Publicación:
Viabilidad de huevos acartia tonsa (Copepoda: calanoidea) de la bahía Cispatá – Caribe colombiano

dc.contributor.advisorJiménez Velásquez, César Augustospa
dc.contributor.advisorTorres Valencia, Gustavo Adolfospa
dc.contributor.advisorPrieto Guevara, Martha Janethspa
dc.contributor.authorHernández Casarrubia, Carmelo David
dc.date.accessioned2023-06-23T21:12:30Z
dc.date.available2024-06-06
dc.date.available2023-06-23T21:12:30Z
dc.date.issued2023-06-23
dc.description.abstractIn the live food laboratory of the University of Córdoba, experiments were carried out to establish the effect on specific fecundity, hatching success and morphometric characteristics of the calanoid tropical copepod Acartia tonsa (Bahía de Cispatá) of T1 microalgae diets: Isochrysis galbana (IG), T2: Chaetoceros muelleri (CHA), and T3: the mixture of both algae (IG+CHA) in proportion (1:1) at a concentration of 1500 micrograms of carbon per liter (μgCL−1). likewise, the hatching of eggs spawned and stored at low temperature was evaluated. Experiment 1. The specific fecundity was determined in 225 adult copepods fed with the experimental diets, distributed in three chambers of 6 wells (5 mL/pz) for a total of 18 experimental units; during 5 days the eggs were harvested every 24 hours in each unit, with a record of Female Eggs-1day-1. Experiment 2. Egg hatching was determined in 80 to 100 eggs collected in each experimental diet and distributed in three chambers of 6 wells (10 mL/pz), 48 hours later in each unit the hatched nauplii were quantified under a microscope. Experiment 3. The morphometric characteristics of eggs, nauplii, females, and adult males of A. tonsa, were recorded under a microscope with a micrometric eyepiece in 20 copepods collected at different stages of development on each experimental diet. Experiment 4. The hatching of eggs spawned at five temperatures (18, 20, 23, 26 and 29 °C) and stored cold (2-4 0C) for 4 weeks, was determined weekly in adults housed in triplicate in containers of 2 L at 2.5 copepods.mL−1, fed with the microalga Isochrysis galbana at 1500 μgCL−1. Experiment 1. The highest fecundity was recorded on the third day for T1 (15.0 ± 7.0 eggs day-1 female-1) and T3 (14.0 ± 8.0 eggs female-1 day-1), followed by T2 (6.0±3.0 eggs day-1 female-1) on the first day. Experiment 2. The highest hatching percentage was recorded for T2 (78.8 ± 11.0%), followed by T1 (72.8 ± 7.4%) and T3 (69.2 ± 13.2%). Experiment 3. The diameter of the egg ranged between 85.7 ± 2.0 µm (T2) and 84.3 ± 2.2 µm (T1). The body length (LC) in nauplii ranged between 112.4 ± 8.52 µm (T2) and 115.2 ± 8.2 µm (T3). The females presented a total length (TL) between 997.5 ± 16.0 µm (T1) and 976.3 ± 27.5 µm (T3), and the males a TL between 850.0 ± 31.4 µm (T1) and 843.8±39.6 µm (T3). Experiment 4. At a temperature of 18 °C the highest hatching success was recorded for eggs stored in cold during the four weeks (87.3; 85.9; 83.0 and 73.2%). Microalgae diets for the copepod A. tonsa allowed adequate fecundity and hatching success of the eggs produced. Hatching of cold-stored resting eggs was affected by spawning temperature.eng
dc.description.degreelevelPregradospa
dc.description.degreenameProfesional en Acuiculturaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEn el laboratorio de alimento vivo de la Universidad de Córdoba, se realizaron experimentos para establecer el efecto sobre la fecundidad específica, éxito de eclosión y características morfométricas del copépodo tropical calanoide Acartia tonsa (Bahía de Cispatá) de las dietas microalgales T1: Isochrysis galbana (IG), T2: Chaetoceros muelleri (CHA), y T3: la mezcla de ambas algas (IG+CHA) en proporción (1:1) a una concentración de 1500 microgramos de carbono por litro (μgCL−1 ). así mismo, se evaluó la eclosión de huevos desovados y almacenados a baja temperatura. Experimento 1. La fecundidad especifica se determinó en 225 copépodos adultos alimentados con las dietas experimentales, distribuidos en tres cámaras de 6 pozos (5 mL/pz) para un total de 18 unidades experimentales; durante 5 días los huevos se cosecharon cada 24 horas en cada unidad, con registro de Huevos Hembra-1día-1 . Experimento 2. La eclosión de huevos se determinó en 80 a 100 huevos colectandos en cada dieta experimental y distribuidos en tres cámaras de 6 pozos (10 mL/pz), 48 horas después en cada unidad se cuantificaron los nauplios eclosionados bajo microscopio. Experimento 3. Las características morfométricas de huevos, nauplios, hembras y machos adultos de A. tonsa, se registraron bajo microscopio con ocular micrométrico en 20 copépodos colectados en diferentes etapas de desarrollo en cada dieta experimental. Experimento 4. La eclosión de huevos desovados en cinco temperaturas (18, 20, 23, 26 y 29 °C) y almacenados en frio (2-4 0C) durante 4 semanas, se determinó semanalmente en adultos alojados por triplicado en recipientes de 2 L a 2,5 copepódos.mL−1 , alimentados con la microalga Isochrysis galbana a 1500 μgCL−1 . Experimento 1. La mayor fecundidad se registró en el tercer día para T1 (15,0±7,0 huevos día-1 hembra1 ) y T3 (14,0±8,0 huevos hembra-1día-1 ), seguidos de T2 (6,0±3,0 huevos día-1 hembra-1 ) en el primer día. Experimento 2. El mayor porcentaje de eclosión se registró para T2 (78,8±11,0%), seguido de T1 (72,8±7,4%) y T3 (69,2 ±13,2%). Experimento 3. El diámetro del huevo oscilo entre 85,7 ± 2,0 µm (T2) y 84,3±2,2 µm (T1). La longitud del cuerpo (LC) en nauplios oscilo entre 112,4 ± 8,52µm (T2) y 115,2 ± 8,2 µm (T3). Las hembras presentaron una longitud total (LT) entre 997,5±16,0 µm (T1) y 976,327,5 µm (T3), y los machos una LT entre 850,0 ± 31,4 µm (T1) y 843,8±39,6 µm (T3). Experimento 4. En la temperatura de 18 °C se registró el mayor éxito de eclosión para huevos almacenados en frio durante las cuatro semanas (87,3; 85,9; 83,0 y 73, 2%). Las dietas microalgales para el copépodo A. tonsa permitieron adecuada fecundidad y éxito en la eclosión de los huevos producidos. La eclosión de los huevos en reposo almacenados en frio se vieron afectados por la temperatura de desove.spa
dc.description.tableofcontentsLISTA DE TABLAS……………………………………………………VIIIspa
dc.description.tableofcontentsLISTA DE FIGURA……………………………………………………IXspa
dc.description.tableofcontentsRESUMEN………………………………………………………………Xspa
dc.description.tableofcontentsABSTRACT……………………………………………………………..XIspa
dc.description.tableofcontents1. INTRODUCCIÓN……………………………………………………….13spa
dc.description.tableofcontents2. OBJETIVOS…………………………………………………………….14spa
dc.description.tableofcontents2.1 Objetivo general………………………………………………………..14spa
dc.description.tableofcontents2.2 Objetivo específicos……………………………………………………. 14spa
dc.description.tableofcontents3. MARCO TEORICO………………………………………………………15spa
dc.description.tableofcontents3.1 Biología de los copépodos……………………………………………16spa
dc.description.tableofcontents3.2 Copépodos en la acuicultura……………………………..17spa
dc.description.tableofcontents3.3 Microalgas en el cultivo de copépodos………………18spa
dc.description.tableofcontents4. MATERIALES Y METODOS…......…20spa
dc.description.tableofcontents4.1 Localización…………………....20spa
dc.description.tableofcontents4.2 Obtención y mantenimiento de la cepa del copépodo A.tonsa………………………………………..20spa
dc.description.tableofcontents4.3 Cultivo de microalgas……………………………………………………. 21spa
dc.description.tableofcontents4.4 Cultivo stock del copépodo Acartia tonsa……………………………………………………………………….21spa
dc.description.tableofcontents4.5 Aclimatación alimenticia de Acartia tonsa………………………………………………………………………22spa
dc.description.tableofcontents4.6 Diseño experimental……………………………………………...........22spa
dc.description.tableofcontents4.6.1 Fecundidad especifica de huevos en A. tonsa………………………22spa
dc.description.tableofcontents4.6.2 Eclosión de huevos de A. tonsa………………….…………………….23spa
dc.description.tableofcontents4.6.3 Características morfométricas de A. tonsa……………………………23spa
dc.description.tableofcontents4.6.4 Temperatura de desove sobre la eclosión de huevos………………..25spa
dc.description.tableofcontents4.7 Análisis estadístico……………………………………………………….25spa
dc.description.tableofcontents5. RESULTADOS…………………………………………………………..26spa
dc.description.tableofcontents5.1 Fecundidad específica de huevos en A. tonsa………………………..26spa
dc.description.tableofcontents5.2 Porcentaje de eclosión de huevos en A. tonsa……………………………………………………………………….27spa
dc.description.tableofcontents5.3 Temperatura de desove sobre el porcentaje de eclosión……………28spa
dc.description.tableofcontents5.4 Características morfométricas de A. tonsa…………………………...29spa
dc.description.tableofcontents6. DISCUSIÓN………………………………………………………………31spa
dc.description.tableofcontents6.1 Fecundidad especifica de huevos en A. tonsa………………………..31spa
dc.description.tableofcontents6.2 Eclosión de huevos del copépodo A. tonsa ……………………………40spa
dc.description.tableofcontents6.3 Características morfométricas de Acartia tonsa………………………41spa
dc.description.tableofcontents6.4 Temperatura de desove sobre el porcentaje de eclosión ……………43spa
dc.description.tableofcontents7. CONCLUSIONES……………………………………………………….44spa
dc.description.tableofcontents8. BIBLIOGRAFÍA…………………………………………………………..46spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7390
dc.language.isospaspa
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecniaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programAcuiculturaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsCalanoideng
dc.subject.keywordsQuiescenceeng
dc.subject.keywordsLive foodeng
dc.subject.keywordsTemperatureeng
dc.subject.keywordsStorageeng
dc.subject.keywordsHatchingeng
dc.subject.proposalCalanoidespa
dc.subject.proposalQuiescenciaspa
dc.subject.proposalAlimento vivospa
dc.subject.proposalTemperaturaspa
dc.subject.proposalAlmacenamientospa
dc.subject.proposalEclosiónspa
dc.titleViabilidad de huevos acartia tonsa (Copepoda: calanoidea) de la bahía Cispatá – Caribe colombianospa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbate G, Nielsen R, Nielsen M, Drillet G, Jepsen M, & Hansen W. Economic feasibility of copepod production for commercial use: result from a prototype production facility. Aquaculture. 2015; 436:72-79.spa
dcterms.referencesAbraham S. A new species of acartia (Copepoda, Calanoida) from cochin harbour, india, and adjacent areas. Crustaceana, 1970; 49–54.spa
dcterms.referencesAlajmi F, & Zeng C. The effects of stocking density on key biological parameters influencing culture productivity of the calanoid copepod, Parvocalanus crassirostris. Aquaculture.2014; 434: 201-207.spa
dcterms.referencesAlajmi F, Developing intensive culture techniques for the tropical copepod Parvocalanus crassirostris as a live feed for aquaculture, 2015; (Doctoral dissertation, James Cook University).spa
dcterms.referencesAlajmi, F., & Zeng, C. Evaluation of microalgal diets for the intensive cultivation of the tropical calanoid copepod, Parvocalanus crassirostris. Aquaculture Research. 2015 46(5), 1025-1038.spa
dcterms.referencesAltaff K, & Vijayaraj R, Micro-Algal Diet for Copepod Culture with Reference to Their Nutritive Value–A Review. 2021; Int J Cur Res Rev| Vol, 13(07), 86.spa
dcterms.referencesAnufriieva, EV. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chinese Journal of Oceanology and Limnology. 2015; 33: 1354-1361.spa
dcterms.referencesAraoz N. Individual biomass, based on body measures, of copepod species considered as main forage items for fishes of the Argentine shelf. Oceanologica Acta. 1991; 14: 575-580.spa
dcterms.referencesAraya D, Ruz P, Hidalgo, Yañez. Spatial - Temporal Variability of the Community Structure of Copepods in Mejillones Bay, North of Chile. In: XXXI science congress; 2011.spa
dcterms.referencesArendt E, Jónasdóttir H, Hansen J, & Gärtner S. Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Marine Biology.2005; 146: 513-530.spa
dcterms.referencesArunpandi, N., Jyothibabu, R., Jagadeesan, L., Gireeshkumar, T. R., Karnan, C., &Naqvi, S. W. A. Noctiluca and copepods grazing on the phytoplankton community in a nutrient-enriched coastal environment along the southwest coast of India. Environmental Monitoring and Assessment, 2017; 189, 1-20.spa
dcterms.referencesAvery D E. Induction of embryonic dormancy in the calanoid copepod Acartia hudsonica: proximal cues and variation among individuals. Journal of experimental marine biology and ecology. 2005; 314, 203-214.spa
dcterms.referencesBerggreen U, Hansen B, & Kiørboe, T. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: Implications for determination of copepod production. Marine biology, 1988; 99: 341-352.spa
dcterms.referencesBesiktepe S, Dam HG. Effect of diet on the coupling of ingestion and egg production in the ubiquitous copepod, Acartia tonsa. Progress in oceanography 2020 Jul; 186:102346.spa
dcterms.referencesBradley P. Increase in range of temperature tolerance by acclimation in the copepod Eurytemora affinis. The Biological Bulletin.1978; 154: 177-187.spa
dcterms.referencesBreteler K, Schog t N, & Rampen S. Effect of diatom nutrient limitation on copepod development: role of essential lipids. Marine Ecology Progress Series, 291,2005; 125-133.spa
dcterms.referencesBroglio E, Jónasdóttir H, Calbet A, Jakobsen H, & Saiz E. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquatic Microbial Ecology. 2003 31: 267-278.spa
dcterms.referencesBrown R, Jeffrey W, Volkman K, Dunstan A. Nutritional properties of microalgae for mariculture. Aquaculture. 1997; 151:315-331.spa
dcterms.referencesButtino I, Ianora A, Buono S, Vitell V, Sansone G, & Miralto A. Are monoalgal diets inferior to plurialgal diets to maximize cultivation of the calanoid copepod Temora stylifera?. Marine Biology. 2009; 156: 1171-1182.spa
dcterms.referencesCamus T, & Zeng C. Effects of photoperiod on egg production and hatching success, naupliar and copepodite development, adult sex ratio and life expectancy of the tropical calanoid copepod Acartia sinjiensis. Aquaculture.2008; 280: 220-226.spa
dcterms.referencesCamus T, & Zeng C. Reproductive performance, survival and development of nauplii and copepodites, sex ratio and adult life expectancy of the harpacticoid copepod, Euterpina acutifrons, fed different microalgal diets. Aquaculture Research. 2011; 43:1159–1169.spa
dcterms.referencesCamus T, Zeng C, & McKinnon D. Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolina similis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture. 2009; 297:169-175.spa
dcterms.referencesCamus, T., & Zeng, C. Reproductive performance, survival and development of nauplii and copepodites, sex ratio and adult life expectancy of the harpacticoid copepod, Euterpina acutifrons, fed different microalgal diets. Aquaculture Research. 2012; 43: 1159-1169.spa
dcterms.referencesCastro-Longoria E. Egg production and hatching success of four Acartia species under different temperature and salinity regimes. Journal of Crustacean Biology, 2003; 23: 289-299.spa
dcterms.referencesCavrois-Rogacki T, Rolland A, Migaud H, Davie A, & Monroig O. Enriching Artemia nauplii with selenium from different sources and interactions with essential fatty acid incorporation. Aquaculture, 2020; 520: 734677.spa
dcterms.referencesChaisutyakorn P, Praiboon J, & Kaewsuralikhit C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology. 2018; 30(1) 37-45.spa
dcterms.referencesChen Z, Wang G, Zeng C, & Wu L. Comparative study on the effects of two diatoms as diets on planktonic calanoid and benthic harpacticoid copepods. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 2018; 329: 140-148.spa
dcterms.referencesChinnery E, & Williams J A. The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Marine Biology, 2004; 4: 733-738.spa
dcterms.referencesChinnery E, Williams A. Photoperiod and temperature regulation of diapause egg production inAcartia bifilosa from Southampton Water. Marine Ecology Progress Series, 2003; 263:149–157.spa
dcterms.referencesChintada B, Ranjan R, Santhosh B, Megarajan S, Ghosh S, & Rani B. Effect of stocking density and algal concentration on production parameters of calanoid copepod Acartia bilobata. Aquaculture Reports. 2021; 21: 100909.spa
dcterms.referencesCoutteau P. Micro-algae In: Manual on the production and use of live food for aquaculture. 1996; 361: p 7–48.spa
dcterms.referencesDam G, & Lopes M. Omnivory in the calanoid copepod Temora longicornis: feeding, egg production and egg hatching rates. Journal of experimental marine biology and ecology. 2003; 292:119-137.spa
dcterms.referencesDana, J.D. Conspectus crustaceorum, quae in orbis terrarum circumnavigatione, Carolo Wilkes, e classe Reipublicae foederatae duce, lexit et descripsit Jacobus D. Dana. The American journal of science and arts1849; at https://www.biodiversitylibrary.org/page/27760646#page/296/mode/1upspa
dcterms.referencesDe Troch M, Chepurnov V, Gheerardyn H, Vanreusel, A, & Olafsson E. Is diatom size selection by harpacticoid copepods related to grazer body size? Journal of Experimental Marine Biology and Ecology. 2006; 332: 1-11.spa
dcterms.referencesDhanker R, Kumar R, Tseng C, & Hwang S. Ciliate (Euplotes sp.) predation by Pseudodiaptomus annandalei (Copepoda: Calanoida) and the effects of mono-algal and pluri-algal diets. Zoological Studies. 2013; 52: 1-10.spa
dcterms.referencesDineshbabu G, Goswami G, Kumar R, Sinha A, & Das D. Microalgae–nutritious, sustainable aqua-and animal feed source. Journal of Functional Foods. 2019; 62: 103545.spa
dcterms.referencesDoan X, Vu T, Nguyen T, Tran T, Pham Q, & Dinh V. Temperature‐and sex‐specific grazing rate of a tropical copepod Pseudodiaptomus annandalei to food availability: Implications for live feed in aquaculture. Aquaculture Research, 2018; 49 12: 3864-3873.spa
dcterms.referencesDrillet G, & Lombard F.A first step towards improving copepod cultivation using modelling: the effects of density, crowding, cannibalism, tank design and strain selection on copepod egg production yields. Aquaculture Research.2015; 46: 1638-1647.spa
dcterms.referencesDrillet G, Frouël S, Sichlau H, Jepsen M, Højgaard K, Joarder, K, & Hansen W. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture. 2011; 315: 155-166.spa
dcterms.referencesDrillet G, Jørgensen N, Sørensen T, Ramløv H, & Hansen W. Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquaculture Research. 2006; 37:756-772.spa
dcterms.referencesDrillet G, Lindley C, Michels A, Wilcox J, & Marcus H. Improving cold storage of subitaneous eggs of the copepod Acartia tonsa Dana from the Gulf of Mexico (Florida–USA). Aquaculture Research, 2007; 38: 457-466.spa
dcterms.referencesDrillet G, Maguet R, Mahjoub S, Roullier F, & Fielding J. Egg cannibalism in Acartia tonsa: effects of stocking density, algal concentration, and egg availability. Aquaculture international. 2014; 22:1295-1306.spa
dcterms.referencesDrillet G, Rais M, Novac A, Jepsen M, Mahjoub S, & Hansen W. Total egg harvest by the calanoid copepod Acartia tonsa (Dana) in intensive culture–effects of high stocking densities on daily egg harvest and egg quality. Aquaculture Research, 2015; 46:3028-3039.spa
dcterms.referencesDrillet, G., Jepsen, P. M., Højgaard, J. K., Jørgensen, N. O., & Hansen, B. W. (2008). Strain-specific vital rates in four Acartia tonsa cultures II: life history traits and biochemical contents of eggs and adults. Aquaculture, 2008; 279 47-54.spa
dcterms.referencesDuerr O, Molnar A, & Sato V. Cultured microalgae as aquaculture feeds. Journal of Marine Biotechnology, 1998; 6 (2), 0065-0070.spa
dcterms.referencesEl-Tohamy W, Qin J, Abdel-Aziz N, El-Ghobashy A, & Dorgham M. Suitable algal species and density for the culture of copepod Gladioferens imparipes as a potential live food for fish larvae. Aquaculture International. 2021; 29:105-125.spa
dcterms.referencesEl-Tohamy, W., Qin, J., Abdel-Aziz, N., El-Ghobashy, A., & Dorgham, M. Suitable algal species and density for the culture of copepod Gladioferens imparipes as a potential live food for fish larvae. Aquaculture International, 2021;29, 105-125.spa
dcterms.referencesEvjemo J, K. Reitan & Y. Olsen. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 2003; 227: 191–210.spa
dcterms.referencesEvjemo O, Tokle N, Vadstein O, & Olsen Y. Effect of essential dietary fatty acids on egg production and hatching success of the marine copepod Temora longicornis. Journal of Experimental Marine Biology and Ecology, 2008; 365: 31-37.spa
dcterms.referencesFierro P, Bertran C, Martinez D, Valdovinos C, & Vargas-Chacoff L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar. 2014; 55(3), 323-332. https://brill.com/view/journals/cr/89/1/article-p19_2.xmlspa
dcterms.referencesFileman E, Smith T, & Harris R. Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. on phytoplankton and protozooplankton during the spring bloom in the Celtic Sea. Journal of experimental marine biology and ecology, 2007; 348: 70-84.spa
dcterms.referencesFleeger W. The potential to mass-culture harpacticoid copepods for use as food for larval fish. Copepods in aquaculture, 2005, P 11-24.spa
dcterms.referencesFranco C, Augustin B, Geffen J, & Dinis T. Growth, egg production and hatching success of Acartia tonsa cultured at high densities. Aquaculture. 2017; 468: 569-578.spa
dcterms.referencesGonzalez JG. Critical thermal maxima and upper lethal temperatures for the calanoid copepods Acartia tonsa and A. clausi. Marine Biology.1974; 27: 219-223.spa
dcterms.referencesGuisande C, Harris R. Effect of total organic content of eggs on hatching success and naupliar survival in the copepod Calanus helgolandicus. Limnol. Oceanogr. 1995; 40: 476–482.spa
dcterms.referencesHammervold H, Glud N, Evjemo O, Hagemann A, & Hansen W. A new large egg type from the marine live feed calanoid copepod Acartia tonsa (Dana)—Perspectives for selective breeding of designer feed for hatcheries. Aquaculture. 2015; 436: 114-120.spa
dcterms.referencesHamre B, & Pianta C. Can instructional and emotional support in the first‐grade classroom make a difference for children at risk of school failure? Child development, 2005; 76: 949-967.spa
dcterms.referencesHamre K, Moren M, Solbakken J, Opstad I, & Pittman K. The impact of nutrition on metamorphosis in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture.2005; 250: 555-565.spa
dcterms.referencesHansen W, Buttino I, Cunha E, & Drillet G. Embryonic cold storage capability from seven strains of Acartia spp. isolated in different geographical areas. Aquaculture. 2016; 457:131-139.spa
dcterms.referencesHansen W, Drillet G, KozmÈr A, Madsen V, Pedersen F, & Sørensen F. Temperature effects on copepod egg hatching: does acclimatization matter? Journal of Plankton Research, 2010; 32: 305-315.spa
dcterms.referencesHansen W, Drillet G, Kozmér A, Madsen V, Pedersen F, Sørensen F. Temperature effects on copepod egg hatching: does acclimation matter? J. Plankton Res. 2010; 32: 305–315.spa
dcterms.referencesHansen W, Drillet G, Pedersen F, Sjøgreen P, Vismann B. Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes? J. Comp. Physiol. 2012; B. 182: 613–623.spa
dcterms.referencesHansen W, Rayner A, Hwang S, & Højgaard K. To starve or not to starve: Deprivation of essential fatty acids and change in escape behavior during starvation by nauplii of the tropical calanoid copepod Pseudodiaptomus annandalei. Journal of Experimental Marine Biology and Ecology, 2020; 524: 151287.spa
dcterms.referencesHelland S, Terjesen F, & Berg L. Free amino acid and protein content in the planktonic copepod Temora longicornis compared to Artemia franciscana. Aquaculture, 2003; 215: 213-228.spa
dcterms.referencesHernández Molejón OG, Alvarez-Lajonchère L. Culture experiments with Oithona oculata Farran, 1913 (Copepoda: Cyclopoida), and its advantages as food for marine fish larvae. Aquaculture ,2003; 219:471.spa
dcterms.referencesHernández-Pérez A, & Labbé, JI. Microalgas, cultivo y beneficios. Revista de biología marina y oceanografía. 2014; 49: 157-173.spa
dcterms.referencesHessen O, Færøvig PJ, & Andersen T. Light, nutrients, and P: C ratios in algae: grazer performance related to food quality and quantity. Ecology. 2002; 83:1886-1898.spa
dcterms.referencesHessen O. Limitación de elementos nutrientes de la producción de zooplancton. El naturalista americano ,1992; 140: 799-814.spa
dcterms.referencesHirose E, Toda H, Saito Y, & Watanabe H. Formación de la envoltura de fertilización de múltiples capas en el embrión de Calanus sinicus Brodsky (Copepoda: Calanoida). Revista de biología de crustáceos, 1992; 12 (2), 186-192.spa
dcterms.referencesHoffmeyer MS, & Torres E R. Morphometric variables and individual volume of Eurytemora americana and Acartia tonsa females (Copepoda, Calanoida) from the Bahía Blanca estuary, Argentina. Hydrobiologia.2001; 459: 73-82.spa
dcterms.referencesHolm M, W Torres, R Hansen, B W, & Almeda R. Influence of behavioral plasticity and foraging strategy on starvation tolerance of planktonic copepods. Journal of Experimental Marine Biology and Ecology, 2019; 511: 19-27.spa
dcterms.referencesHolste L, & Peck A. The effects of temperature and salinity on egg production and hatching success of Baltic Acartia tonsa (Copepoda: Calanoida): a laboratory investigation. Marine Biology. 2006; 148: 1061-1070.spa
dcterms.referencesHue, N. T. K., Deruyck, B., Decaestecker, E., Vandamme, D., & Muylaert, K. Biological control of ciliate contamination in Chlamydomonas culture using the predatory copepod Acanthocyclops robustus. Algal Research, 2019; 37: 269-276.spa
dcterms.referencesIanora A, Poulet A, & Miralto A. The effects of diatoms on copepod reproduction: a review. Phycologia, 2003; 42 :351-363.spa
dcterms.referencesImentai A, Yanes-Roca C, Steinbach C, & Policar T. Optimized application of rotifers Brachionus plicatilis for rearing pikeperch Sander lucioperca L. larvae. Aquaculture International. 2019; 27 4: 1137-1149.spa
dcterms.referencesIrigoien X, Verheye M, Harris P, Harbour D. Effect of food composition on egg production and hatching success rate of two copepod species (Calanoides carinatus and Rhincalanus nasutus) in the Benguela upwelling system. J. Plankton Res. 27, 1998; 735–742.spa
dcterms.referencesJakobsen C. Thoisen & B. Hansen. Crypthecodinium cohnii: a promising prey toward large-scale intensive rearing of the live feed copepod Acartia tonsa (Dana). Aquaculture International, 2018; 26:237–251.spa
dcterms.referencesJang C, Shin K, Lee T, & Noh I. Feeding selectivity of calanoid copepods on phytoplankton in Jangmok Bay, south coast of Korea. Ocean Science Journal. 2010; 45: 101-111.spa
dcterms.referencesJepsen M, Andersen N, Holm T, Jørgensen T, Højgaard K, & Hansen W. Effects of adult stocking density on egg production and viability in cultures of the calanoid copepod Acartia tonsa (Dana). Aquaculture Research. 2007; 38: 764-772.spa
dcterms.referencesJepsen M, Bjørbæk S, Rayne A, Vu T, & Hansen W. Recommended feeding regime and light climate in live feed cultures of the calanoid copepod Acartia tonsa Dana. Aquaculture international, 2017; 25: 635-654.spa
dcterms.referencesJónasd óttir H, & Kiørboe T. Copepod recruitment and food composition: do diatoms affect hatching success? Marine Biology, 1996; 125: 743-750.spa
dcterms.referencesJónasdóttir H, & Kiørboe T. Copepod recruitment and food composition: do diatoms affect hatching success? Marine Biology.1996; 125: 743-750.spa
dcterms.referencesJonasdottir H, Fields D, & Pantoja S. Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston. Marine ecology progress series. Oldendorf 1995; 119: 87-98.spa
dcterms.references- 53 - Jónasdóttir H, Visser W, & Jespersen C. Assessing the role of food quality in the production and hatching of Temora longicornis eggs. Marine Ecology Progress Series, 2009; 382:139-150.spa
dcterms.referencesJónasdóttir, SH. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Marine Biology. 1994; 121: 67-81.spa
dcterms.referencesJones RH, & Flynn J. Nutritional status and diet composition affect the value of diatoms as copepod prey. Science.2005; 307: 1457-1459.spa
dcterms.referencesJørgensen S, Jepsen M, Petersen B, Friis S, & Hansen W. Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest. BMC ecology, 2019; 19:1-9.spa
dcterms.referencesKaviyarasan M, Santhanam P, Ananth S, Dinesh Kumar S, Hanumantha Rao G, Jayakumar R, & Kandan S. Mass production and biochemical composition of marine copepod Pseudodiaptomus annandalei. International Journal of Basic and Applied Research. 2019; 9: 41-52.spa
dcterms.referencesKiørboe T, Møhlenberg F, y Hamburger K. Bioenergética del copépodo planctónico Acartia tonsa: relación entre alimentación, producción de huevos y respiración, y composición de acción dinámica específica. Mar Ecol Prog Ser, 1985; 26: 85-97.spa
dcterms.referencesKiørboe, T A. mechanistic approach to plankton ecology. In A Mechanistic Approach to Plankton Ecology. Princeton University Press.2018.spa
dcterms.referencesKleppel S, & Burkart A. Egg production and the nutritional environment of Acartia tonsa: the role of food quality in copepod nutrition. ICES Journal of Marine Science, 1995; 52: 297-304.spa
dcterms.referencesKleppel S, Burkart A, & Houchin L. Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa. Limnology and Oceanography.1998; 43: 1000-1007.spa
dcterms.referencesKleppel S, Hazzard E, & Burkart A. Maximizing the nutritional values of copepods in aquaculture: managed versus balanced nutrition. Copepods in aquaculture. 2005; 352.spa
dcterms.referencesKleppel, G. S.. On the diets of calanoid copepods. Marine Ecology-Progress Series, 1993; 99, 183-183.spa
dcterms.referencesKnuckey M, Semmens L, Mayer J, & Rimmer A. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture, 2005; 249: 339-351.spa
dcterms.referencesKrautz, M., E. Hernández-Miranda, R. Veas, P. Bocaz & P. Riquelme. Proportion In Situ Of Living And Dead Organisms In The Plankton Of The Coastal Zone Of The Bío Bío Region. 2016; In: XXXVI Congress of Marine Sciences.spa
dcterms.referencesLacoste A, Poulet A, Cueff A, Kattner G, Ianora A, & Laabir M. (2001). New evidence of the copepod maternal food effects on reproduction. Journal of Experimental Marine Biology and Ecology.2001; 259: 85-107.spa
dcterms.referencesLavens P, Sorgeloos P. Manual on the production and use of live food for aquaculture. Italia; 1996.P 7-48.spa
dcterms.referencesLee W, Park G, Lee M, & Kang K. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture.2006; 256: 346-353.spa
dcterms.referencesLora‐Vilchis C, Ruiz‐Velasco‐Cruz E, Reynoso‐Granados T, & Voltolina, D. Evaluation of five microalgae diets for juvenile pen shells Atrina maura. Journal of the World Aquaculture Society.2004; 35: 232-236.spa
dcterms.referencesLuo X, Li C, Huang X. Effect of diet on the development, survival, and reproduction of the calanoid copepod Pseudodiaptomus dubia. Journal of Oceanology and Limnology. 2019; 37:1756–1767.spa
dcterms.referencesMarcus N, H. Photoperiodic control of diapause in the marine calanoid copepod Labidocera aestiva. The Biological Bulletin, 1980; 159(2), 311-318.spa
dcterms.referencesMarcus, H. Calanoid copepods, resting eggs, and aquaculture. In: (Eds). Lee, S. O'Bryen, J. Marcus, H. Asia 2005; p. 3–9.spa
dcterms.referencesMarshall, AP., Orr.The Biology of a Marine Copepod.Springer S. Berlin,1972; P.8 -38. Libro asociadosspa
dcterms.referencesMatias-Peralta M, Yusoff M, Shariff M, & Mohamed S. Reproductive performance, growth and development time of a tropical harpacticoid copepod, Nitocra affinis californica Lang, 1965 fed with different microalgal diets. Aquaculture. 2012; 344: 168-173.spa
dcterms.referencesMauchline J. The biology of calanoid copepods. London. 1998; 33.spa
dcterms.referencesMcManus B, & Foster A, Seasonal and fine-scale spatial variations in egg production and triacylglycerol content of the copepod Acartia tonsa in a river-dominated estuary and its coastal plume. Journal of plankton research, 1998; 20: 767-785.spa
dcterms.referencesMedellín-Mora J, & Navas R. Taxonomic Checklist of copepods (arthropoda: crustacea) of the colombian caribbean sea. Boletín de Investigaciones Marinas y Costeras-INVEMAR, 2010; 39: 265-306.spa
dcterms.referencesMilione M, & Zeng C. The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture, 2007; 273:656–64.spa
dcterms.referencesMilione M, Zeng C, & Tropical Crustacean Aquaculture Research Group.The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture, 2007; 273: 656-664.spa
dcterms.referencesMilione M, Zeng C. The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture, 2007; 273:656–664.spa
dcterms.referencesMilione, M., & Zeng, C. The effects of temperature and salinity on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture, 2008; 2751-4 116-123.spa
dcterms.referencesMiller D, & Marcus H. The effects of salinity and temperature on the density and sinking velocity of eggs of the calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 1994; 179: 235–252.spa
dcterms.referencesMiralto A, Barone G, Romano G, Poulet A, Ianora A, Russo L, & Giacobbe G. The insidious effect of diatoms on copepod reproduction. Nature. 1999; 402 (6758): 173-176.spa
dcterms.referencesMorehead, T. Battaglene, C. Metillo, B. Bransden, P. & Dunstan, A. Copepods as a live feed for striped trumpeter Latris lineata larvae. Copepods in aquaculture, Asia. 2005; P. 195-208.spa
dcterms.referencesNathalie R, Le François, Malcolm Jobling, Chris Carter. Finfish Aquaculture Diversirfication. Cab Internal: Descriptions of reaing methods for live - feed organismos and collrtion methods for zooplank - ton are well known, Massachusetts. 2010; p. 240.spa
dcterms.referencesNiehoff B. Life history strategies in zooplankton communities: The significance of female gonad morphology and maturation types for the reproductive biology of marine calanoid copepods. Progress in Oceanography, 2007; 74: 1-47.spa
dcterms.referencesNielsen H, Gøtterup L, Jørgensen T S, Hansen B W, Hansen LH, Mortensen J, & Jepsen PM. n-3 PUFA biosynthesis by the copepod Apocyclops royi documented using fatty acid profile analysis and gene expression analysis. Biology Open. 2019; 8: bio038331.spa
dcterms.referencesNilsson B, & Hansen W. Timing of embryonic quiescence determines viability of embryos from the calanoid copepod, Acartia tonsa (Dana). PloS one, 2018; 13: e0193727.spa
dcterms.referencesNogueira N, Sumares B, Nascimento A, Png-Gonzalez L, & Afonso A. Effects of mixed diets on reproductive success and population growth of cultured Acartia grani (Calanoida). Journal of Applied Aquaculture.2019; 1–14.spa
dcterms.referencesO'Bryen J, & Lee. Culture of copepods and applications to marine finfish larval rearing workshop discussion summary. Copepods in aquaculture, 2005, P 245-253.spa
dcterms.referencesOhs, C. L., Rhyne, A. L., Grabe, S. W., DiMaggio, M. A., & Stenn, E. Effects of salinity on reproduction and survival of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture. 2010, 307(3-4), 219-224.spa
dcterms.referencesPan J, Souissi S, Souissi A, Wu H, Cheng, H, & Hwang S. Dietary effects on egg production, egg‐hatching rate and female life span of the tropical calanoid copepod Acartia bilobata. Aquaculture research, 2014; 45: 1659-1671.spa
dcterms.referencesPayne M, Rippingale R. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture. 2000; 187:85–96.spa
dcterms.referencesPeck M A, & Holste L. Effects of salinity, photoperiod and adult stocking density on egg production and egg hatching success in Acartia tonsa (Calanoida: Copepoda): optimizing intensive cultures. Aquaculture.2006; 255: 341-350.spa
dcterms.referencesPeck M A, Ewest B, Holste L, Kanstinger P, & Martin M. Impacts of light regime on egg harvests and 48-h egg hatching success of Acartia tonsa (Copepoda: Calanoida) within intensive culture. Aquaculture.2008; 275: 102-107.spa
dcterms.referencesPoulet A, Ianora A, Miralto A, & Meijer L. Do diatoms arrest embryonic development in copepods?. Marine Ecology Progress Series. 1994; 79-86.spa
dcterms.referencesPrieto M, Castaño F, Sierra J, Logato P, & Botero J. Alimento vivo en la larvicultura de peces marinos: copépodos y mesocosmos. Revista MVZ Córdoba, 2006; 11(Supl), 30-36.spa
dcterms.referencesPuello-Cruz AC, Mezo-Villalobos S, González-Rodríguez B, Voltolina D. Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture. 2009; 290:317-319.spa
dcterms.referencesRajkumar, M, & Rahman, M. Culture of the calanoid copepod, Acartia erythraea and cyclopoid copepod, Oithona brevicornis with various microalgal diets. Sains Malaysiana. 2016; 45: 615-620.spa
dcterms.referencesRamírez-Merlano J A, Otero-Paternina A M, Corredor-Santamaría W, Medina-Robles V M, Cruz-Casallas P E, & Velasco-Santamaría Y M. Utilization of living organisms as a first feeding of yaque (Leiarius marmoratus) larvae under laboratory conditions. ORINOQUIA, 2010; 1: 45-58.spa
dcterms.referencesRasdi NW, y Qin JG. Mejora de la calidad nutricional de los copépodos como alimento vivo para la acuicultura: una revisión. Investigación sobre acuicultura.2016; 47:1-20.spa
dcterms.referencesRasdi, N. W., & Qin, J. G. Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquaculture Research, 2016, 47(1), 1-20.spa
dcterms.referencesRayner T, Jørgensen G, Drillet & B Hansen. Changes in free amino acid content during naupliar development of the Calanoid copepod Acartia tonsa. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017; 210(May), P 1–6.spa
dcterms.referencesReyes R, Futagawa M, Fernández N, Rodríguez W, de la Paz L, la Fuente L, & Llanes Y. Disponiblidad de copépodos en una piscina de sedimentación. Alternativa para la alimentación larval del pargo criollo Lutjanus analis. 2014.spa
dcterms.referencesRocha G, Katan, C Parrish & A Gamperl. Effects of wild zooplankton versus enriched rotifers and Artemia on the biochemical composition of Atlantic cod (Gadus morhua) larvae. Aquaculture, 479(May), 2017; 100–113.spa
dcterms.referencesRuiz-Guzmán J A, Jiménez Velásquez C A, Gomes Romero C, & Prieto Guevara M J. Cultivo experimental de Cyclopina sp con diferentes especies de microalgas. Revista Colombiana de Ciencias Pecuarias.2012; 25: 97-1050.spa
dcterms.referencesSafdar W, Shamoon M, Zan X, Haider J, Sharif R, Shoaib M, & Song Y. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. Amb Express. 2017; 7:1-15.spa
dcterms.referencesSanthanam P, Ananth S, Dinesh Kumar S, Sasirekha R, Premkumar C, Jeyanthi S, & Shenbaga Devi A. An intensive culture techniques of marine copepod Oithona rigida (Dioithona rigida) Giesbrecht. In Basic and applied zooplankton biology . 2019; 367-394.spa
dcterms.referencesSanthanam P, Jeyaraj N, Jothiraj K, Ananth S, Kumar D, & Pachiappan P. Assessing the Efficacy of Marine Copepods as an Alternative First Feed for Larval Production of Tiger Shrimp Penaeus monodon. In Basic and Applied Zooplankton Biology 2019; pp. 293-303.spa
dcterms.referencesSarkisian L, Lemus T, Apeitos A, Blaylock B, & Saillant A. An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa. Aquaculture. 2019; 501:272-278.spa
dcterms.referencesSarkisian L, Lemus A, Apeitos B, Blaylock A, Saillant. An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa. Aquaculture. 2018; 501: pp. 272-278.spa
dcterms.referencesSchipp GR, Bosmans JMP, Marshall AJ. A method for hatchery culture of tropical calanoid copepods, Acartia spp. Aquaculture 1999; 174:81-88.spa
dcterms.referencesSchipp, G. The use of calanoid copepods in semi-intensive, tropical marine fish larviculture. Avances en Nutrición Acuicola 2006; 84–94.spa
dcterms.referencesShah MMR, Liang Y, Cheng J, Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in plant science 2016; 7: 531.spa
dcterms.referencesShao L, & Zeng C. Survival, growth, ingestion rate and foraging behavior of larval green mandarin fish (Synchiropus splendidus) fed copepods only versus co-fed copepods with rotifers. Aquaculture, 2020; 520: 734958.spa
dcterms.referencesSiqwepu O, Richoux B, & Vine G. The effect of different dietary microalgae on the fatty acid profile, fecundity and population development of the calanoid copepod Pseudodiaptomus hessei (Copepoda: Calanoida). Aquaculture, 2017; 468: 162-168.spa
dcterms.referencesStøttrup G, (A review on the status and progress in rearing copepods for marine larviculture. Advantages and disadvantages. Among Calanoid, Harpacticoid and Cyclopoid copepods, 2006, Avances en nutrición acuicola.spa
dcterms.referencesStøttrup G, Richardson K, Kirkegaard E, & Pihl J. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture, 1986; 52: 87-96.spa
dcterms.referencesStøttrup, J. & McEvoy, L. (Eds.). (2008). Live feeds in marine aquaculture (eds). John Wiley & Sons. Inglaterra.2008; P. 75-88.spa
dcterms.referencesStøttrup, JG. A review on the status and progress in rearing copepods for marine larviculture. Advantages and disadvantages. Among Calanoid, Harpacticoid and Cyclopoid copepods. Avances en nutrición acuicola.2006.spa
dcterms.referencesSuchar A, & Chigbu P. The effects of algae species and densities on the population growth of the marine rotifer, Colurella dicentra. Journal of experimental marine biology and ecology. 2006; 337: 96-102.spa
dcterms.referencesSunar C, & Kır M. Thermal tolerance of Acartia tonsa: In relation to acclimation temperature and life stage. Journal of Thermal Biology. 2021; 102: 103116.spa
dcterms.referencesTakayama Y, Hirahara M, & Toda, T. Bioreactor cultivation of the planktonic copepod Acartia steueri Smirnov for egg collection. Aquaculture Research, 2021; 52: 5912-5917.spa
dcterms.referencesTakayama Y, Hirahara M, Liu X, Ban S, & Toda T. Are egg production and respiration of the marine pelagic copepod Acartia steueri influenced by crowding?. Aquaculture Research.2020; 51: 3741-3750.spa
dcterms.referencesTeiguel N. & R. Giesecke. Effect of saline stress on the growth and reproduction rate of Acartia tonsa in the valdivia river estuary. 2015; IN: XXXV Congress of Marine Sciences.spa
dcterms.referencesThor P, & Wendt I. Functional response of carbon absorption efficiency in the pelagic calanoid copepod Acartia tonsa. Limnology and Oceanography. 2010; 55: 1779-1789.spa
dcterms.referencesToledo D, Golez S, & Ohno A. Studies on the use of copepods in the semi-intensive seed production of grouper Epinephelus en: coioides. Copepods in aquaculture, 2005; 169-182.spa
dcterms.referencesTorreblanca ML, Pérez-Santos I, San Martín B, Varas E, Zilleruelo R, Riquelme-Bugueño R, & Palma, Á. Dinámicas estacionales del zooplancton en una bahía de - 59 - la zona norte de Chile expuestas a condiciones de surgencias. Revista de biología marina y oceanografía, 2016; 51:, 273-291.spa
dcterms.referencesTorres A, Merino E, & Prieto-Guevara J. Continuous egg separation of the copepod Acartia tonsa. Implications for increasing adult density at an intensive level. Aquaculture. 2022; 22: 100995.spa
dcterms.referencesTorres A, Merino E, Prieto-Guevara J, Portillo A, Gamboa H, Imués A, & Chapman A. Spawning of calanoid copepod Acartia tonsa at low temperature and high salinity improves hatch success for cold-stored egg production. Aquaculture, 2021; 530: 735725.spa
dcterms.referencesTurner T, Ianora A, Miralto A, Laabir, M, & Esposito, F. Decoupling of copepod grazing rates, fecundity and egg-hatching success on mixed and alternating diatom and dinoflagellate diets. Marine Ecology Progress Series, 2001; 220, 187-199.spa
dcterms.referencesUeda H. Redescription of the planktonic calanoid copepod Acartia hudsonica from Atlantic and Pacific waters: A new record from Japanese waters. Journal of the Oceanographical Society of Japan, 1986; 42: 124-133.spa
dcterms.referencesUye I, & Fleminger A. Effects of various environmental factors on egg development of several species of Acartia in southern California. Marine Biology. 1976; 38: 253-262.spa
dcterms.referencesValencia T, Merino E, Prieto-Guevara J, Portillo A, Arboleda L, & Chapman A. Spawning Parvocalanus crassirostris at a high adult density: Explaining low adult population numbers and means for improving their intensive culture. Aquaculture. 2022; 546: 737347.spa
dcterms.referencesVan der Meeren R, Olsen K, Hamre & H. Fyhn. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 2008; 274, 375–397.spa
dcterms.referencesvan der Meeren, T., Olsen, R. E., Hamre, K., & Fyhn, H. J. 2008 Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 2008; 274(2-4), 375-397.spa
dcterms.referencesVisscher, P. M., Yang, J., & Goddard, M. E. (2010). A Commentary on “Common SNPs Explain a Large Proportion of the Heritability for Human Height” by Yang et al. (2010).spa
dcterms.referencesVitiello V, Zhou C, Scuderi A, Pellegrini D, & Buttino I. Cold storage of Acartia tonsa eggs: a practical use in ecotoxicological studies. Ecotoxicology, 2016; 5: 1033-1039.spa
dcterms.referencesVu MTT, Hansen BW, Kiørboe T. The constraints of high-density production of the calanoid copepod Acartia tonsa Dana. Journal of plankton research.2017; Nov 01, 39:1028-1039.spa
dcterms.referencesVu T, Douëtte C, Rayner A, Thoisen C, Nielsen L, & Hansen W. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of applied phycology, 2016; 28: 1485-1500.spa
dcterms.referencesVu T, Hansen BW & Kiørboe T. Las limitaciones de la producción de alta densidad del copépodo calanoideo Acartia tonsa Dana. Revista de investigación del plancton, 2017; 39:1028-1039.spa
dcterms.referencesWang G, Xu J, Jia Q, Zeng C. Effects of microalgae as diets on the survival, development and fecundity of a pelagic cyclopoid copepod Apocyclops borneoensis. Journal of the Marine Biological Association of United Kingdom. 2017; 97:1251–1257.spa
dcterms.referencesWaqalevu V, Honda A, Dossou S, Khoa D, Matsui H, Mzengereza K, & Kotani, T. Effect of oil enrichment on Brachionus plicatilis rotifer and first feeding red sea bream (Pagrus major) and Japanese flounder (Paralichthys olivaceus). Aquaculture, 2019; 510: 73-83.spa
dcterms.referencesWerbrouck E, Bodé S, Van Gansbeke D, Vanreusel A, & De Troch M. Fatty acid recovery after starvation: insights into the fatty acid conversion capabilities of a benthic copepod (Copepoda, Harpacticoida). Marine Biology. 2017; 7: 1-15.spa
dcterms.referencesWerbrouck E, Bodé S, Van Gansbeke D, Vanreusel A, & De Troch M. Fatty acid recovery after starvation: insights into the fatty acid conversion capabilities of a benthic copepod (Copepoda, Harpacticoida). Marine Biology. 2017; 164: 1-15.spa
dcterms.referencesWhyte JNC, Nagata WD. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatilis, fed monospecific diets of yeast or phytoplankton. Aquaculture 1990:263.spa
dcterms.referencesWild KJ, Trautmann A, Katzenmeyer M, Steingaß H, Posten C, Rodehutscord M. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions. Algal research (Amsterdam) 2019 Mar; 38: 101385.spa
dcterms.referencesWilson M, Ignatius B, Santhosh B, Sawant B, & Soma A. Effect of adult density on egg production, egg hatching success, adult mortality, nauplii cannibalism and population growth of the tropical calanoid copepod Acartia tropica. Aquaculture.2022; 547:737508.spa
dcterms.referencesWyckmans M, Chepurnov A, Vanreusel A, & De Troch M. Effects of food diversity on diatom selection by harpacticoid copepods. Journal of Experimental Marine Biology and Ecology.2007; 345: 119-128.spa
dcterms.referencesYang J, Ju J & Choi JK. Feeding activity of the copepod Acartia hongi on phytoplankton and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuarine. Coastal and Shelf Science. 2010; 88: 292-301.spa
dcterms.referencesYañez S, Hidalgo & D. Elliott. Duration of temperature-dependent stages in copepodites of Paracalanus cf. indicus in northern Chile (23oS). 2015; In: XXXV Congress of Marine Sciences.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
HernándezCasarrubiaCarmeloDavid.pdf
Tamaño:
1.16 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorizacion ilovepdf_merged.pdf
Tamaño:
351.68 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: