Publicación: Análisis descriptivo y predictivo de geohelmintiasis en niños escolares de Tierralta, Córdoba, Colombia
dc.contributor.advisor | Yasnot Acosta, María Fernanda | spa |
dc.contributor.author | Nisperuza Vidal, Ana Karina | |
dc.date.accessioned | 2023-02-27T22:12:33Z | |
dc.date.available | 2023-02-27T22:12:33Z | |
dc.date.issued | 2023-02-27 | |
dc.description.abstract | Las geohelmintiasis son parasitosis intestinales ocasionadas por los macropárasitos Ascaris lumbricoides, Trichuris trichiura, Necator americanus y Ancylostoma duodenale. En Colombia constituyen un problema de salud pública y el departamento de Córdoba se encuentra en una de las regiones con mayor prevalencia de estas infecciones. Se realizó un estudio descriptivo y predictivo para la evaluación de geohelmintiasis en 70 niños de la Institución Educativa Santa Fé de Ralito, observándose una prevalencia de parasitosis del 55.7%, siendo Trichuris el parásito de mayor frecuencia (92%). El estudio inmunológico evidenció un perfil de supresión de la respuesta anti inflamatoria con predominio de IP-10 y TGF-β. Se diseñó un modelo predictivo de infección por geohelmintiasis con un buen desempeño (exactitud: 0.714) como piloto de herramientas para la prevención de estas patologías a nivel comunitario y rural. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología Tropical | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN .......................................................................................................... 9 | spa |
dc.description.tableofcontents | 2. OBJETIVOS ................................................................................................................. 11 | spa |
dc.description.tableofcontents | 2.1 Objetivo general ......................................................................................................... 11 | spa |
dc.description.tableofcontents | 2.2 Objetivos Específicos ................................................................................................. 11 | spa |
dc.description.tableofcontents | 3. MARCO TEORICO ..................................................................................................... 12 | spa |
dc.description.tableofcontents | 3.1 Parásitos Geohelmintos .............................................................................................. 12 | spa |
dc.description.tableofcontents | 3.1.1 Ascaris lumbricoides ...................................................................................... 12 | spa |
dc.description.tableofcontents | 3.1.2 Trichuris trichiura .......................................................................................... 14 | spa |
dc.description.tableofcontents | 3.1.3 Uncinarias. ...................................................................................................... 16 | spa |
dc.description.tableofcontents | 3.2 Epidemiología ........................................................................................................ 17 | spa |
dc.description.tableofcontents | 3.3 Características clínicas de la infección por geohelmintos. .................................... 18 | spa |
dc.description.tableofcontents | 3.4 Impacto de las infecciones por Geohelmintos en la población infantil ................. 20 | spa |
dc.description.tableofcontents | 3.5 Inteligencia Artificial en salud. .............................................................................. 21 | spa |
dc.description.tableofcontents | 4. MATERIALES Y METODOS ..................................................................................... 23 | spa |
dc.description.tableofcontents | 4.1 Tipo de estudio. .......................................................................................................... 23 | spa |
dc.description.tableofcontents | 4.2 Población y criterios de Elegibilidad .......................................................................... 23 | spa |
dc.description.tableofcontents | 4.3 Recolección de datos .................................................................................................. 23 | spa |
dc.description.tableofcontents | 4.4 Toma de muestras ....................................................................................................... 23 | spa |
dc.description.tableofcontents | 4.5 Diagnóstico parasitológico de la geohelmintiasis ...................................................... 24 | spa |
dc.description.tableofcontents | 4.6 Conteo de eosinófilos, basófilos y determinación de hemoglobina ........................... 25 | spa |
dc.description.tableofcontents | 4.7 Detección de Citoquinas ........................................................................................ 25 | spa |
dc.description.tableofcontents | 4.8 Análisis estadístico descriptivo .................................................................................. 28 | spa |
dc.description.tableofcontents | 4.9 Relaciones y comparaciones entre grupos .................................................................. 28 | spa |
dc.description.tableofcontents | 4.10 Modelo Predictivo ................................................................................................... 28 | spa |
dc.description.tableofcontents | 4.10.1 Conjunto de datos .............................................................................................. 29 | spa |
dc.description.tableofcontents | 4.10.2 Preprocesamiento............................................................................................... 30 | spa |
dc.description.tableofcontents | 4.10.3 Entrenamiento y evaluación del modelo ........................................................... 30 | spa |
dc.description.tableofcontents | 4.11 Aspectos éticos. ........................................................................................................ 32 | spa |
dc.description.tableofcontents | 5. RESULTADOS ............................................................................................................ 33 | spa |
dc.description.tableofcontents | 5.1 ANALISIS DESCRIPTIVO ....................................................................................... 33 | spa |
dc.description.tableofcontents | 5.1.1 Variables demográficas ....................................................................................... 33 | spa |
dc.description.tableofcontents | 5.1.2 Variables epidemiológicas ................................................................................... 34 | spa |
dc.description.tableofcontents | 5.1.3 Variables Clínicas ................................................................................................ 35 | spa |
dc.description.tableofcontents | 5.2 RELACIONES Y COMPARACIONES ENTRE GRUPOS...................................... 37 | spa |
dc.description.tableofcontents | 5.2.1 Variables demográficas ...................................................................................... 37 | spa |
dc.description.tableofcontents | 5.2.2 Variables epidemiológicas ................................................................................... 37 | spa |
dc.description.tableofcontents | 5.2.3 Variables Clínicas ................................................................................................ 37 | spa |
dc.description.tableofcontents | 5.3 ANALISIS PREDICTIVO .................................................................................... 40 | spa |
dc.description.tableofcontents | 5.3.1 Pre-procesamiento del conjunto de datos ....................................................... 40 | spa |
dc.description.tableofcontents | 5.3.2 Entrenamiento y Evaluación ........................................................................... 42 | spa |
dc.description.tableofcontents | 5.3.3 Influencia en la Predicción ............................................................................. 43 | spa |
dc.description.tableofcontents | 6. DISCUSION ................................................................................................................. 44 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES ........................................................................................................ 53 | spa |
dc.description.tableofcontents | 8. LIMITACIONES Y PROSPECTIVAS ........................ 54 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7243 | |
dc.language.iso | spa | spa |
dc.publisher | Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher | New York University | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Microbiología Tropical | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Soil-transmitted helminth | eng |
dc.subject.keywords | Ascaris | eng |
dc.subject.keywords | Trichuris | eng |
dc.subject.keywords | Tierralta | eng |
dc.subject.keywords | Córdoba | eng |
dc.subject.keywords | Immune response | eng |
dc.subject.keywords | TH2 | eng |
dc.subject.keywords | Predictive model | eng |
dc.subject.proposal | Geohelmintos | spa |
dc.subject.proposal | Ascaris | spa |
dc.subject.proposal | Trichuris | spa |
dc.subject.proposal | Tierralta | spa |
dc.subject.proposal | Córdoba | spa |
dc.subject.proposal | Respuesta inmune | spa |
dc.subject.proposal | TH2 | spa |
dc.subject.proposal | Modelo predictivo | spa |
dc.title | Análisis descriptivo y predictivo de geohelmintiasis en niños escolares de Tierralta, Córdoba, Colombia | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. Neglected tropical diseases [Internet]. [cited 2021 Aug 5]. Available from: https://www.who.int/news-room/q-a-detail/neglected-tropical-diseases | spa |
dcterms.references | 2. Soil-transmitted helminthiases : eliminating as public health problem soil-transmitted helminthiases in children : progress report 2001-2010 and strategic plan 2011-2020 [Internet]. [cited 2022 Apr 9]. Available from: https://apps.who.int/iris/handle/10665/44804 | spa |
dcterms.references | 3. MINSALUD. Encuesta Nacional De Parasitismo Intestinal En Población Escolar Colombia, 2012 – 2014 [Internet]. Revista Facultad Nacional de Salud Pública. 2015. 174 p. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/encuesta-nacional-de-parasitismo-2012-2014.pdf | spa |
dcterms.references | 4. Crompton DWT, Nesheim MC. NUTRITIONAL IMPACT OF INTESTINAL HELMINTHIASIS DURING THE HUMAN LIFE CYCLE. http://dx.doi.org/101146/annurev.nutr22120501134539 [Internet]. 2003 Nov 28 [cited 2022 Apr 9];22:35–59. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev.nutr.22.120501.134539 | spa |
dcterms.references | 5. Nacher M, Singhasivanon P, Yimsamran S, Manibunyong W, Thanyavanich N, Wuthisen R, et al. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol. 2002 Feb;88(1):55–8. | spa |
dcterms.references | 6. Smits HH, Everts B, Hartgers FC, Yazdanbakhsh M. Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes. Curr Allergy Asthma Rep [Internet]. 2010 Jan [cited 2022 Nov 15];10(1):3. Available from: /pmc/articles/PMC2816799/ | spa |
dcterms.references | 7. Ademe M, Girma F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect Drug Resist [Internet]. 55 2021 [cited 2022 Nov 15];14:4421. Available from: /pmc/articles/PMC8558425/ | spa |
dcterms.references | 8. Cooper PJ, Chico ME, Losonsky G, Sandoval C, Espinel I, Sridhara R, et al. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis [Internet]. 2000 [cited 2022 Nov 15];182(4):1199–206. Available from: https://pubmed.ncbi.nlm.nih.gov/10979918/ | spa |
dcterms.references | 9. Zhu F, Liu W, Liu T, Shi L, Zheng W, Guan F, et al. A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathog (Basel, Switzerland) [Internet]. 2022 Oct 8 [cited 2022 Nov 15];11(10). Available from: http://www.ncbi.nlm.nih.gov/pubmed/36297220 | spa |
dcterms.references | 10. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites Vectors 2014 71 [Internet]. 2014 Jan 21 [cited 2021 Aug 6];7(1):1–19. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-7-37 | spa |
dcterms.references | 11. Prieto-Pérez L, Pérez-Tanoira R, Cabello-Úbeda A, Petkova-Saiz E, Górgolas-Hernández-Mora M. Geohelmintos. Enferm Infecc Microbiol Clin. 2016 Jun 1;34(6):384–9. | spa |
dcterms.references | 12. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Prim 2016 21 [Internet]. 2016 Dec 8 [cited 2021 Aug 6];2(1):1–18. Available from: https://www.nature.com/articles/nrdp201688 | spa |
dcterms.references | 13. Jackson JA, Friberg IM, Little S, Bradley JE. Review series on helminths, immune modulation and the hygiene hypothesis: Immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology [Internet]. 2009 Jan [cited 2021 Aug 6];126(1):18. Available from: /pmc/articles/PMC2632709/ | spa |
dcterms.references | 14. Crompton DWT. Ascaris and ascariasis. Adv Parasitol. 2001 Jul 1;48(7):285–375. | spa |
dcterms.references | 15. Giraldo MI, García NL, Castaño JC. Prevalence of intestinal helminths in dogs from Quindío Province. Biomédica [Internet]. 2005 Sep 1 [cited 2022 Jun 14];25(3):346–52. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1359 | spa |
dcterms.references | 16. Ascariasis [Internet]. Available from: https://www.cdc.gov/parasites/ascariasis/biology.html#:~:text=Life Cycle%3A&text=Upon reaching the small intestine,live 1 to 2 years. | spa |
dcterms.references | 17. The Geohelminths: Ascaris, Trichuris and Hookworm - Google Libros [Internet]. [cited 2022 Jun 14]. Available from: https://books.google.com.co/books?hl=es&lr=&id=uiIk8mmBHPcC&oi=fnd&pg=PR11&dq=life+cycle+trichuris&ots=Dq1U6bhmF_&sig=q0SP49xNoDY7DTNe58Gsz-sK8Zw#v=snippet&q=life cycle &f=false | spa |
dcterms.references | 18. Trichuriasis [Internet]. Available from: https://www.cdc.gov/dpdx/trichuriasis/index.html | spa |
dcterms.references | 19. Carrada-Bravo T. medigraphic.com Uncinariasis: ciclo vital, cuadros clínicos, patofisiología y modelos animales. Rev Mex Patol Clin. 2007;54. | spa |
dcterms.references | 20. Hookworms [Internet]. Available from: https://www.cdc.gov/dpdx/hookworm/index.html | spa |
dcterms.references | 21. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLoS Negl Trop Dis [Internet]. 2014 [cited 2022 Jun 14];8(7):e2865. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002865 | spa |
dcterms.references | 22. Starr MC, Montgomery SP. Soil-transmitted Helminthiasis in the United States: a systematic review--1940-2010. Am J Trop Med Hyg [Internet]. 2011 Oct 1 [cited 2022 Jun 14];85(4):680–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21976572/?tool=EBI | spa |
dcterms.references | 23. Cortés A, Muñoz-Antoli C, Esteban JG, Toledo R. Th2 and Th1 Responses: Clear and Hidden Sides of Immunity Against Intestinal Helminths. Trends Parasitol [Internet]. 2017;33(9):678–93. Available from: http://dx.doi.org/10.1016/j.pt.2017.05.004 | spa |
dcterms.references | 24. Grencis RK. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu Rev Immunol. 2015;33(December 2014):201–25. | spa |
dcterms.references | 25. Sorobetea D, Svensson-Frej M, Grencis R. Immunity to gastrointestinal nematode infections. Mucosal Immunol. 2018;11(2):304–15. | spa |
dcterms.references | 26. Díaz A, Allen JE. Mapping immune response profiles: The emerging scenario from helminth immunology. Eur J Immunol [Internet]. 2007 Dec 1 [cited 2022 Apr 9];37(12):3319–26. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/eji.200737765 | spa |
dcterms.references | 27. Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol [Internet]. 2016;138(3):666–75. Available from: http://dx.doi.org/10.1016/j.jaci.2016.07.007 | spa |
dcterms.references | 28. Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity [Internet]. 2018;49(5):801–18. Available from: https://doi.org/10.1016/j.immuni.2018.10.016 | spa |
dcterms.references | 29. Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table | GHDx [Internet]. [cited 2022 Oct 26]. Available from: https://ghdx.healthdata.org/record/ihme-data/global-burden-disease-study-2019-gbd-2019-reference-life-table | spa |
dcterms.references | 30. Arnesen T, Nord E. Education and debate The value of DALY life: problems with ethics and validity of disability adjusted life years. BMJ [Internet]. 1999 [cited 2022 Oct 26];319:1423–8. Available from: www.bmj.com | spa |
dcterms.references | 31. Walker SP, Wachs TD, Meeks Gardner J, Lozoff B, Wasserman GA, Pollitt E, et al. Child development: risk factors for adverse outcomes in developing countries. 58 Lancet (London, England) [Internet]. 2007 Jan 13 [cited 2022 Oct 26];369(9556):145–57. Available from: https://pubmed.ncbi.nlm.nih.gov/17223478/ | spa |
dcterms.references | 32. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc [Internet]. 2020 Oct 1 [cited 2022 Nov 20];92(4):807–12. Available from: http://www.giejournal.org/article/S0016510720344667/fulltext | spa |
dcterms.references | 33. Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020. 295–336 p. | spa |
dcterms.references | 34. Lamping F, Jack T, Rübsamen N, Sasse M, Beerbaum P, Mikolajczyk RT, et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - A data-driven approach using machine-learning algorithms. BMC Pediatr. 2018;18(1):1–11. | spa |
dcterms.references | 35. Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev. 2020 Jul 1;14(4):337–9. | spa |
dcterms.references | 36. Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Heal. 2020 Dec 1;2(12):e667–76. | spa |
dcterms.references | 37. Doupe P, Faghmous J, Basu S. Machine Learning for Health Services Researchers. Value Heal [Internet]. 2019;22(7):808–15. Available from: https://doi.org/10.1016/j.jval.2019.02.012 | spa |
dcterms.references | 38. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases [Internet]. Artificial Intelligence in Precision Health. Elsevier Inc.; 2020. 415–438 p. Available from: http://dx.doi.org/10.1016/B978-0-12-817133-2.00018-5 | spa |
dcterms.references | 39. National Institute of Health of Colombia. Resolution Number 00002465 of 2016. Colomb Minist Heal Soc Prot [Internet]. 2016;47. Available from: https://www.icbf.gov.co/sites/default/files/resolucion_no._2465_del_14_de_junio_de_2016.pdf | spa |
dcterms.references | 40. WHO. 00054_01_kato-katzBench_aids.pdf. 1994. | spa |
dcterms.references | 41. Hosmer DW, Lemeshow S. Introduction to the Logistic Regression Model. Appl Logist Regres. 2005;1–30. | spa |
dcterms.references | 42. Gholamy A, Kreinovich V, Kosheleva O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. | spa |
dcterms.references | 43. Nguyen QH, Ly H-B, Ho LS, Al-Ansari N, Le H Van, Tran VQ, et al. Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. 2021 [cited 2022 Oct 20]; Available from: https://doi.org/10.1155/2021/4832864 | spa |
dcterms.references | 44. Refaeilzadeh P, Tang L, Liu H. Cross-Validation. Encycl Database Syst [Internet]. 2009 [cited 2022 Oct 20];532–8. Available from: https://www.researchgate.net/publication/284400420_Cross-Validation | spa |
dcterms.references | 45. Validación cruzada - Wikipedia, la enciclopedia libre [Internet]. [cited 2022 Nov 25]. Available from: https://es.wikipedia.org/wiki/Validación_cruzada | spa |
dcterms.references | 46. Ministerio de Salud, Instituto Nacional de Salud. Gráficas de patrones de crecimiento en niños, niñas y adolescentes. 2016;23. Available from: https://goo.gl/LuuYiF | spa |
dcterms.references | 47. Gabrie JA, Rueda MM, Rodríguez CA, Canales M, Sanchez AL. Immune Profile of Honduran Schoolchildren with Intestinal Parasites: The Skewed Response against Geohelminths. J Parasitol Res. 2016;2016. | spa |
dcterms.references | 48. Kattula D, Sarkar R, Ajjampur SSR, Minz S, Levecke B, Muliyi J, et al. Prevalence & risk factors for soil transmitted helminth infection among school children in south India. Indian J Med Res. 2014;139(January):76–82. | spa |
dcterms.references | 49. Carmona-Fonseca J, Peñuela RMU, Botero AMC. Parasitosis intestinal en niños de zonas palúdicas de antioquia (colombia). Iatreia. 2009;22(1):27–46. | spa |
dcterms.references | 50. Quiroz DJG, Lopez SDPA, Arango CM, Acosta JEO, Parias LDB, Alzate LU, et al. Prevalence of soil transmitted helminths in school-aged children, Colombia, 2012-2013. PLoS Negl Trop Dis [Internet]. 2020 Jul 1 [cited 2022 Nov 19];14(7):1–13. Available from: /pmc/articles/PMC7390406/ | spa |
dcterms.references | 51. Aw JYH, Clarke NE, Mayfield HJ, Lau CL, Richardson A, Vaz Nery S. Novel statistical approaches to identify risk factors for soil-transmitted helminth infection in Timor-Leste. Int J Parasitol. 2021 Aug 1;51(9):729–39. | spa |
dcterms.references | 52. Ojja S, Kisaka S, Ediau M, Tuhebwe D, Kisakye AN, Halage AA, et al. Prevalence, intensity and factors associated with soil-transmitted helminths infections among preschool-age children in Hoima district, rural western Uganda. BMC Infect Dis. 2018;18(1):1–12. | spa |
dcterms.references | 53. Nisha M, Aiman M, Asyhira N, Syafiq H, Atiqah N, Kumarasamy V, et al. Risk factors associated with soil transmitted helminth (STH) infection in two indigenous communities in Malaysia. Trop Biomed. 2020;37(2):379–88. | spa |
dcterms.references | 54. Ministerio de Salud y Protección Social. Lineamiento de desparasitación antihelmíntica masiva, en el marco de la Estrategia Quimioterapia Preventiva Antihelmínitca de OMS. Minist Salud y Protección Soc [Internet]. 2013;52. Available from: http://www.ins.gov.co/normatividad/Lineamientos Sector/lineamiento desparasit. antihelmíntica masiva “quimioterapia preventiva antihelmíntica de OMS”.pdf?Mobile=1&Source=%2Fnormatividad%2F_layouts%2Fmobile%2Fvie%0Ahttps://www.ins.gov.co/Normatividad/Linea | spa |
dcterms.references | 55. Olsen A, Namwanje H, Nejsum P, Roepstorff A, Thamsborg SM. Albendazole and mebendazole have low efficacy against Trichuristrichiura in school-age children in Kabale District, Uganda. Trans R Soc Trop Med Hyg [Internet]. 2009 May [cited 2022 Nov 21];103(5):443–6. Available from: https://pubmed.ncbi.nlm.nih.gov/19201005/ | spa |
dcterms.references | 56. Müller I, Beyleveld L, Gerber M, Pühse U, Randt R du, Utzinger J, et al. Low 61 efficacy of albendazole against Trichuris trichiura infection in schoolchildren from Port Elizabeth, South Africa. Trans R Soc Trop Med Hyg [Internet]. 2016 Nov 1 [cited 2022 Nov 21];110(11):676–8. Available from: https://academic.oup.com/trstmh/article/110/11/676/2758631 | spa |
dcterms.references | 57. Quiroz DJG, Lopez SDPA, Arango CM, Acosta JEO, Parias LDB, Alzate LU, et al. Prevalence of soil transmitted helminths in school-aged children, Colombia, 2012-2013. PLoS Negl Trop Dis [Internet]. 2020 Jul 1 [cited 2022 Oct 12];14(7):1–13. Available from: /pmc/articles/PMC7390406/ | spa |
dcterms.references | 58. Decker ML, Gotta V, Wellmann S, Ritz N. Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci Rep [Internet]. 2017;7(1):1–10. Available from: http://dx.doi.org/10.1038/s41598-017-17865-2 | spa |
dcterms.references | 59. Taylor MD, van der Werf N, Maizels RM. T cells in helminth infection: the regulators and the regulated. Trends Immunol [Internet]. 2012 Apr [cited 2022 Apr 9];33(4):181–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22398370/ | spa |
dcterms.references | 60. Villarroel MV, Valbuena AA, Pereira N, García D, Castillo JL, Nuñez González JR. Citocinas TH2 (IL 4 e IL10) en el niño desnutrido: Universidad del Zulia, Maracaibo - Venezuela. Arch Venez Pueric Pediatr [Internet]. 2008 [cited 2022 Nov 16];71(2):42–7. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06492008000200003&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | 61. Chen W, Ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol 2016 1612 [Internet]. 2016 Nov 25 [cited 2022 Nov 16];16(12):723–40. Available from: https://www.nature.com/articles/nri.2016.112 | spa |
dcterms.references | 62. Johnston CJC, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development and regulation of immunity. Cell Immunol [Internet]. 2016 Jan 1 [cited 2022 Nov 16];299:14. Available from: /pmc/articles/PMC4711336/ | spa |
dcterms.references | 63. Zhu S, Liu M, Bennett S, Wang Z, Pfleger KDG, Xu J. The molecular structure and 62 role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. J Cell Physiol. 2021;236(10):7211–22. | spa |
dcterms.references | 64. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature [Internet]. 2000 Mar 23 [cited 2022 Nov 16];404(6776):407–11. Available from: https://pubmed.ncbi.nlm.nih.gov/10746730/ | spa |
dcterms.references | 65. Bancroft AJ, Else KJ, Sypek JP, Grencis RK. Interleukin-12 promotes a chronic intestinal nematode infection. Eur J Immunol [Internet]. 1997 [cited 2022 Jul 2];27(4):866–70. Available from: https://pubmed.ncbi.nlm.nih.gov/9130637/ | spa |
dcterms.references | 66. Gazzinelli-Guimaraes PH, De Queiroz Prado R, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, et al. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest [Internet]. 2019 Sep 3 [cited 2022 Nov 16];129(9):3686–701. Available from: https://doi.org/10.1172/JCI127963. | spa |
dcterms.references | 67. Rosbottom A, Knight PA, McLachlan G, Thornton EM, Wright SW, Miller HRP, et al. Chemokine and cytokine expression in murine intestinal epithelium following Nippostrongylus brasiliensis infection. Parasite Immunol [Internet]. 2002 Feb 1 [cited 2022 Nov 16];24(2):67–75. Available from: https://onlinelibrary.wiley.com/doi/full/10.1046/j.0141-9838.2001.00437.x | spa |
dcterms.references | 68. deSchoolmeester ML, Little MC, Rollins BJ, Else KJ. Absence of CC Chemokine Ligand 2 Results in an Altered Th1/Th2 Cytokine Balance and Failure to Expel Trichuris muris Infection. J Immunol [Internet]. 2003 May 1 [cited 2022 Nov 16];170(9):4693–700. Available from: https://www.jimmunol.org/content/170/9/4693 | spa |
dcterms.references | 69. Pérez B F, Oyarzún A A, Carrasco P E, Angel B B, Albala B C, Santos M JL. Niveles plasmáticos de citoquinas IL-1β, IL2 e IL-4 en niños diabéticos tipo 1 de diagnóstico reciente y su asociación con anticuerpos β pancreáticos. Rev Med Chil. 2004;132(4):413–20. | spa |
dcterms.references | 70. Krawiec P, Pac-Kożuchowska E. Serum interleukin 17A and interleukin 17F in children with inflammatory bowel disease. Sci Rep [Internet]. 2020 Dec 1 [cited 2022 Nov 18];10(1):12617. Available from: /pmc/articles/PMC7387488/ | spa |
dcterms.references | 71. Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, et al. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A. 2004;101(37):13596–600. | spa |
dcterms.references | 72. Mcsorley HJ, Maizels RM. Helminth Infections and Host Immune Regulation. 2012. | spa |
dcterms.references | 73. Massacand JC, Stettler RC, Meier R, Humphreys NE, Grencis RK, Marsland BJ, et al. Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc Natl Acad Sci U S A. 2009;106(33):13968–73. | spa |
dcterms.references | 74. Allen JE, Sutherland TE, Rückerl D. IL-17 and neutrophils: Unexpected players in the type 2 immune response. Curr Opin Immunol. 2015;34:99–106. | spa |
dcterms.references | 75. Steel N, Faniyi AA, Rahman S, Swietlik S, Czajkowska BI, Chan BT, et al. TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathog. 2019;15(4):1–25. | spa |
dcterms.references | 76. Silva TE da, Barbosa FS, Magalhães LMD, Gazzinelli-Guimarães PH, dos Santos AC, Nogueira DS, et al. Unraveling Ascaris suum experimental infection in humans. Microbes Infect. 2021;23(8):1–16. | spa |
dcterms.references | 77. Chen F, Wu W, Jin L, Millman A, Palma M, El-Naccache DW, et al. B Cells Produce the Tissue-Protective Protein RELMα during Helminth Infection, which Inhibits IL-17 Expression and Limits Emphysema. Cell Rep [Internet]. 2018 Dec 4 [cited 2022 Nov 18];25(10):2775-2783.e3. Available from: https://pubmed.ncbi.nlm.nih.gov/30517865/ | spa |
dcterms.references | 78. Geiger SM, Alexander NDE, Fujiwara RT, Brooker S, Cundill B, Diemert DJ, et al. Necator americanus and Helminth Co-Infections: Further Down-Modulation of 64 Hookworm-Specific Type 1 Immune Responses. PLoS Negl Trop Dis [Internet]. 2011 Sep [cited 2022 Nov 16];5(9):e1280. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001280 | spa |
dcterms.references | 79. Xanthou G, Duchesnes CE, Williams TJ, Pease JE. CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol. 2003 Aug 1;33(8):2241–50. | spa |
dcterms.references | 80. Lang S, Li L, Wang X, Sun J, Xue X, Xiao Y, et al. CXCL10/IP-10 Neutralization Can Ameliorate Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats. PLoS One [Internet]. 2017 Jan 1 [cited 2022 Nov 16];12(1):e0169100. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169100 | spa |
dcterms.references | 81. Chen F, Wu W, Millman A, Craft JF, Chen E, Patel N, et al. That Mediates Accelerated Helminth Expulsion. Nat immunol. 2015;15(10):938–46. | spa |
dcterms.references | 82. Ruiz D, Ceroń V, Molina AM, Quiñ́ones ML, Jiḿenez MM, Ahumada M, et al. Implementation of malaria dynamic models in municipality level early warning systems in Colombia. Part I: Description of study sites. Am J Trop Med Hyg [Internet]. 2014 Jul 7 [cited 2022 Nov 19];91(1):27–38. Available from: /pmc/articles/PMC4080564/ | spa |
dcterms.references | 83. Díaz-Pinzón JE. Uso de modelo predictivo para la dinámica de transmisión del Covid-19 en Colombia. Reper med cir [Internet]. 2020 May 29 [cited 2022 Nov 19];34–44. Available from: https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/1056 | spa |
dcterms.references | 84. Hoyos W, Aguilar J, Toro M. A clinical decision-support system for dengue based on fuzzy cognitive maps. Heal Care Manag Sci 2022 254 [Internet]. 2022 Aug 16 [cited 2022 Nov 19];25(4):666–81. Available from: https://link.springer.com/article/10.1007/s10729-022-09611-6 | spa |
dcterms.references | 85. Hoyos W, Aguilar J, Toro M. An autonomous cycle of data analysis tasks for the 65 clinical management of dengue. Heliyon. 2022 Oct 1;8(10):e10846. | spa |
dcterms.references | 86. Notkin DS (David S, Cheng BHC, Pohl K, IEEE Computer Society., Institute of Electrical and Electronics Engineers. Importance of Metrics. 2013;432–41. | spa |
dcterms.references | 87. Carter J V., Pan J, Rai SN, Galandiuk S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surg (United States) [Internet]. 2016;159(6):1638–45. Available from: http://dx.doi.org/10.1016/j.surg.2015.12.029 | spa |
dcterms.references | 88. Barbedo JGA. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput Electron Agric. 2018 Oct 1;153:46–53. | spa |
dcterms.references | 89. Rácz A, Bajusz D, Héberger K. Effect of dataset size and train/test split ratios in qsar/qspr multiclass classification. Molecules. 2021;26(4):1–16. | spa |
dcterms.references | 90. Clark NJ, Owada K, Ruberanziza E, Ortu G, Umulisa I, Bayisenge U, et al. Parasite associations predict infection risk: Incorporating co-infections in predictive models for neglected tropical diseases. Parasites and Vectors [Internet]. 2020;13(1):1–16. Available from: https://doi.org/10.1186/s13071-020-04016-2 | spa |
dcterms.references | 91. Zafar A, Attia Z, Tesfaye M, Walelign S, Wordofa M, Abera D, et al. Machine learning-based risk factor analysis and prevalence prediction of intestinal parasitic infections using epidemiological survey data. PLoS Negl Trop Dis [Internet]. 2022;16(6):e0010517. Available from: http://dx.doi.org/10.1371/journal.pntd.0010517 | spa |
dcterms.references | 92. Luz CF, Vollmer M, Decruyenaere J, Nijsten MW, Glasner C, Sinha B. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clin Microbiol Infect [Internet]. 2020;26(10):1291–9. Available from: https://doi.org/10.1016/j.cmi.2020.02.003 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- nisperuzavidalana.pdf
- Tamaño:
- 1.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento Trabajo de Investigación
No hay miniatura disponible
- Nombre:
- Formato de autorización.pdf
- Tamaño:
- 957.05 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formato de autorización
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: