Publicación:
Análisis descriptivo y predictivo de geohelmintiasis en niños escolares de Tierralta, Córdoba, Colombia

dc.contributor.advisorYasnot Acosta, María Fernandaspa
dc.contributor.authorNisperuza Vidal, Ana Karina
dc.date.accessioned2023-02-27T22:12:33Z
dc.date.available2023-02-27T22:12:33Z
dc.date.issued2023-02-27
dc.description.abstractLas geohelmintiasis son parasitosis intestinales ocasionadas por los macropárasitos Ascaris lumbricoides, Trichuris trichiura, Necator americanus y Ancylostoma duodenale. En Colombia constituyen un problema de salud pública y el departamento de Córdoba se encuentra en una de las regiones con mayor prevalencia de estas infecciones. Se realizó un estudio descriptivo y predictivo para la evaluación de geohelmintiasis en 70 niños de la Institución Educativa Santa Fé de Ralito, observándose una prevalencia de parasitosis del 55.7%, siendo Trichuris el parásito de mayor frecuencia (92%). El estudio inmunológico evidenció un perfil de supresión de la respuesta anti inflamatoria con predominio de IP-10 y TGF-β. Se diseñó un modelo predictivo de infección por geohelmintiasis con un buen desempeño (exactitud: 0.714) como piloto de herramientas para la prevención de estas patologías a nivel comunitario y rural.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiología Tropicalspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. INTRODUCCIÓN .......................................................................................................... 9spa
dc.description.tableofcontents2. OBJETIVOS ................................................................................................................. 11spa
dc.description.tableofcontents2.1 Objetivo general ......................................................................................................... 11spa
dc.description.tableofcontents2.2 Objetivos Específicos ................................................................................................. 11spa
dc.description.tableofcontents3. MARCO TEORICO ..................................................................................................... 12spa
dc.description.tableofcontents3.1 Parásitos Geohelmintos .............................................................................................. 12spa
dc.description.tableofcontents3.1.1 Ascaris lumbricoides ...................................................................................... 12spa
dc.description.tableofcontents3.1.2 Trichuris trichiura .......................................................................................... 14spa
dc.description.tableofcontents3.1.3 Uncinarias. ...................................................................................................... 16spa
dc.description.tableofcontents3.2 Epidemiología ........................................................................................................ 17spa
dc.description.tableofcontents3.3 Características clínicas de la infección por geohelmintos. .................................... 18spa
dc.description.tableofcontents3.4 Impacto de las infecciones por Geohelmintos en la población infantil ................. 20spa
dc.description.tableofcontents3.5 Inteligencia Artificial en salud. .............................................................................. 21spa
dc.description.tableofcontents4. MATERIALES Y METODOS ..................................................................................... 23spa
dc.description.tableofcontents4.1 Tipo de estudio. .......................................................................................................... 23spa
dc.description.tableofcontents4.2 Población y criterios de Elegibilidad .......................................................................... 23spa
dc.description.tableofcontents4.3 Recolección de datos .................................................................................................. 23spa
dc.description.tableofcontents4.4 Toma de muestras ....................................................................................................... 23spa
dc.description.tableofcontents4.5 Diagnóstico parasitológico de la geohelmintiasis ...................................................... 24spa
dc.description.tableofcontents4.6 Conteo de eosinófilos, basófilos y determinación de hemoglobina ........................... 25spa
dc.description.tableofcontents4.7 Detección de Citoquinas ........................................................................................ 25spa
dc.description.tableofcontents4.8 Análisis estadístico descriptivo .................................................................................. 28spa
dc.description.tableofcontents4.9 Relaciones y comparaciones entre grupos .................................................................. 28spa
dc.description.tableofcontents4.10 Modelo Predictivo ................................................................................................... 28spa
dc.description.tableofcontents4.10.1 Conjunto de datos .............................................................................................. 29spa
dc.description.tableofcontents4.10.2 Preprocesamiento............................................................................................... 30spa
dc.description.tableofcontents4.10.3 Entrenamiento y evaluación del modelo ........................................................... 30spa
dc.description.tableofcontents4.11 Aspectos éticos. ........................................................................................................ 32spa
dc.description.tableofcontents5. RESULTADOS ............................................................................................................ 33spa
dc.description.tableofcontents5.1 ANALISIS DESCRIPTIVO ....................................................................................... 33spa
dc.description.tableofcontents5.1.1 Variables demográficas ....................................................................................... 33spa
dc.description.tableofcontents5.1.2 Variables epidemiológicas ................................................................................... 34spa
dc.description.tableofcontents5.1.3 Variables Clínicas ................................................................................................ 35spa
dc.description.tableofcontents5.2 RELACIONES Y COMPARACIONES ENTRE GRUPOS...................................... 37spa
dc.description.tableofcontents5.2.1 Variables demográficas ...................................................................................... 37spa
dc.description.tableofcontents5.2.2 Variables epidemiológicas ................................................................................... 37spa
dc.description.tableofcontents5.2.3 Variables Clínicas ................................................................................................ 37spa
dc.description.tableofcontents5.3 ANALISIS PREDICTIVO .................................................................................... 40spa
dc.description.tableofcontents5.3.1 Pre-procesamiento del conjunto de datos ....................................................... 40spa
dc.description.tableofcontents5.3.2 Entrenamiento y Evaluación ........................................................................... 42spa
dc.description.tableofcontents5.3.3 Influencia en la Predicción ............................................................................. 43spa
dc.description.tableofcontents6. DISCUSION ................................................................................................................. 44spa
dc.description.tableofcontents7. CONCLUSIONES ........................................................................................................ 53spa
dc.description.tableofcontents8. LIMITACIONES Y PROSPECTIVAS ........................ 54spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7243
dc.language.isospaspa
dc.publisherGrupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBICspa
dc.publisherUniversidad de Córdobaspa
dc.publisherNew York Universityspa
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecniaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Microbiología Tropicalspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsSoil-transmitted helmintheng
dc.subject.keywordsAscariseng
dc.subject.keywordsTrichuriseng
dc.subject.keywordsTierraltaeng
dc.subject.keywordsCórdobaeng
dc.subject.keywordsImmune responseeng
dc.subject.keywordsTH2eng
dc.subject.keywordsPredictive modeleng
dc.subject.proposalGeohelmintosspa
dc.subject.proposalAscarisspa
dc.subject.proposalTrichurisspa
dc.subject.proposalTierraltaspa
dc.subject.proposalCórdobaspa
dc.subject.proposalRespuesta inmunespa
dc.subject.proposalTH2spa
dc.subject.proposalModelo predictivospa
dc.titleAnálisis descriptivo y predictivo de geohelmintiasis en niños escolares de Tierralta, Córdoba, Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references1. Neglected tropical diseases [Internet]. [cited 2021 Aug 5]. Available from: https://www.who.int/news-room/q-a-detail/neglected-tropical-diseasesspa
dcterms.references2. Soil-transmitted helminthiases : eliminating as public health problem soil-transmitted helminthiases in children : progress report 2001-2010 and strategic plan 2011-2020 [Internet]. [cited 2022 Apr 9]. Available from: https://apps.who.int/iris/handle/10665/44804spa
dcterms.references3. MINSALUD. Encuesta Nacional De Parasitismo Intestinal En Población Escolar Colombia, 2012 – 2014 [Internet]. Revista Facultad Nacional de Salud Pública. 2015. 174 p. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/encuesta-nacional-de-parasitismo-2012-2014.pdfspa
dcterms.references4. Crompton DWT, Nesheim MC. NUTRITIONAL IMPACT OF INTESTINAL HELMINTHIASIS DURING THE HUMAN LIFE CYCLE. http://dx.doi.org/101146/annurev.nutr22120501134539 [Internet]. 2003 Nov 28 [cited 2022 Apr 9];22:35–59. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev.nutr.22.120501.134539spa
dcterms.references5. Nacher M, Singhasivanon P, Yimsamran S, Manibunyong W, Thanyavanich N, Wuthisen R, et al. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol. 2002 Feb;88(1):55–8.spa
dcterms.references6. Smits HH, Everts B, Hartgers FC, Yazdanbakhsh M. Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes. Curr Allergy Asthma Rep [Internet]. 2010 Jan [cited 2022 Nov 15];10(1):3. Available from: /pmc/articles/PMC2816799/spa
dcterms.references7. Ademe M, Girma F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect Drug Resist [Internet]. 55 2021 [cited 2022 Nov 15];14:4421. Available from: /pmc/articles/PMC8558425/spa
dcterms.references8. Cooper PJ, Chico ME, Losonsky G, Sandoval C, Espinel I, Sridhara R, et al. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis [Internet]. 2000 [cited 2022 Nov 15];182(4):1199–206. Available from: https://pubmed.ncbi.nlm.nih.gov/10979918/spa
dcterms.references9. Zhu F, Liu W, Liu T, Shi L, Zheng W, Guan F, et al. A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathog (Basel, Switzerland) [Internet]. 2022 Oct 8 [cited 2022 Nov 15];11(10). Available from: http://www.ncbi.nlm.nih.gov/pubmed/36297220spa
dcterms.references10. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites Vectors 2014 71 [Internet]. 2014 Jan 21 [cited 2021 Aug 6];7(1):1–19. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-7-37spa
dcterms.references11. Prieto-Pérez L, Pérez-Tanoira R, Cabello-Úbeda A, Petkova-Saiz E, Górgolas-Hernández-Mora M. Geohelmintos. Enferm Infecc Microbiol Clin. 2016 Jun 1;34(6):384–9.spa
dcterms.references12. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Prim 2016 21 [Internet]. 2016 Dec 8 [cited 2021 Aug 6];2(1):1–18. Available from: https://www.nature.com/articles/nrdp201688spa
dcterms.references13. Jackson JA, Friberg IM, Little S, Bradley JE. Review series on helminths, immune modulation and the hygiene hypothesis: Immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology [Internet]. 2009 Jan [cited 2021 Aug 6];126(1):18. Available from: /pmc/articles/PMC2632709/spa
dcterms.references14. Crompton DWT. Ascaris and ascariasis. Adv Parasitol. 2001 Jul 1;48(7):285–375.spa
dcterms.references15. Giraldo MI, García NL, Castaño JC. Prevalence of intestinal helminths in dogs from Quindío Province. Biomédica [Internet]. 2005 Sep 1 [cited 2022 Jun 14];25(3):346–52. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1359spa
dcterms.references16. Ascariasis [Internet]. Available from: https://www.cdc.gov/parasites/ascariasis/biology.html#:~:text=Life Cycle%3A&text=Upon reaching the small intestine,live 1 to 2 years.spa
dcterms.references17. The Geohelminths: Ascaris, Trichuris and Hookworm - Google Libros [Internet]. [cited 2022 Jun 14]. Available from: https://books.google.com.co/books?hl=es&lr=&id=uiIk8mmBHPcC&oi=fnd&pg=PR11&dq=life+cycle+trichuris&ots=Dq1U6bhmF_&sig=q0SP49xNoDY7DTNe58Gsz-sK8Zw#v=snippet&q=life cycle &f=falsespa
dcterms.references18. Trichuriasis [Internet]. Available from: https://www.cdc.gov/dpdx/trichuriasis/index.htmlspa
dcterms.references19. Carrada-Bravo T. medigraphic.com Uncinariasis: ciclo vital, cuadros clínicos, patofisiología y modelos animales. Rev Mex Patol Clin. 2007;54.spa
dcterms.references20. Hookworms [Internet]. Available from: https://www.cdc.gov/dpdx/hookworm/index.htmlspa
dcterms.references21. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLoS Negl Trop Dis [Internet]. 2014 [cited 2022 Jun 14];8(7):e2865. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002865spa
dcterms.references22. Starr MC, Montgomery SP. Soil-transmitted Helminthiasis in the United States: a systematic review--1940-2010. Am J Trop Med Hyg [Internet]. 2011 Oct 1 [cited 2022 Jun 14];85(4):680–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21976572/?tool=EBIspa
dcterms.references23. Cortés A, Muñoz-Antoli C, Esteban JG, Toledo R. Th2 and Th1 Responses: Clear and Hidden Sides of Immunity Against Intestinal Helminths. Trends Parasitol [Internet]. 2017;33(9):678–93. Available from: http://dx.doi.org/10.1016/j.pt.2017.05.004spa
dcterms.references24. Grencis RK. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu Rev Immunol. 2015;33(December 2014):201–25.spa
dcterms.references25. Sorobetea D, Svensson-Frej M, Grencis R. Immunity to gastrointestinal nematode infections. Mucosal Immunol. 2018;11(2):304–15.spa
dcterms.references26. Díaz A, Allen JE. Mapping immune response profiles: The emerging scenario from helminth immunology. Eur J Immunol [Internet]. 2007 Dec 1 [cited 2022 Apr 9];37(12):3319–26. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/eji.200737765spa
dcterms.references27. Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol [Internet]. 2016;138(3):666–75. Available from: http://dx.doi.org/10.1016/j.jaci.2016.07.007spa
dcterms.references28. Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity [Internet]. 2018;49(5):801–18. Available from: https://doi.org/10.1016/j.immuni.2018.10.016spa
dcterms.references29. Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table | GHDx [Internet]. [cited 2022 Oct 26]. Available from: https://ghdx.healthdata.org/record/ihme-data/global-burden-disease-study-2019-gbd-2019-reference-life-tablespa
dcterms.references30. Arnesen T, Nord E. Education and debate The value of DALY life: problems with ethics and validity of disability adjusted life years. BMJ [Internet]. 1999 [cited 2022 Oct 26];319:1423–8. Available from: www.bmj.comspa
dcterms.references31. Walker SP, Wachs TD, Meeks Gardner J, Lozoff B, Wasserman GA, Pollitt E, et al. Child development: risk factors for adverse outcomes in developing countries. 58 Lancet (London, England) [Internet]. 2007 Jan 13 [cited 2022 Oct 26];369(9556):145–57. Available from: https://pubmed.ncbi.nlm.nih.gov/17223478/spa
dcterms.references32. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc [Internet]. 2020 Oct 1 [cited 2022 Nov 20];92(4):807–12. Available from: http://www.giejournal.org/article/S0016510720344667/fulltextspa
dcterms.references33. Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020. 295–336 p.spa
dcterms.references34. Lamping F, Jack T, Rübsamen N, Sasse M, Beerbaum P, Mikolajczyk RT, et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - A data-driven approach using machine-learning algorithms. BMC Pediatr. 2018;18(1):1–11.spa
dcterms.references35. Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev. 2020 Jul 1;14(4):337–9.spa
dcterms.references36. Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Heal. 2020 Dec 1;2(12):e667–76.spa
dcterms.references37. Doupe P, Faghmous J, Basu S. Machine Learning for Health Services Researchers. Value Heal [Internet]. 2019;22(7):808–15. Available from: https://doi.org/10.1016/j.jval.2019.02.012spa
dcterms.references38. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases [Internet]. Artificial Intelligence in Precision Health. Elsevier Inc.; 2020. 415–438 p. Available from: http://dx.doi.org/10.1016/B978-0-12-817133-2.00018-5spa
dcterms.references39. National Institute of Health of Colombia. Resolution Number 00002465 of 2016. Colomb Minist Heal Soc Prot [Internet]. 2016;47. Available from: https://www.icbf.gov.co/sites/default/files/resolucion_no._2465_del_14_de_junio_de_2016.pdfspa
dcterms.references40. WHO. 00054_01_kato-katzBench_aids.pdf. 1994.spa
dcterms.references41. Hosmer DW, Lemeshow S. Introduction to the Logistic Regression Model. Appl Logist Regres. 2005;1–30.spa
dcterms.references42. Gholamy A, Kreinovich V, Kosheleva O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation.spa
dcterms.references43. Nguyen QH, Ly H-B, Ho LS, Al-Ansari N, Le H Van, Tran VQ, et al. Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. 2021 [cited 2022 Oct 20]; Available from: https://doi.org/10.1155/2021/4832864spa
dcterms.references44. Refaeilzadeh P, Tang L, Liu H. Cross-Validation. Encycl Database Syst [Internet]. 2009 [cited 2022 Oct 20];532–8. Available from: https://www.researchgate.net/publication/284400420_Cross-Validationspa
dcterms.references45. Validación cruzada - Wikipedia, la enciclopedia libre [Internet]. [cited 2022 Nov 25]. Available from: https://es.wikipedia.org/wiki/Validación_cruzadaspa
dcterms.references46. Ministerio de Salud, Instituto Nacional de Salud. Gráficas de patrones de crecimiento en niños, niñas y adolescentes. 2016;23. Available from: https://goo.gl/LuuYiFspa
dcterms.references47. Gabrie JA, Rueda MM, Rodríguez CA, Canales M, Sanchez AL. Immune Profile of Honduran Schoolchildren with Intestinal Parasites: The Skewed Response against Geohelminths. J Parasitol Res. 2016;2016.spa
dcterms.references48. Kattula D, Sarkar R, Ajjampur SSR, Minz S, Levecke B, Muliyi J, et al. Prevalence & risk factors for soil transmitted helminth infection among school children in south India. Indian J Med Res. 2014;139(January):76–82.spa
dcterms.references49. Carmona-Fonseca J, Peñuela RMU, Botero AMC. Parasitosis intestinal en niños de zonas palúdicas de antioquia (colombia). Iatreia. 2009;22(1):27–46.spa
dcterms.references50. Quiroz DJG, Lopez SDPA, Arango CM, Acosta JEO, Parias LDB, Alzate LU, et al. Prevalence of soil transmitted helminths in school-aged children, Colombia, 2012-2013. PLoS Negl Trop Dis [Internet]. 2020 Jul 1 [cited 2022 Nov 19];14(7):1–13. Available from: /pmc/articles/PMC7390406/spa
dcterms.references51. Aw JYH, Clarke NE, Mayfield HJ, Lau CL, Richardson A, Vaz Nery S. Novel statistical approaches to identify risk factors for soil-transmitted helminth infection in Timor-Leste. Int J Parasitol. 2021 Aug 1;51(9):729–39.spa
dcterms.references52. Ojja S, Kisaka S, Ediau M, Tuhebwe D, Kisakye AN, Halage AA, et al. Prevalence, intensity and factors associated with soil-transmitted helminths infections among preschool-age children in Hoima district, rural western Uganda. BMC Infect Dis. 2018;18(1):1–12.spa
dcterms.references53. Nisha M, Aiman M, Asyhira N, Syafiq H, Atiqah N, Kumarasamy V, et al. Risk factors associated with soil transmitted helminth (STH) infection in two indigenous communities in Malaysia. Trop Biomed. 2020;37(2):379–88.spa
dcterms.references54. Ministerio de Salud y Protección Social. Lineamiento de desparasitación antihelmíntica masiva, en el marco de la Estrategia Quimioterapia Preventiva Antihelmínitca de OMS. Minist Salud y Protección Soc [Internet]. 2013;52. Available from: http://www.ins.gov.co/normatividad/Lineamientos Sector/lineamiento desparasit. antihelmíntica masiva “quimioterapia preventiva antihelmíntica de OMS”.pdf?Mobile=1&Source=%2Fnormatividad%2F_layouts%2Fmobile%2Fvie%0Ahttps://www.ins.gov.co/Normatividad/Lineaspa
dcterms.references55. Olsen A, Namwanje H, Nejsum P, Roepstorff A, Thamsborg SM. Albendazole and mebendazole have low efficacy against Trichuristrichiura in school-age children in Kabale District, Uganda. Trans R Soc Trop Med Hyg [Internet]. 2009 May [cited 2022 Nov 21];103(5):443–6. Available from: https://pubmed.ncbi.nlm.nih.gov/19201005/spa
dcterms.references56. Müller I, Beyleveld L, Gerber M, Pühse U, Randt R du, Utzinger J, et al. Low 61 efficacy of albendazole against Trichuris trichiura infection in schoolchildren from Port Elizabeth, South Africa. Trans R Soc Trop Med Hyg [Internet]. 2016 Nov 1 [cited 2022 Nov 21];110(11):676–8. Available from: https://academic.oup.com/trstmh/article/110/11/676/2758631spa
dcterms.references57. Quiroz DJG, Lopez SDPA, Arango CM, Acosta JEO, Parias LDB, Alzate LU, et al. Prevalence of soil transmitted helminths in school-aged children, Colombia, 2012-2013. PLoS Negl Trop Dis [Internet]. 2020 Jul 1 [cited 2022 Oct 12];14(7):1–13. Available from: /pmc/articles/PMC7390406/spa
dcterms.references58. Decker ML, Gotta V, Wellmann S, Ritz N. Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci Rep [Internet]. 2017;7(1):1–10. Available from: http://dx.doi.org/10.1038/s41598-017-17865-2spa
dcterms.references59. Taylor MD, van der Werf N, Maizels RM. T cells in helminth infection: the regulators and the regulated. Trends Immunol [Internet]. 2012 Apr [cited 2022 Apr 9];33(4):181–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22398370/spa
dcterms.references60. Villarroel MV, Valbuena AA, Pereira N, García D, Castillo JL, Nuñez González JR. Citocinas TH2 (IL 4 e IL10) en el niño desnutrido: Universidad del Zulia, Maracaibo - Venezuela. Arch Venez Pueric Pediatr [Internet]. 2008 [cited 2022 Nov 16];71(2):42–7. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06492008000200003&lng=es&nrm=iso&tlng=esspa
dcterms.references61. Chen W, Ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol 2016 1612 [Internet]. 2016 Nov 25 [cited 2022 Nov 16];16(12):723–40. Available from: https://www.nature.com/articles/nri.2016.112spa
dcterms.references62. Johnston CJC, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development and regulation of immunity. Cell Immunol [Internet]. 2016 Jan 1 [cited 2022 Nov 16];299:14. Available from: /pmc/articles/PMC4711336/spa
dcterms.references63. Zhu S, Liu M, Bennett S, Wang Z, Pfleger KDG, Xu J. The molecular structure and 62 role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. J Cell Physiol. 2021;236(10):7211–22.spa
dcterms.references64. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature [Internet]. 2000 Mar 23 [cited 2022 Nov 16];404(6776):407–11. Available from: https://pubmed.ncbi.nlm.nih.gov/10746730/spa
dcterms.references65. Bancroft AJ, Else KJ, Sypek JP, Grencis RK. Interleukin-12 promotes a chronic intestinal nematode infection. Eur J Immunol [Internet]. 1997 [cited 2022 Jul 2];27(4):866–70. Available from: https://pubmed.ncbi.nlm.nih.gov/9130637/spa
dcterms.references66. Gazzinelli-Guimaraes PH, De Queiroz Prado R, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, et al. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest [Internet]. 2019 Sep 3 [cited 2022 Nov 16];129(9):3686–701. Available from: https://doi.org/10.1172/JCI127963.spa
dcterms.references67. Rosbottom A, Knight PA, McLachlan G, Thornton EM, Wright SW, Miller HRP, et al. Chemokine and cytokine expression in murine intestinal epithelium following Nippostrongylus brasiliensis infection. Parasite Immunol [Internet]. 2002 Feb 1 [cited 2022 Nov 16];24(2):67–75. Available from: https://onlinelibrary.wiley.com/doi/full/10.1046/j.0141-9838.2001.00437.xspa
dcterms.references68. deSchoolmeester ML, Little MC, Rollins BJ, Else KJ. Absence of CC Chemokine Ligand 2 Results in an Altered Th1/Th2 Cytokine Balance and Failure to Expel Trichuris muris Infection. J Immunol [Internet]. 2003 May 1 [cited 2022 Nov 16];170(9):4693–700. Available from: https://www.jimmunol.org/content/170/9/4693spa
dcterms.references69. Pérez B F, Oyarzún A A, Carrasco P E, Angel B B, Albala B C, Santos M JL. Niveles plasmáticos de citoquinas IL-1β, IL2 e IL-4 en niños diabéticos tipo 1 de diagnóstico reciente y su asociación con anticuerpos β pancreáticos. Rev Med Chil. 2004;132(4):413–20.spa
dcterms.references70. Krawiec P, Pac-Kożuchowska E. Serum interleukin 17A and interleukin 17F in children with inflammatory bowel disease. Sci Rep [Internet]. 2020 Dec 1 [cited 2022 Nov 18];10(1):12617. Available from: /pmc/articles/PMC7387488/spa
dcterms.references71. Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, et al. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A. 2004;101(37):13596–600.spa
dcterms.references72. Mcsorley HJ, Maizels RM. Helminth Infections and Host Immune Regulation. 2012.spa
dcterms.references73. Massacand JC, Stettler RC, Meier R, Humphreys NE, Grencis RK, Marsland BJ, et al. Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc Natl Acad Sci U S A. 2009;106(33):13968–73.spa
dcterms.references74. Allen JE, Sutherland TE, Rückerl D. IL-17 and neutrophils: Unexpected players in the type 2 immune response. Curr Opin Immunol. 2015;34:99–106.spa
dcterms.references75. Steel N, Faniyi AA, Rahman S, Swietlik S, Czajkowska BI, Chan BT, et al. TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathog. 2019;15(4):1–25.spa
dcterms.references76. Silva TE da, Barbosa FS, Magalhães LMD, Gazzinelli-Guimarães PH, dos Santos AC, Nogueira DS, et al. Unraveling Ascaris suum experimental infection in humans. Microbes Infect. 2021;23(8):1–16.spa
dcterms.references77. Chen F, Wu W, Jin L, Millman A, Palma M, El-Naccache DW, et al. B Cells Produce the Tissue-Protective Protein RELMα during Helminth Infection, which Inhibits IL-17 Expression and Limits Emphysema. Cell Rep [Internet]. 2018 Dec 4 [cited 2022 Nov 18];25(10):2775-2783.e3. Available from: https://pubmed.ncbi.nlm.nih.gov/30517865/spa
dcterms.references78. Geiger SM, Alexander NDE, Fujiwara RT, Brooker S, Cundill B, Diemert DJ, et al. Necator americanus and Helminth Co-Infections: Further Down-Modulation of 64 Hookworm-Specific Type 1 Immune Responses. PLoS Negl Trop Dis [Internet]. 2011 Sep [cited 2022 Nov 16];5(9):e1280. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001280spa
dcterms.references79. Xanthou G, Duchesnes CE, Williams TJ, Pease JE. CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol. 2003 Aug 1;33(8):2241–50.spa
dcterms.references80. Lang S, Li L, Wang X, Sun J, Xue X, Xiao Y, et al. CXCL10/IP-10 Neutralization Can Ameliorate Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats. PLoS One [Internet]. 2017 Jan 1 [cited 2022 Nov 16];12(1):e0169100. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169100spa
dcterms.references81. Chen F, Wu W, Millman A, Craft JF, Chen E, Patel N, et al. That Mediates Accelerated Helminth Expulsion. Nat immunol. 2015;15(10):938–46.spa
dcterms.references82. Ruiz D, Ceroń V, Molina AM, Quiñ́ones ML, Jiḿenez MM, Ahumada M, et al. Implementation of malaria dynamic models in municipality level early warning systems in Colombia. Part I: Description of study sites. Am J Trop Med Hyg [Internet]. 2014 Jul 7 [cited 2022 Nov 19];91(1):27–38. Available from: /pmc/articles/PMC4080564/spa
dcterms.references83. Díaz-Pinzón JE. Uso de modelo predictivo para la dinámica de transmisión del Covid-19 en Colombia. Reper med cir [Internet]. 2020 May 29 [cited 2022 Nov 19];34–44. Available from: https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/1056spa
dcterms.references84. Hoyos W, Aguilar J, Toro M. A clinical decision-support system for dengue based on fuzzy cognitive maps. Heal Care Manag Sci 2022 254 [Internet]. 2022 Aug 16 [cited 2022 Nov 19];25(4):666–81. Available from: https://link.springer.com/article/10.1007/s10729-022-09611-6spa
dcterms.references85. Hoyos W, Aguilar J, Toro M. An autonomous cycle of data analysis tasks for the 65 clinical management of dengue. Heliyon. 2022 Oct 1;8(10):e10846.spa
dcterms.references86. Notkin DS (David S, Cheng BHC, Pohl K, IEEE Computer Society., Institute of Electrical and Electronics Engineers. Importance of Metrics. 2013;432–41.spa
dcterms.references87. Carter J V., Pan J, Rai SN, Galandiuk S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surg (United States) [Internet]. 2016;159(6):1638–45. Available from: http://dx.doi.org/10.1016/j.surg.2015.12.029spa
dcterms.references88. Barbedo JGA. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput Electron Agric. 2018 Oct 1;153:46–53.spa
dcterms.references89. Rácz A, Bajusz D, Héberger K. Effect of dataset size and train/test split ratios in qsar/qspr multiclass classification. Molecules. 2021;26(4):1–16.spa
dcterms.references90. Clark NJ, Owada K, Ruberanziza E, Ortu G, Umulisa I, Bayisenge U, et al. Parasite associations predict infection risk: Incorporating co-infections in predictive models for neglected tropical diseases. Parasites and Vectors [Internet]. 2020;13(1):1–16. Available from: https://doi.org/10.1186/s13071-020-04016-2spa
dcterms.references91. Zafar A, Attia Z, Tesfaye M, Walelign S, Wordofa M, Abera D, et al. Machine learning-based risk factor analysis and prevalence prediction of intestinal parasitic infections using epidemiological survey data. PLoS Negl Trop Dis [Internet]. 2022;16(6):e0010517. Available from: http://dx.doi.org/10.1371/journal.pntd.0010517spa
dcterms.references92. Luz CF, Vollmer M, Decruyenaere J, Nijsten MW, Glasner C, Sinha B. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clin Microbiol Infect [Internet]. 2020;26(10):1291–9. Available from: https://doi.org/10.1016/j.cmi.2020.02.003spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
nisperuzavidalana.pdf
Tamaño:
1.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento Trabajo de Investigación
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
957.05 KB
Formato:
Adobe Portable Document Format
Descripción:
Formato de autorización
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones