Publicación:
Producción de huevos del copépodo Acartia tonsa: prototipo de cultivo

dc.contributor.advisorPrieto Guevara, Martha Janeth
dc.contributor.advisorJiménez Velásquez, Cesar Augusto
dc.contributor.advisorTorres Valencia, Gustavo Adolfo
dc.contributor.authorDoria Fabra, Diomer Fabio
dc.contributor.authorGaviria del Toro, Ismael José
dc.contributor.juryHerazo Cardenas, Diana Sofia
dc.contributor.juryCataño Vergara, Yamilis Maria
dc.date.accessioned2023-12-21T04:11:26Z
dc.date.available2023-12-21T04:11:26Z
dc.date.issued2023-12-20
dc.description.abstractLos copépodos son una gran alternativa como presa viva para la alimentación de las larvas de peces marinos; entre ellos el calanoide A. tonsa. es una especie con gran potencial, gracias a su perfil nutricional, diferentes tallas de crecimiento, capacidad de producir huevos en reposo y mantener viabilidad luego de ser almacenados en frío. Sin embargo, la producción de huevos en este microcrustáceo a gran escala en cultivo es un desafío en la acuicultura. Por tanto, se deben desarrollar tecnologías de cultivo para A. tonsa con el fin de optimizar su producción. El presente estudio evaluó en un prototipo de cultivo que permita establecer el efecto de las tasas de recambio sobre la producción de huevos; al mantener la misma velocidad corporal (115 Lp.min-1) en las unidades de cultivo, y proporcionar así una separación continua de huevos. Este estudio fue realizado en el Laboratorio de Alimento Vivo de la Universidad de Córdoba. Tres tratamientos con tres replicas en el tiempo (T1=100, T2=150 y T3=200 volúmenes dia-1) se implementaron en el prototipo diseñado; en ellas se distribuyeron en total 90000 copépodos, cada vez 30000 en los tres tanques (10000/tanque) plásticos de 5 L, alimentados con la microalga I. galbana (1500 μg C.L-1). Experimento 1. La producción específica SEP (huevos.hembra-1.dia-1) y relativa REP (huevos.mL-1.día-1) se determinó con la cosecha y conteo de los huevos producidos cada 24 horas, durante ocho días consecutivos; el mayor registro (18±1,1 huevos hembra-1 día-1 con 200 volúmenes dia-1 y 15±0,5 huevos mL-1 día-1 con 150 volúmenes dia-1). Experimento 2. La mortalidad de adultos (M%) se estimó diariamente en submuestras de A. tonsa de cada tratamiento, en el día siete la M% fue máxima en todos los tratamientos (33-44%). Experimento 3. El porcentaje de eclosión de los huevos Hs (%) se determinó en los tratamientos; en 24 horas se registró superior a 75% sin diferencia significativa (p≤ 0,05) entre tratamientos; en 48 horas solo se presentó diferencia significativa en el día cinco, con mayor Hs en T2 (94,7±1,9%). El promedio diario de temperatura (23,3 a 24,4 °C), salinidad (30 ups), pH (7,5 a 7,6), O2 (6,4 y 7,6 mg L-1), saturación de oxígeno (85,5 a 102,3%), amonio total (0,25 mg L-1), nitrito (0 mg L-1) y nitrato (0 mg L-1) fue registrado. En conclusión, las tasas de recambio del prototipo diseñado tienen efecto sobre el desempeño reproductivo de este copépodo, la producción se maximiza con 150 volúmenes dia-1. Este trabajo es un aporte biotecnológico para la producción de huevos de A. tonsa con miras a la alimentación de larvas de peces marinos en acuicultura.spa
dc.description.abstractCopepods are a great alternative as live prey for feeding marine fish larvae; among them the calanoid A. tonsa. It is a species with great potential, thanks to its nutritional profile, different growth sizes, ability to produce eggs at rest and maintain viability after being stored cold. However, egg production in this microcrustacean on a large scale in culture is a challenge in aquaculture. Therefore, cultivation technologies for A. tonsa must be developed in order to optimize its production. The present study evaluated a culture prototype that allows establishing the effect of turnover rates on egg production; by maintaining the same body speed (115 Lp.min-1) in the culture units, and thus providing continuous egg separation. This study was carried out in the Live Food Laboratory of the University of Córdoba. Three treatments with three replicates over time (T1=100, T2=150 and T3=200 volumes.day-1) were implemented in the designed prototype; In them, a total of 90,000 copepods were distributed, each time 30,000 in the three 5 L plastic tanks (10,000/tank), fed with the microalgae I. galbana (1500 μg C.L-1). Experiment 1. The specific production SEP (eggs.female-1.day-1) and relative REP (eggs.mL-1.day-1) were determined by harvesting and counting the eggs produced every 24 hours, for eight days. in a row; the highest record (18±1.1 female eggs-1 day-1 and 15±0.5 eggs mL-1 day-1 respectively) was with 200 volumes day-1. Experiment 2. Adult mortality (M%) was estimated daily in subsamples of A. tonsa from each treatment, on day seven the M% was maximum in all treatments (33-44%). Experiment 3. The hatching percentage of Hs eggs (%) was determined in the treatments; In 24 hours, more than 70% was recorded with no significant difference (p≤ 0.05) between treatments; In 48 hours, a significant difference was only present on day five, with higher Hs in T2 (94.7±1.9%). Daily average temperature (23.3 to 24.4 °C), salinity (30 ups), pH (7.5 to 7.6), O2 (6.4 and 7.6 mg L-1), saturation of oxygen (85.5 to 102.3%), total ammonium (0.25 mg L-1), nitrite (0 mg L-1) and nitrate (0 mg L-1) was recorded. In conclusion, the replacement rates of the designed prototype have an effect on the reproductive performance of this copepod, production is maximized with 150 volumes.day-1. This work is a biotechnological contribution for the production of A. tonsa eggs with a view to feeding marine fish larvae in aquaculture.eng
dc.description.degreelevelPregrado
dc.description.degreenameProfesional en Acuicultura
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN.................... XIIIspa
dc.description.tableofcontentsABSTRACT.................... XVspa
dc.description.tableofcontentsINTRODUCCIÓN..............17spa
dc.description.tableofcontents1. OBJETIVOS..........................20spa
dc.description.tableofcontents2. MARCO TEÓRICO.......................21spa
dc.description.tableofcontents2.1 Bioecología de los copépodos......21spa
dc.description.tableofcontents2.2 Importancia de los copépodos en acuicultura...........23spa
dc.description.tableofcontents2.3 Tecnología de cultivo de calanoides.............................24spa
dc.description.tableofcontents3. ANTECEDENTES..................................................................27spa
dc.description.tableofcontents4. MATERIALES Y MÉTODOS..................................................29spa
dc.description.tableofcontents4.1 Localización.......................................................................29spa
dc.description.tableofcontents4.2 Tipo de estudio.................................................................29spa
dc.description.tableofcontents.3 Biomasa de la microalga Isochrysis galbana..................29spa
dc.description.tableofcontents4.4 Biomasa del copépodo Acartia tonsa............................30spa
dc.description.tableofcontents4.5 Diseño del prototipo de cultivo......................................31spa
dc.description.tableofcontents4.6 Unidades experimentales...............................................33spa
dc.description.tableofcontents4.7 Producción específica y relativa de huevos A. tonsa..33spa
dc.description.tableofcontents4.8 Mortalidad de adultos A. tonsa......................................34spa
dc.description.tableofcontents4.9 Porcentaje de eclosión en huevos A. tonsa..................34spa
dc.description.tableofcontents4.10 Parámetros de calidad de agua....................................35spa
dc.description.tableofcontents4.11 Análisis estadísticos........................................................35spa
dc.description.tableofcontents5. RESULTADOS........................................................................36spa
dc.description.tableofcontents5.1 Producción específica de huevos (PEH)..........................36spa
dc.description.tableofcontents5.2 Producción relativa de huevos (PRH)..............................36spa
dc.description.tableofcontents5.3 Mortalidad de adultos A. tonsa........................................37spa
dc.description.tableofcontents5.4 Porcentaje de eclosión en huevos A. tonsa....................38spa
dc.description.tableofcontents5.5 Parámetros de calidad de agua........................................39spa
dc.description.tableofcontents6. ANALISIS Y DISCUSIÓN.........................................................44spa
dc.description.tableofcontents6.1 Producción específica y relativa de huevos A. tonsa.....44spa
dc.description.tableofcontents6.2 Mortalidad de adultos A. tonsa.........................................46spa
dc.description.tableofcontents6.3 Porcentaje de eclosión en huevos A. tonsa.....................48spa
dc.description.tableofcontents6.4 Parámetros de calidad de agua.........................................50spa
dc.description.tableofcontentsCONCLUSIONES..........................................................................56spa
dc.description.tableofcontentsRECOMENDACIONES..................................................................57spa
dc.description.tableofcontentsBIBLIOGRAFÍA..............................................................................58spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8003
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programAcuicultura
dc.relation.referencesAbate TG, Nielsen R, Nielsen M, Drillet G, Jepsen PM, Hansen BW. Economic feasibility of copepod production for commercial use: Result from a prototype production facility. Aquaculture. 2015; 436:72–9. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2014.10.012
dc.relation.referencesAjiboye OO, Yakubu AF, Adams TE, Olaji ED, Nwogu NA. A review of the use of copepods in marine fish larviculture. Rev Fish Biol Fish. 2011;21(2):225–46. Disponible en: http://dx.doi.org/10.1007/s11160-010-9169-3
dc.relation.referencesAlajmi F, Zeng C, Jerry DR. Improvement in the reproductive productivity of the tropical calanoid copepod Parvocalanus crassirostris through selective breeding. Aquaculture. 2014;420–421:18–23.
dc.relation.referencesAlajmi FF. Developing intensive culture techniques for the tropical copepod Parvocalanus crassirostris as a live feed for aquaculture (Doctoral dissertation). 2015.
dc.relation.referencesBarroso MV, de Carvalho CVA, Antoniassi R, Cerqueira VR. Use of the copepod Acartia tonsa as the first live food for larvae of the fat snook Centropomus parallelus. Aquaculture. 2013;388–391:153–8.
dc.relation.referencesBlanda E, Drillet G, Huang C-C, Hwang J-S, Højgaard JK, Jakobsen HH, et al. An analysis of how to improve production of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture. 2017; 479:432–41. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2017.06.01
dc.relation.referencesBoersma M, Wesche A, Hirche H-J. Predation of calanoid copepods on their own and other copepods’ offspring. Mar Biol. 2014;161(4):733–43. Disponible en: http://dx.doi.org/10.1007/s00227-013-2373-7
dc.relation.referencesBurbano MF, Torres GA, Prieto MJ, Gamboa JH, Chapman FA. Increased survival of larval spotted rose snapper Lutjanus guttatus (Steindachner, 1869) when fed with the copepod Cyclopina sp. and Artemia nauplii. Aquaculture. 2020; 519(734912):734912.
dc.relation.referencesButtino I, Ianora A, Buono S, Vitello V, Sansone G, Miralto A. Are monoalgal diets inferior to plurialgal diets to maximize cultivation of the calanoid copepod Temora stylifera Mar Biol 2009;156(6):1171–82. Disponible en: http://dx.doi.org/10.1007/s00227-009-1159-4
dc.relation.referencesCalbet A, Saiz E. The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol. 2005; 38:157–67. Disponible en: http://dx.doi.org/10.3354/ame038157
dc.relation.referencesChesney EJ. Copepods as live prey: A review of factors that influence the feeding success of marine fish larvae. En: Copepods in Aquaculture. Ames, Iowa, USA: Blackwell Publishing Professional; 2007. p. 133–50.
dc.relation.referencesChintada B, Ranjan R, Babitha Rani AM, Santhosh B, Megarajan S, Ghosh S, et al. Effects of salinity on survival, reproductive performance, population growth, and life stage composition in the calanoid copepod Acartia bilobata. Aquaculture. 2023; 563 (739025): 739025.
dc.relation.referencesChoi SY, Jang M-C, Youn SH, Seo MH, Soh HY. Egg production and hatching patterns of Acartia erythraea (Copepoda, Calanoida), with a note on its two egg types, in a eutrophic bay in Korea. J Plankton; 202143(3):428–41. Disponible en: https://academic.oup.com/plankt/article/43/3/428/6257751?logi
dc.relation.referencesDabhade DS, Chhaba SG. Zooplankton diversity around washim region of Maharashtra. International journal of advance and innovative research. 2019;6(2):332–6.
dc.relation.referencesDayras P, Bialais C, Sadovskaya I, Lee M-C, Lee J-S, Souissi S. Microalgal diet influences the nutritive quality and reproductive investment of the cyclopoid copepod Paracyclopina nana. Front Mar Sci [Internet]. 2021;8. Available from: http://dx.doi.org/10.3389/fmars.2021.697561
dc.relation.referencesDe Puelles MF, Macias V, Vicente L, Molinero JC. Seasonal spatial pattern and community structure of zooplankton in waters off the Baleares archipelago (Cearvocalanus crassirostris as a live feed for aquaculture (Doctoral dissertation). Journal of Marine Systems. 2014; 138:82–94.
dc.relation.referencesDhont J, Dierckens K, Støttrup J, Van Stappen G, Wille M, Sorgeloos P. Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture. En: Advances in Aquaculture Hatchery Technology. Elsevier; 2013. p. 157–202.
dc.relation.referencesDk Y Capuzzo JM. Depredación de protozoos: su importancia para el zooplancton. Revista de investigación de Plankton. 1990;12(5):891–908.
dc.relation.referencesDrillet G, Frouël S, Sichlau MH, Jepsen PM, Højgaard JK, Joarder AK, et al. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture. 2011;315(3–4):155–66.
dc.relation.referencesDrillet G, Jorgensen NOG, Sorensen TF, Ramlov H, Hansen BW. Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquac Res. 2006;37(8):756–72. Disponible en: http://dx.doi.org/10.1111/j.1365-2109.2006.01489.x
dc.relation.referencesEvjemo JO, Reitan KI, Olsen Y. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture. 2003;227(1–4):191–210. Disponible en: http://dx.doi.org/10.1016/s0044-8486(03)00503-9
dc.relation.referencesFernández-De-Puelles. Orden Calanoida. Centro Oceanográfico de Baleares; 2015.
dc.relation.referencesFernández-Ojeda C, Muniz MC, Cardoso RP, Dos Anjos RM, Huaringa E, Nakazaki C, et al. Plastic debris and natural food in two commercially important fish species from the coast of Peru. Mar Pollut Bull. 2021;173(Pt A):113039. Disponible en: http://dx.doi.org/10.1016/j.marpolbul.2021.113039
dc.relation.referencesFranco SC, Augustin CB, Geffen AJ, Dinis MT. Growth, egg production and hatching success of Acartia tonsa cultured at high densities. Aquaculture. 2017; 468:569–78. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2016.10.044
dc.relation.referencesGuillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. Boston, MA: Springer US; 1975. p. 29–60.
dc.relation.referencesHagemann A, Øie G, Evjemo JO, Olsen Y. Effects of light and short-term temperature elevation on the 48-h hatching success of cold-stored Acartia tonsa Dana eggs. Aquac Int. 2016;24(1):57–68. Disponible en: http://dx.doi.org/10.1007/s10499-015-9908-5
dc.relation.referencesHani PM, Jayalakshmi KJ. Temporal variation in diversity, abundance and size class structure of planktonic copepods from a tropical estuary. Aquat Ecol. 2023; Disponible en: http://dx.doi.org/10.1007/s10452-023-10003-3
dc.relation.referencesHansen BW, Buttino I, Cunha ME, Drillet G. Embryonic cold storage capability from seven strains of Acartia spp. isolated in different geographical areas. Aquaculture. 2016;457:131–9. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2016.02.024
dc.relation.referencesHansen BW, Hansen PJ, Nielsen TG, Jepsen PM. Effects of elevated pH on marine copepods in mass cultivation systems: practical implications. J Plankton Res. 2017;39(6):984–93. Disponible en: http://dx.doi.org/10.1093/plankt/fbx032
dc.relation.referencesHansen BW. Advances using copepods in aquaculture. J Plankton Res [Internet]. 2017;39(6):972–4. Disponible en: http://dx.doi.org/10.1093/plankt/fbx057
dc.relation.referencesHerstoff EM, Baines SB, Boersma M, Meunier CL. Does prey elemental stoichiometry influence copepod movement over ontogeny? Limnol Oceanogr. 2019;64(6):2467–77. Disponible en: http://dx.doi.org/10.1002/lno.11198
dc.relation.referencesHill M, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton BN2 4AT, United Kingdom of Great Britain and Northern Ireland, Pernetta A, Crooks N. Size matters: A review of live feeds used in the culture of marine ornamental fish. Asian Fish Sci. 2020;33(2). Disponible en: http://dx.doi.org/10.33997/j.afs.2020.33.2.007
dc.relation.referencesHirst AG, Bonnet D, Conway DVP, Kiørboe T. Does predation controls adult sex ratios and longevities in marine pelagic copepods? Limnol Oceanogr. 2010; 55(5):2193–206. Disponible en: http://dx.doi.org/10.4319/lo.2010.55.5.2193
dc.relation.referencesHirst AG, Kiørboe T. Macroevolutionary patterns of sexual size dimorphism in copepods. Proc Biol Sci. 2014;281(1791):20140739. Disponible en: http://dx.doi.org/10.1098/rspb.2014.0739
dc.relation.referencesHøjgaard JK, Hansen BW, Hwang J-S. Prey capture capabilities by juveniles of the false percula clownfish (Amphiprion ocellaris) fed calanoid nauplii vs. adults. Mar Freshw Behav Physiol [Internet]. 2017;50(5–6):387–96. Disponible en: http://dx.doi.org/10.1080/10236244.2017.1421047
dc.relation.referencesHøjgaard JK, Hansen BW, Hwang J-S. Prey capture capabilities by juveniles of the false percula clownfish (Amphiprion ocellaris) fed calanoid nauplii vs. adults. Mar Freshw Behav Physiol [Internet]. 2017;50(5–6):387–96. Disponible en: http://dx.doi.org/10.1080/10236244.2017.1421047
dc.relation.referencesJepsen PM, Andersen CV, Schjelde J, Hansen BW. Tolerance of un-ionized ammonia in live feed cultures of the calanoid copepod Acartia tonsa Dana. Aquaculture Research. 2015;46(2):420–31
dc.relation.referencesJepsen PM, van Someren Gréve H, Jørgensen KN, Kjær KGW, Hansen BW. Evaluation of high-density tank cultivation of the live-feed cyclopoid copepod Apocyclops royi (Lindberg 1940). Aquaculture. 2021; 533(736125):736125. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2020.736125
dc.relation.referencesJo YJ, Department of Marine Biology, Pukyong National University, Busan, 48513, Korea, Park W, Lee BW, Kang CG, Kim YE, et al. Effect of temperature on egg development time and productivity of Acartia steueri and population variations of family Acartiidae in Dadaepo Beach, Busan, Korea. J Environ Biol. 2019;40(5(SI)):962–8. Disponible en: http://dx.doi.org/10.22438/jeb/40/5(si)/si-19
dc.relation.referencesKandathil Radhakrishnan D, AkbarAli I, Schmidt BV, John EM, Sivanpillai S, Thazhakot Vasunambesan S. Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac Res. 2020;51(1):1–17. Disponible en: http://dx.doi.org/10.1111/are.14357
dc.relation.referencesKaviyarasan M, Santhanam P. A technique on the culture and preservation of marine copepod eggs. En: Basic and Applied Zooplankton Biology. Singapore: Springer Singapore; 2019. p. 197–208.
dc.relation.referencesKline MD, Laidley CW. Development of intensive copepod culture technology for Parvocalanus crassirostris: Optimizing adult density. Aquaculture. 2015; 435:128–36. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2014.09.022
dc.relation.referencesLee EH, Choi SY, Seo MH, Lee SJ, Soh HY. Effects of temperature and pH on the egg production and hatching success of a common Korean copepod. Diversity (Basel). 2020; 12(10):372. Disponible en: http://dx.doi.org/10.3390/d12100372
dc.relation.referencesLi W, Liu X, Ma Z. Culturing Techniques for Planktonic Copepods. En: Research Methods of Environmental Physiology in Aquatic Sciences. Singapore: Springer Singapore; 2021. p. 47–56.
dc.relation.referencesMcConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI. Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull. 2013;73(2):428–34.
dc.relation.referencesMejri SC, Tremblay R, Audet C, Wills PS, Riche M. Essential fatty acid requirements in tropical and Cold-Water marine fish larvae and juveniles. Front Mar Sci . 2021;8. Disponible en: http://dx.doi.org/10.3389/fmars.2021.680003
dc.relation.referencesNilsson B, Jakobsen HH, Stief P, Drillet G, Hansen BW. Copepod swimming behavior, respiration, and expression of stress-related genes in response to high stocking densities. Aquac Rep. 2017; 6:35–42. Disponible en: http://dx.doi.org/10.1016/j.aqrep.2017.03.001
dc.relation.referencesNogueira N, Sumares B, Andrade CAP, Afonso A. The effects of temperature and photoperiod on egg hatching success, egg production and population growth of the calanoid copepod, Acartia grani (Calanoida: Acartiidae). Aquac Res. 2018;49(1):93–103. Disponible en: http://dx.doi.org/10.1111/are.13437
dc.relation.referencesNogueira N, Sumares B, Nascimento FA, Png-Gonzalez L, Afonso A. Effects of mixed diets on the reproductive success and population growth of cultured Acartia grani (Calanoida). J Appl Aquaculture]. 2021;33(1):1–14. Disponible en: http://dx.doi.org/10.1080/10454438.2019.1602096
dc.relation.referencesNovotny A, Zamora-Terol S, Winder M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc Biol Sci. 2021;288(1953). Available from: http://dx.doi.org/10.1098/rspb.2021.0908
dc.relation.referencesØie G, Galloway T, Sørøy M, Hansen M, Norheim I, Halseth C, et al. Effect of cultivated copepods (Acartia tonsa) in first-feeding of Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae. Aquaculture Nutrition. 2017;23(1):3–17.
dc.relation.referencesOkazaki Y, Miyamoto H, Suzuki K, Saito H, Hidaka K, Ichikawa T. Diverse trophic pathways from zooplankton to larval and juvenile fishes in the kuroshio ecosystem. En: Kuroshio Current. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2019. p. 245–56.
dc.relation.referencesOlivotto I, Capriotti F, Buttino I, Avella AM, Vitiello V, Maradonna F, et al. The use of harpacticoid copepods as live prey for Amphiprion clarkii larviculture: Effects on larval survival and growth. Aquaculture. 2008;274(2–4):347–52. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2007.11.027
dc.relation.referencesPan Y-J, Dahms H-U, Hwang J-S, Souissi S. Recent trends in live feeds for marine larviculture: A mini review. Front Mar Sci. 2022;9. Disponible en: http://dx.doi.org/10.3389/fmars.2022.864165
dc.relation.referencesPan Y-J, Sadovskaya I, Hwang J-S, Souissi S. Assessment of the fecundity, population growth and fatty acid composition of Apocyclops royi (Cyclopoida, Copepoda) fed on different microalgal diets. Aquac Nutr [Internet]. 2018;24(3):970–8. Disponible en: http://dx.doi.org/10.1111/anu.12633
dc.relation.referencesPan YJ, Souissi S, Souissi A, Wu CH, Cheng SH, Hwang JS. Dietary effects on egg production, egg-hatching rate and female life span of the tropical calanoid copepod Acartia bilobata. Aquaculture research. 2014;45(10):1659–71.
dc.relation.referencesPayne MF, Rippingale RJ. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture. 2000; 187(1–2):85–96. Disponible en: http://dx.doi.org/10.1016/s0044-8486(99)00391-9
dc.relation.referencesPeck MA, Holste L. Effects of salinity, photoperiod and adult stocking density on egg production and egg hatching success in Acartia tonsa (Calanoida: Copepoda): Optimizing intensive cultures. Aquaculture. 2006;255(1–4):341–50. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2005.11.055
dc.relation.referencesPerumal S, Ananth S, Nandakumar R, Jayalakshmi T, Kaviyarasan M, Pachiappan P. Intensive indoor and outdoor pilot-scale culture of marine copepods. En: Advances in Marine and Brackishwater Aquaculture. New Delhi: Springer India; 2015. p. 33–42.
dc.relation.referencesPrieto MJ, Mogollon MJ, Castro AL, Sierra LA. EFECTO DEL MEDIO Y CONDICIONES DE CULTIVO EN LA PRODUCTIVIDAD DE TRES DIATOMEAS MARINAS CON POTENCIAL ACUÍCOLA. Rev MVZ Córdoba. 2005;10(1). Disponible en: http://dx.doi.org/10.21897/rmvz.476
dc.relation.referencesPrusova IY, Galagovets EA. Sex ratios of calanoid copepods in the northern Black Sea. Reg Stud Mar Sci [Internet]. 2022;55(102576):102576. Disponible en: http://dx.doi.org/10.1016/j.rsma.2022.10257
dc.relation.referencesQuah WC, Chew LL, Chong VC, Chu C, Teoh CY, Ooi AL. Does structural change in the zooplankton community affect larval fish feeding in anthropogenically disturbed tropical waters? Environ Biol Fishes. 2022;105(1):55–76. Disponible en: http://dx.doi.org/10.1007/s10641-021-01189-2
dc.relation.referencesRasdi NW, Qin JG. Impact of food type on growth, survival and reproduction of the cyclopoid copepod Cyclopina kasignete as a potential live food in aquaculture. Aquac Int [Internet]. 2018;26(5):1281–95. Disponible en: http://dx.doi.org/10.1007/s10499-018-0283-x
dc.relation.referencesRasdi NW, Qin JG. Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquac Res. 2016;47(1):1–20. Disponible en: http://dx.doi.org/10.1111/are.12471
dc.relation.referencesRatnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, et al. Monitoring and modelling marine zooplankton in a changing climate. Nat Commun. 2023 [cited 2023 Sep 30];14(1):1–17. Available from: https://www.nature.com/articles/s41467-023-36241-5
dc.relation.referencesRayner TA, Jørgensen NOG, Blanda E, Wu C-H, Huang C-C, Mortensen J, et al. Biochemical composition of the promising live feed tropical calanoid copepod Pseudodiaptomus annandalei (Sewell 1919) cultured in Taiwanese outdoor aquaculture ponds. Aquaculture. 2015; 441:25–34. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2015.01.034
dc.relation.referencesRocha GS, Katan T, Parrish CC, Kurt Gamperl A. Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) larvae. Aquaculture. 2017; 479:100–13. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2017.05.025
dc.relation.referencesRoman MR, Pierson JJ. Interactive effects of increasing temperature and decreasing oxygen on coastal copepods. Biol Bull 2022;243(2):171–83. Disponible en: http://dx.doi.org/10.1086/722111
dc.relation.referencesSanthanam P, Jeyaraj N, Jothiraj K, Ananth S, Dinesh Kumar S, Pachiappan P. Evaluation of the suitability of marine copepods as an alternative live feed in high-health fish larval production. En: Basic and Applied Zooplankton Biology. Singapore: Springer Singapore; 2019. p. 277–92.
dc.relation.referencesSanthosh B, Aneesh KS, Anzeer FM. Culture and maintenance of marine copepods as the live feed. En: Winter School on Mariculture Technologies for Income Multiplication, Employment, Livelihood and Empowerment. Cochín, India: ICAR-Central Marine Fisheries Research Institute; 2023. p. 364.
dc.relation.referencesSarkisian BL, Lemus JT, Apeitos A, Blaylock RB, Saillant EA. An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa. Aquaculture.2019; 501:272–8.
dc.relation.referencesSew G, Calbet A, Drillet G, Todd PA. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa. Mar Environ 2018; Disponible en: http://dx.doi.org/10.1016/j.marenvres.2018.06.016
dc.relation.referencesStøttrup JG. Production and nutritional value of copepods. Live feeds in marine aquaculture. 2003;145–205.
dc.relation.referencesStottrup JG. The elusive copepods: their production and suitability in marine aquaculture. Aquac Res. 2000;31(8–9):703–11. Disponible en: http://dx.doi.org/10.1046/j.1365-2109.2000.00488.x
dc.relation.referencesTakayama Y, Hirahara M, Toda T. Bioreactor cultivation of the planktonic copepod Acartia steueri Smirnov for egg collection. Aquac; 2021;52(11):5912–7. Disponible en: http://dx.doi.org/10.1111/are.15421
dc.relation.referencesTakayama Y, Toda T. Switch from production of subitaneous to delayed-hatching and diapause eggs in Acartia japonica Mori, 1940 (Copepoda: Calanoida) from Sagami Bay, Japan. Reg Stud Mar Sci;2019;29(100673):100673. Disponible en: https://www.sciencedirect.com/science/article/pii/S2352485519300970
dc.relation.referencesTorreblanca ML, Pérez-Santos I, San Martín B, Varas E, Zilleruelo R, Riquelme-Bugueño R, et al. Dinámica estacional del zooplancton en una bahía del norte de Chile expuesta a condiciones de afloramiento. Revista de biología marina y oceanografía. 2016; 51:273–91
dc.relation.referencesTorres GA, Merino GE, Prieto-Guevara MJ. Continuous egg separation of the copepod Acartia tonsa. Implications for increasing adult density at an intensive level. Aquac Rep. 2022;22(100995):100995. Disponible en: http://dx.doi.org/10.1016/j.aqrep.2021.100995
dc.relation.referencesVan der Meeren T, Olsen RE, Hamre K, Fyhn HJ. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture. 2008; 274(2–4):375–97. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2007.11.041
dc.relation.referencesVan Someren Gréve H, Almeda R, Lindegren M, Kiørboe T. Gender-specific feeding rates in planktonic copepods with different feeding behavior. J Plankton Res. 2017;39(4):631–44. Disponible en: http://dx.doi.org/10.1093/plankt/fbx033
dc.relation.referencesVehmaa A, Hogfors H, Gorokhova E, Brutemark A, Holmborn T, Engström-Öst J. Projected marine climate change: effects on copepod oxidative status and reproduction. Ecol Evol. 2013;3(13):4548–57. Disponible en: http://dx.doi.org/10.1002/ece3.839
dc.relation.referencesVersen MH, Poulsen LK. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar Ecol Prog Ser. 2007; 350:79–89. Disponible en: http://dx.doi.org/10.3354/meps07095 Vu M, Hansen B, Kiørboe T. The constrains of high density production of the calanoid copepod Acartia tonsa Dana. Journal of Plankton Research. 2017;1–12.
dc.relation.referencesWilson JM, Ignatius B, Sawant PB, Santhosh B, Chadha NK. Productivity of the calanoid copepod Acartia tropica in response to different salinities and multigenerational acclimatization. Aquaculture. 2021; 531(735818):735818. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2020.735818.
dc.relation.referencesYurikova DA, Kosobokova KN, Savchenko AS. Investigation of the reproductive system in calanoid copepods: A new approach using 3D reconstructions from serial semi-thin cross-sections in Calanus glacialis and Metridia longa. Arthropod Struct Dev2023;73(101249):101249.
dc.relation.referencesZhang J, Wu C, Pellegrini D, Romano G, Esposito F, Ianora A, et al. Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa (Dana). Aquaculture. 2013;400–401:65–72. Disponible en: http://dx.doi.org/10.1016/j.aquaculture.2013.02.032
dc.rightsCopyright Universidad de Córdoba, 2023
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsAquacultureeng
dc.subject.keywordsLive foodeng
dc.subject.keywordsCalanoidseng
dc.subject.keywordsReplacement rateseng
dc.subject.proposalAcuiculturaspa
dc.subject.proposalAlimento vivospa
dc.subject.proposalCalanoidesspa
dc.subject.proposalTasas de recambiospa
dc.titleProducción de huevos del copépodo Acartia tonsa: prototipo de cultivospa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TG. Final-prototipo de cultivo Acartia tonsa - Diomer & ismael 13.12.23.pdf
Tamaño:
859.71 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AUTORIZACION DE PUBLICACION DORIA & GAVIRIA.pdf
Tamaño:
322.39 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: