease at the interface of people, domestic animals, and wildlife. Fowlers zoo and wild animal medicine current therapy. 2012. (págs. 2- 7). Saunders. | spa |
dcterms.references | Earth policy. (27 de 05 de 2018). Earth policy. 2018. Obtenido de http://www.earth-policy.org/plan_b_updates/2013/update114 | spa |
dcterms.references | Earth-policy. (26 de 04 de 2019). Earth policy. 2019. Obtenido de http://www.earth-policy.org/plan_b_updates/2013/update114 | spa |
dcterms.references | Eknath AE, Doyle RW. Effective population size and rate of inbreeding in aquaculture of Indian major carps. Aquacult. 1990. 85:293–305. | spa |
dcterms.references | Ewing W. M. Edwardsiella, anew genus of Enterobacteriaceae based on a new species, E. tarda. Int. J. Syst.Evol. Microbiol.1965. | spa |
dcterms.references | Ewing W, Mcwhorter, A., Escobar, M., & Lubin, A. Edwardsiella, anew genus of Enterobacteriaceae based on a new species, E. tarda. Int. J. Syst.Evol. Microbiol.1965. | spa |
dcterms.references | Eyngor M, Zamostiano R, Kembou JE, Berkowitz A, Bercovier H, Tinman S, et al. Identification of a novel RNA virus lethal to tilapia. J. Clin. Microbiol.2014. 52, 4137- 4146. https:/doi: 10.1128/JCM.00827-14. | spa |
dcterms.references | FAO, FIDA, UNICEF, PMA, OMS. El estado de la seguridad alimentaria y la nutrición en el mundo. Fomentando la resiliencia climática en aras de la seguridad alimentaria y la nutrición. FAO, Roma: El Grupo de Edición de la Oficina de Comunicación Institucional de la FAO.2018. | spa |
dcterms.references | FAO. (04 de 05 de 2019). Resistencia a los antimicrobianos - intervención de FAO en la región. 2019. Obtenido de https://www.paho.org/hq/dmdocuments/2017/2017-cha-relavra-del-barrio-1- b.pdf | spa |
dcterms.references | FAO. (11 de 05 de 2019). 2019. Obtenido de http://www.fao.org/3/CA2864EN/ca2864en.pdf | spa |
dcterms.references | FAO. (2004). Manejo sanitario y mantenimiento de la bioseguridad de los laboratorios de postlarvas de camarón blanco (Penaeus vannamei) en América Latina. FAO Documento Técnico de Pesca. No. 450. Roma, FAO. 2004. 66 | spa |
dcterms.references | FAO., O. M. (15 de 05 de 2020). El estado mundial de la acuicultura. 2020. Obtenido de http://www.fao.org/3/I9540ES/i9540es.pdf | spa |
dcterms.references | FEDEACUA. (02 de 05 de 2019). CARTILLA DE PRODUCTIVIDAD PARA TILAPIA ENCOLOMBIA. 2019. https://fedeacua.org/wpcontent/uploads/2019/11/cartilla-de-productividad_.pdf | spa |
dcterms.references | FEDEACUA. (14 de 05 de 2020). 2020. Obtenido de https://fedeacua.org/wpcontent/uploads/2019/12/Presentacio%CC%81n-Comercio-Ext.- Pisci%CC%81cola-Ene-Mar-2019.pdf | spa |
dcterms.references | Figueiredo C, Carneiro O, Faria F, Costa G. Streptococcus agalactiae associado à meningoencefalite e infecção sistêmica em tilápiado-nilo (Oreochromis niloticus) no Brasil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia.2006. 58: 678-680. | spa |
dcterms.references | Garcia N. et al. Edwardsiellosis, common and novel manifesttions of the disease: a review. Revista colombiana ciencia animal. 2012. | spa |
dcterms.references | Gibson-Corley K, Olivier A, Meyerholz D. Principles for Valid Histopathologic Scoring in Research. Vet Path. 2013. 50(6):1007-1015 | spa |
dcterms.references | González X. (09 de 05 de 2020). Agronegocios. 2020. Obtenido de https://www.agronegocios.co/ganaderia/aquavac-strep-sa-la-primera-vacunapara-tilapia-que-msd-salud-animal-trajo-al-pais-2753075# | spa |
dcterms.references | Grant S, Fisher E, Chang J, Mole B. y Dangl J. Subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Annual Review of Microbiology. 2006. 60: 425-449. | spa |
dcterms.references | Griffin M, Wise D. Edwardsiella piscicida identified in the southeastern USA by gyrB sequence, species-specific and repetitive sequence-mediated PCR. Dis Aquat Org. 2014. Vol. 108: 23–35. | spa |
dcterms.references | Griffin M, Greenway, T, & Wise D. Edwardsiella spp. In: Woo, P.T.K.,Cipriano, R.C. (Eds.), Fish viruses and bacteria: pathobiology and protection. 2007. CAB International, Boston. | spa |
dcterms.references | Grimont P, Grimont F, Richard C, & Sakazaki, R. Edwardsiella hoshi-nae, a new species of Enterobacteriaceae. Curr. Microbiol. 1980. 4, 347–351. | spa |
dcterms.references | Hawke J, Mcwhorter A, Steigerwalt A, & Brenner, D. Edwardsiella ictaluri sp. nov., the causative agent of enteric septicemia of catfish. Int. J.Syst. Evol. Microbiol. 1981. | spa |
dcterms.references | Huong N, Thuy H, Gallardo W, Thanh H. Bacterial population in intensive tilapia (Oreochromis niloticus) culture pond sediment in Hai Duong province, Vietnam. Interntional Journal of fisheries and aquaculture. 2014. 6: 133-139. | spa |
dcterms.references | Iregui C, et al. First epidemiological map of the lesions and diseases of fish in Colombia. 2004. Bogotá: Universidad Nacional de Colombia. | spa |
dcterms.references | Iregui C. Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia Oreochromis spp. Journal of Fish Diseases. 2015. 1-11. | spa |
dcterms.references | James S, Egna H, Chopin T, Peterson M, Cao L, et al. Responsible Aquaculture in 2050: Valuing local conditions and human innovations will be key to success. Bioscience. 2013. 63: 255-262. https://doi.org/10.1525/bio.2013.63.4.5. | spa |
dcterms.references | Janda J, Abbott S. Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease. Clin Infect Dis. 1993. 17: 742-8 | spa |
dcterms.references | Javier S. Edwardsiellosis, an emerging zoonosis of aquatic animals. Biohelikon: Immunity & Diseases. 2012. 1(1) | spa |
dcterms.references | Katharios P, Kokkari C, Dourala N, et al. First report of Edwardsiellosis in cagecultured sharpsnout sea bream, Diplodus puntazzo from the Mediterranean. BMC Vet Res. 2015. 11, 155. https://doi.org/10.1186/s12917-015-0482-x | spa |
dcterms.references | Katharios, P. Characterization of a Highly Virulent Edwardsiella anguillarum Strain Isolated From Greek Aquaculture, and a Spontaneously Induced Prophage Therein. Frontiers in Microbiology. 2019. 1-12. Obtenido de 10.3389/fmicb.2019.00141 | spa |
dcterms.references | Kebede, B. H. Isolation and identification of Edwardsiella tarda from Lake Zeway and Langano, Southern Oromia Ethiopia. 2016. Fish. Aquac. J | spa |
dcterms.references | Kibenge F.S.B. Determinants of Emergence of Viral Diseases in Aquaculture. En G. M. Kibenge F., Aquaculture Virology. 2016. (págs. 95-116). Academic Press. | spa |
dcterms.references | Kou S.C., Chung H.Y. & Kou G.H. Studies on artificial infection of the gliding bacteria in cultured fishes. Fish Pathology. 1981. 15, 309–314. | spa |
dcterms.references | Lee S.W, Wendy W. Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile aeromonas septicemia and edwardsiellosis. Veterinary World. 2017. 10(7): 803-807. | spa |
dcterms.references | Leotta G.A, Piñeyro P, Serena S, Vigo GB. Prevalence of Edwardsiella tarda in Antarctic wildlife. Polar Biol. 2009. 32:809-812. | spa |
dcterms.references | Leung, K. S. Edward-siella tarda — virulence mechanisms of an emerging gastroenteritis pathogen. 2012. Microbes Infect. | spa |
dcterms.references | Ling, S.H., Wang, X.H., Xie, L., Lim, T.M. & Leung, K.Y. Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology. 2000. 146: 7-19. | spa |
dcterms.references | Ling. S.H.M., Wang X.H., Lim T.M., Leung K.Y. Green fluorescent proteintagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Letters. 2001. 194: 239-243. | spa |
dcterms.references | López-Porras A, Elizondo C, Chavez A, Camus A, Griffin M., et al. Application of multiplex quantitative Polymerase chain reaction methods to detect common bacterial fish pathogens in Nile tilapia, Oreochromis niloticus, hatcheries in Costa Rica. J World Aquacult. 2018. 1-14. https://doi.10.1111/jwas.12576. | spa |
dcterms.references | Lv Y, Xiao J, Liu Q, Wu H, Zhang Y, Wang Q. Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet. Microbiol. 2012. 157. 190-199. | spa |
dcterms.references | Lv Y, Yin K, Shao S, Wang Q, Zhang Y. Comparative proteomic analysis reveals new components of the PhoP regulon and highlights a role for PhoP in the regulation of genes encoding the F1F0 ATP synthase in Edwardsiella tarda. Microbiology-SGM. 2013. 159, 1340–1351. | spa |
dcterms.references | Lv Y, Zheng J, Yang M, Wang Q, Zhang Y. An Edwardsiella tarda mutant lacking UDP-glucose dehydrogenase shows pleiotropic phenotypes, attenuated virulence, and potential as a vaccine candidate. Vet. Microbiol. 2012b. 160, 506– 512. | spa |
dcterms.references | Manrique, Wilson G et al. Inflamación crónica granulomatosa en el pez teleósteo Piaractus mesopotamicus: modelo de estudio histopatológico. Rev.MVZ Cordoba. 2017. Vol.22. (1).5738-5746. http://dx.doi.org/10.21897/rmvz.933. | spa |
dcterms.references | Meyer, F. P, Bullock G. L. Edwardsiella tarda, a New Pathogen of Channel Catfish (Ictalurus punctatus). APPLIED MICROBIOLOGY. 1973. 155-156. | spa |
dcterms.references | Miniero Davies Y, Xavier de Oliveira MG, Paulo Vieira Cunha M, Soares Franco L, Pulecio Santos SL, Zanolli Moreno L, Túlio de Moura Gomes V, Zanolli Sato MI, Schiavo Nardi M, Micke Moreno A, Becker Saidenberg A, Rose Marques de Sá L, Knöbl T. Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil, Veterinary Quarterly. 2018. 38(1), 99-105. | spa |
dcterms.references | Mohanty, B. S. Edwardsiellosis in fish: a brief review. J. Biosci. 2007. | spa |
dcterms.references | Montufar M., P. L.-G. Epidemiologic Assessment and DNA Sequencing of TiLV from Colombian Tilapia Farms using Motif Fingerprints. En A. S. Fisheries (Ed.), 8th International Symposium on Aquatic Animal Health.2018. (pág. 62). Prince Edward Island: Amerian Society of Fisheries. | spa |
dcterms.references | Mota L. y Cornelis G. The bacterial injection kit: Type III secretion systems. Annals of Medicine. 2005. 37(4): 234-249. | spa |
dcterms.references | Muratori M.C, Martins, N.E, Peixoto M.T et al. Edwardsiella septicemia mortality in tilapia-integrated with pig in fish farming. Arq. Bras. Med. Vet. Zootec. 2001. v53, p.658-662. | spa |
dcterms.references | Nguyen N. P. Environmental conditions influence susceptibility of striped catfish Pangasianodon hypophthalmus (Sauvage) to Edwardsiella ictaluri. Aquaculture. 2020. Volume 523, 1-7. | spa |
dcterms.references | OECD. (11 de 05 de 2019). Test No. 203: Fish, Acute Toxicity Test. 2019. Obtenido de https://www.oecd-ilibrary.org/docserver/9789264069961. | spa |
dcterms.references | OECD. (11 de 05 de 2019). Test No. 215: Fish Juvenile Growth Test. 2019. Obtenido de https://www.oecd-ilibrary.org/environment/test-no-215-fishjuvenile-growth-test_9789264070202-en. | spa |
dcterms.references | Oh W, Jun J, Kim H, et al. Characterization and Pathological Analysis of a Virulent Edwardsiella anguillarum Strain Isolated From Nile Tilapia (Oreochromis niloticus) in Korea. Frontiers in Veterinary Science. 2020. 7:14. Jan 28. https://doi:10.3389/fvets.2020.00014. | spa |
dcterms.references | Pacha R.E. y Ordal E.J. Epidemiology of columnaris disease in salmon. Bacteriological Proceedings. 1963. 63, 3–4. | spa |
dcterms.references | Pakingking Jr.R, Takano R, Nishizawa T, Mori K, Iida Y, Arimoto M, Muroga K. Experimental coinfectin with Aquabirnavirus and Viral Hemorrhagic Septicemia Virus (VHSV) Edwardsiella tarda or Streptococcus iniae in Japanese Flounder Paralichthys olivaceus. Fish Pathology. 2003. 38(1):15-21. | spa |
dcterms.references | Park S, Aoki T, Jung T. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. VETERINARY RESEARCH. 2012. 43-67. | spa |
dcterms.references | Parrado Y. Historia de la Acuicultura en Colombia. Revista científica de la Sociedad Española de Acuicultura. 2012. 60-77. http://www.revistaaquatic.com/aquatic/pdf/37_9.pdf. | spa |
dcterms.references | Pavanelli GC, Eiras JC, Takemoto RM. Doenças depeixes: profilaxia, diagnóstico e tratamento. Maringá, Brazil: EDUEM. 1998. p. 259. | spa |
dcterms.references | Piñeros R, Griffin M, et al. IMMUNOHISTOCHEMISTRY TO CHARACTERIZE OUTBREAKS OF Edwardsiella anguillarumASSOCIATED EDWARDSIELLOSIS IN FARMED TILAPIA (Oreochromis SP.) IN COLOMBIA. LAQUA 18 Latin American & Caribbean Aquaculture 18 2018. (pág. 319). Bogotá: LAQUA. | spa |
dcterms.references | Pradeep P, Suebsing, R, Sirthammajak S, Kampeera J, Jitrakorn S, Saksmerprome, et al. Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquaculture Reports. 2016. 3, 58–66. | spa |
dcterms.references | Pretto-Giordano L, Eckehard-Müller E, De Freitas J, Gomes da Silva V. Evaluation of the pathogenesis of Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Brazilian Archives of Biology and Technology. 2010. 53: 87-92. http://dx.doi.org/10.1590/S1516-89132010000100011. | spa |
dcterms.references | Qin L, Wang X, Gao Y, Bi K and Wang W. Roles of EvpP in Edwardsiella piscicida-Macrophage Interactions. Front. Cell. Infect. Microbiol. 2020. 10:53. doi: 10.3389/fcimb.2020.00053. | spa |
dcterms.references | Reed, L. M. A simple method of estimating fifty per cent end points. American Journal of Hygiene. 1938. 493–497. | spa |
dcterms.references | Reichley S, Ware C, Steadman J, Gaunt P, García J, LaFrentz B, et al. Comparative Phenotypic and Genotypic Analysis of Edwardsiella Isolates from Different Hosts and Geographic Origins, with Emphasis on Isolates Formerly Classified as E. tarda, and Evaluation of Diagnostic Methods. Clinical Veterinary Microbiology. 2017. 3466-3491. doi:10.1128/JCM.00970-17 | spa |
dcterms.references | Reichley S, Ware C, Greenway T, Wise D, Griffin M. Real-time polymerase chain reaction assays for the detection and quantification of Edwardsiella tarda, Edwardsiella piscicida, and Edwardsiella piscicida–like species in catfish tissues and pond water. Journal of Veterinary Diagnostic Investigation. 2015. Vol. 27(2) 130–139. https://doi.org/10.1177/1040638714566672 | spa |
dcterms.references | Reichley S. R. Comparative susceptibility of channel catfish, Ictalurus punctatus; blue catfish, Ictalurus furcatus; and channel, ♀)× blue (♂) hybrid catfish to Edwardsiella piscicida, Edwardsiella tarda, and Edwardsiella anguillarum. Journal of the World Aquaculture Society. 2018. 49, 197–204. https ://doi.org/10.1111/jwas.12467. | spa |
dcterms.references | Rondón-Barragán I, Ramírez-Duarte W., Gutiérrez G, Eslava-Mocha P. Edwardsiellosis en tilapia. En: Memorias XIII Jornada de Acuicultura, Instituto de Acuicultura de los Llanos, Universidad de los Llanos. 2007. 84-88. | spa |
dcterms.references | Rutten M.J, H. Bovenhuis and H. Komen. Modeling fillet traits based on body measurements in three Nile tilapia strains (Oreochromis niloticus). Aquaculture. 2004. 231:113-122. | spa |
dcterms.references | Sechter M, Shmilovitz G, Altmann R, Seligmann B, Kretzer I, et al. Edwardsiella tarda isolated in Israel between 1961 and 1980. Journal of Clinical Microbiology. 1983. 17(4): 669-671. | spa |
dcterms.references | Shanthakumar SP, Duraisamy P, Vishwanath G, Selvanesan BC, Ramaraj V, Vasantharaj D. Broad spectrum antimicrobial compounds from the bacterium Exiguobacterium mexicanum MSSRFS9. Microbiol. 2015. Res;178: 59-65. doi: 10.1016/j.micres.2015.06.007. | spa |
dcterms.references | Shao S, Lai Q, Liu Q, Wu H, Xiao J, Zhang Y, et al. Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: propose a novel species as Edwardsiella anguillarum sp. Nov. Syst Appl Microbial. 2015. 38:36–47. https://doi:10.1016/j.syapm.2014.10.008 | spa |
dcterms.references | Shrivastava S. y Mande S. Identification and functional characterization of gene components of Type VI secretion system in bacterial genomes. PLoS ONE. 2008. 3(8): e2955. | spa |
dcterms.references | SIOC. (03 de 02 de 2020). Sistema de Información de Gestión de Organizaciones de Cadenas-Minagricultura. 2020. Obtenido de https://sioc.minagricultura.gov.co/Acuicultura/Pages/default.aspx. | spa |
dcterms.references | Snieszko SF. History and present status of fish diseases. J Wildl Dis. 1975. 11: 446-459. | spa |
dcterms.references | Soto E, Hawke J, Fernandez D. Attenuation of the fish pathogen Francisella sp. By mutation of the iglC gene. J Aquatic Animal Health. 2009a 21, 140-149. | spa |
dcterms.references | Soto E, Hawke J, Fernandez D, Morales J. Francisella sp., an emerging pathogen of tilapia (Oreochromis niloticus) in Costa Rica. J Fish Disease. 2009b 32, 713– 722. | spa |
dcterms.references | Soto, E., Griffin, M., Arauz, M., Riofrio, A. M., & Cabrejos, M. (2012). Edwardsiella ictaluri as the causative agent of mortality in cultured Nile tilapia. J. Aquat. Anim. Health. | spa |
dcterms.references | Souza M, Maranhão T. Rendimento de carcaça, filé e subprodutos da filetagem da tilápia do Nilo, Oreochromis niloticus (L), em função do peso corporal. Acta Scientiarum. 2001. 23(4): 897-901. | spa |
dcterms.references | Teoh C, Turchini G, Wing-Keon N. Erratum to “Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend” Aquaculture. 2011. 316: 144-154. doi.org/10.1016/j.aquaculture.2011.03.021 | spa |
dcterms.references | Thangapalam J, Praskash K, Harresh A, Sayani B. Pathology of Edwardsiella tarda infection in African catfish, Clarias gariepinus (Burchell 1822), fingerlings. Arch. Pol. Fish. 2015. 23: 141-148. | spa |
dcterms.references | Ucko M, Colorni A, Dubytska L, and Thune RL. Edwardsiella piscicida-like pathogen in cultured grouper. Dis. Aquat. Organ. 2016. 121, 141–148. doi: 10.3354/dao03051. | spa |
dcterms.references | Vadstein O, Berghm O, Gatesoupe FJ, Galindo-Villegas J, Mulero V, Picchietti S, et al. Microbiology and immunology of fish larvae. Rev Aquacult. 2013. 5 (Suppl. 1) S1–S25. 10.1111/j.1753-5131.2012.01082.x. | spa |
dcterms.references | Vallejo AN, Miller NE, Harvey MA. Cuchens GW, Warr LW. Cellular pathway(s) of antigen processing and presentation in fish APC: endosomal involvement and cell-free antigen presentation. Dev. Comp. Immunol. 1992. 3:51-65. | spa |
dcterms.references | Verjan G. N, I. C. Edwardsiellosis, common and novel manifestations of the disease: A review. Revista Colombiana de Ciencia Animal. 2012. 82-90. | spa |
dcterms.references | Villamil L, Esguerra D. Enterococcus, Myroides Y Exiguobacterium: GÉNEROS BACTERIANOS CON POTENCIAL PROBIÓTICO PARA EL CULTIVO DE TILAPIA NILÓTICA (Oreochromis niloticus). Acta Biológica Colombiana. 2017. Vol. 22, Núm.3. | spa |
dcterms.references | Wang I.K., K. H. Extraintestinal manifestations of Edwardsiella tarda infection. Int. J. Clin. 2005. Pages 917-921. | spa |
dcterms.references | Wang X, Wang Q, Xiao J, Liu Q, Wu H, Xu L, Zhang Y. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish and Shellfish Immunology. 2009. 27 (3):469-477. | spa |
dcterms.references | Wang X, Yan M, Wang Q, Ding L, & Li F. Identification of Edwardsiella tarda isolated from duck and virulence genes detection. African Journal of Microbiology Research. 2012. 6(23), 4970-4975. | spa |
dcterms.references | Wang Q, Yang M, Xiao J, Wu H, Wang X, Lv Y, Xu L, Zheng H, Wang S, Zhao G, Liu Q, Zhang Y. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. 2009. PLoS ONE 4, e7646. | spa |
dcterms.references | Wang Y, Zhang X.-H, Lu J, Xu Z, Chen J, Han Y. Isolation of Edwardsiella tarda from diseased turbot (Scophthalmus maximus) and vaccination against Edwardsiella tarda. J. Fish. Sci. Chin. 2009. 3, 394–403. | spa |
dcterms.references | White F., S. C. Isolation of Edwardsiella tarda from aquatic animal species and surface waters in Florida. 1973. J. Wildl. Dis. | spa |
dcterms.references | White E. Edwardsiella tarda. In: Hoff, G.L., Frye, F.L., Jacobson, E.R.(Eds.). Diseases of amphibians and reptiles, Plenum Press, New York. 1984. pp. 83–92. | spa |
dcterms.references | Winsor DK, Bloebaum AP, Mathewson JJ. Gram-negative, aerobic, enteric pathogens among intestinal microflora of wild turkey vultures (Cathartes aura) in west central Texas. Applied and Environmental Microbiology. 1981. 42, 1123-1124. | spa |
dcterms.references | Wonmongkol P, Sukhavachana S, Ampolsak K, Srisapoome P, Suwanasopee T, Poompuang S. Genetic parameters for resistance against Flavobacterium columnare in Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of Fish Diseases. 2017. 321-328. | spa |
dcterms.references | Xu T, Zhang XH. Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture. 2014. 431:129–135. | spa |
dcterms.references | Ye X, Li J, Lu M, et al. Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fisheries Science. 2011. 77: 623-632. https://doi.org/10.1007/s12562-011-0365-4 | spa |
dcterms.references | Zapata A, Diez B, Cejalvo T, Gutierrez-De Frias C, Cortés A. Ontogeny of the immune system of fish. Fish Shell fish Immunology. 2006. 20, 126-136. | spa |
dcterms.references | Zheng J, & Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Molecular Microbiology. 2007. 66(5), 1192–1206. https://doi.org/10.1111/j.1365- 2958.2007.05993. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: