Publicación: Fundamentos del análisis funcional
dc.contributor.author | Aduén Muskus, Hugo | |
dc.contributor.author | Herrón Osorio, Sigifredo | |
dc.date.accessioned | 2025-08-29T20:32:47Z | |
dc.date.available | 2025-08-29T20:32:47Z | |
dc.date.issued | 2025-08-29 | |
dc.description.abstract | Este libro está dirigido principalmente a estudiantes de pregrado y se espera que el lector tenga conocimiento de la teoría de conjuntos, principalmente de cardinalidad y, además, de algunos tópicos relacionados con espacios métricos y análisis real. | |
dc.description.edition | Primera edición | |
dc.description.tableofcontents | Introducción............ iv | |
dc.description.tableofcontents | 1. Espacios vectoriales 1 | |
dc.description.tableofcontents | 1.1. Definición de campo y valuaciones . . . . . . . . . . . . . . . . 1 | |
dc.description.tableofcontents | 1.2. Definición de espacio vectorial y ejemplos . . . . . . . . . . . . 9 | |
dc.description.tableofcontents | 1.3. Bases de Hamel y dimensión . . . . . . . . . . . . . . . . . . . . 27 | |
dc.description.tableofcontents | 1.4. Operadores Lineales . . . . . . . . . . . . . . . . . . . . . . . . 47 | |
dc.description.tableofcontents | 1.5. Funcionales lineales . . . . . . . . . . . . . . . . . . . . . . . . . 59 | |
dc.description.tableofcontents | 1.6. El teorema de Hahn-Banach en espacios lineales . . . . . . . . . 67 | |
dc.description.tableofcontents | 2. Espacios normados 82 | |
dc.description.tableofcontents | 2.1. Definiciones y ejemplos . . . . . . . . . . . . . . . . . . . . . . . 82 | |
dc.description.tableofcontents | 2.2. Espacios de Banach y ejemplos . . . . . . . . . . . . . . . . . . 91 | |
dc.description.tableofcontents | 2.3. Completación de un espacio normado . . . . . . . . . . . . . . . 114 | |
dc.description.tableofcontents | 2.4. Espacios normados de dimensión finita . . . . . . . . . . . . . . 118 | |
dc.description.tableofcontents | 2.5. El Teorema de Baire . . . . . . . . . . . . . . . . . . . . . . . . 130 | |
dc.description.tableofcontents | 2.6. Bases de Schauder y separabilidad . . . . . . . . . . . . . . . . 137 | |
dc.description.tableofcontents | 3. Operadores lineales acotados 147 | |
dc.description.tableofcontents | 3.1. Definiciones, propiedades y ejemplos . . . . . . . . . . . . . . . 147 | |
dc.description.tableofcontents | 3.2. Operadores invertibles . . . . . . . . . . . . . . . . . . . . . . . 162 | |
dc.description.tableofcontents | 3.3. Funcionales lineales acotados . . . . . . . . . . . . . . . . . . . 166 | |
dc.description.tableofcontents | 3.4. El teorema de Hahn-Banach en espacios normados . . . . . . . 186 | |
dc.description.tableofcontents | 3.5. Dualidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 | |
dc.description.tableofcontents | 3.6. Espacios reflexivos . . . . . . . . . . . . . . . . . . . . . . . . . 213 | |
dc.description.tableofcontents | 3.7. El operador adjunto . . . . . . . . . . . . . . . . . . . . . . . . 220 | |
dc.description.tableofcontents | 4. Teoremas fundamentales 224 | |
dc.description.tableofcontents | 4.1. Teorema de Banach–Steinhaus . . . . . . . . . . . . . . . . . . 225 | |
dc.description.tableofcontents | 4.2. Teorema de la aplicación abierta . . . . . . . . . . . . . . . . . 232 | |
dc.description.tableofcontents | 4.3. Teorema de la gráfica cerrada . . . . . . . . . . . . . . . . . . . 238 | |
dc.description.tableofcontents | 4.4. Teorema de normas equivalentes implica TBS . . . . . . . . . . 247 | |
dc.description.tableofcontents | 5. Espacios de Hilbert 250 | |
dc.description.tableofcontents | 5.1. Espacios prehilbertiano y espacios de Hilbert . . . . . . . . . . 251 | |
dc.description.tableofcontents | 5.2. Ortogonalidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 | |
dc.description.tableofcontents | 5.3. Teorema de la distancia mínima . . . . . . . . . . . . . . . . . . 270 | |
dc.description.tableofcontents | 5.4. Teorema de representación de Riesz . . . . . . . . . . . . . . . 280 | |
dc.description.tableofcontents | 5.5. Sumas no ordenadas . . . . . . . . . . . . . . . . . . . . . . . . 288 | |
dc.description.tableofcontents | 5.6. Conjuntos Ortonormales Completos . . . . . . . . . . . . . . . 299 | |
dc.description.tableofcontents | 5.7. Adjunto de operador lineal acotado en un Hilbert . . . . . . . . 303 | |
dc.description.tableofcontents | 5.8. Operadores autoadjunto, unitario y normal . . . . . . . . . . . 308 | |
dc.description.tableofcontents | Bibliografía....... 314 | |
dc.description.tableofcontents | Índice alfabético........... 323 | |
dc.format.mimetype | application/pdf | |
dc.identifier.eisbn | 978-628-7808-08-9 | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9543 | |
dc.language.iso | spa | |
dc.publisher | Fondo Editorial - Universidad de Córdoba | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.relation.references | [1] Hans Wilhelm Alt. Linear functional analysis. An application-oriented introduction. Translated from the 6th German edition by Robert Nürn- berg. London: Springer, 2016. | |
dc.relation.references | [2] Dan Amir. Characterizations of Inner Product Spaces. Operator Theory: Advances and Applications. Birkhäuser Basel, 2013. | |
dc.relation.references | [3] T. Apostol. Mathematical analysis. 2nd ed. Addison-Wesley Publishing Company, 1974. | |
dc.relation.references | [4] George Bachman and Lawrence Narici. Functional analysis. Reprint of the 1966 original. Mineola, NY: Dover Publications, reprint of the 1966 original edition, 2000. | |
dc.relation.references | [5] Sterling K. Berberian. Lectures in functional analysis and operator theory., volume 15. Springer, New York, NY, 1974. | |
dc.relation.references | [6] Rajendra Bhatia. Notes on functional analysis., volume 50. New Delhi: Hindustan Book Agency, 2009. | |
dc.relation.references | [7] Piotr Biler and Alfred Witkowski. Problems in mathematical analysis., volume 132. New York etc.: Marcel Dekker, Inc., 1990. | |
dc.relation.references | [8] Charles E. Blair. The Baire category theorem implies the principle of dependent choices. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 25:933–934, 1977. | |
dc.relation.references | [9] R. Bonic. Linear functional analysis. Gordon and Breach Science Pu- blishers., 1969. | |
dc.relation.references | [10] Adam Bowers and Nigel J. Kalton. An introductory course in functional analysis. New York, NY: Springer, 2014. | |
dc.relation.references | [11] Alberto Bressan. Lecture notes on functional analysis. With applications to linear partial differential equations., volume 143. Providence, RI: American Mathematical Society (AMS), 2013. | |
dc.relation.references | [12] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. New York, NY: Springer, 2011. | |
dc.relation.references | [13] A. Brown and A. Page. Elements of functional analysis. The New Uni- versity Mathematics Series. London etc.: Van Nostrand Reinhold Com- pany., 1970. | |
dc.relation.references | [14] Arlen Brown and Carl Pearcy. Introduction to operator theory. I. Ele- ments of functional analysis., volume 55. Springer, New York, NY, 1977. | |
dc.relation.references | [15] Victor Bryant. Reducing classical axioms. The Mathematical Gazette, 55(391):38–40, 1971. | |
dc.relation.references | [16] J. W. S. Cassels. Local fields, volume 3 of Lond. Math. Soc. Stud. Texts. Cambridge University Press, Cambridge, 1986. | |
dc.relation.references | [17] Joan Cerdà. Linear functional analysis., volume 116. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Mate- mática Española, 2010. | |
dc.relation.references | [18] Gerardo R. Chacón, Humberto Rafeiro, and Juan Camilo Vallejo. Fun- ctional analysis. A terse introduction. Berlin: De Gruyter, 2017. | |
dc.relation.references | [19] Philippe G. Ciarlet. Linear and nonlinear functional analysis with ap- plications. With 401 problems and 52 figures., volume 130. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM)., 2013. | |
dc.relation.references | [20] John B. Conway. A course in functional analysis. 2nd ed., volume 96. New York etc.: Springer-Verlag, 2nd ed. edition, 1990. | |
dc.relation.references | [21] Constantin Costara and Dumitru Popa. Exercises in functional analysis. Dordrecht: Kluwer Academic Publishers, 2003. | |
dc.relation.references | [22] D. G. DeFigueiredo and L. A. Karlovitz. On the radial projection in normed spaces. Bull. Amer. Math. Soc., 73(3):364–368, 05 1967. | |
dc.relation.references | [23] F.R. Deutsch. Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer New York, 2012. | |
dc.relation.references | [24] Jean Dieudonné. History of functional analysis., volume 49. Elsevier, Amsterdam, 1981. | |
dc.relation.references | [25] Jean Dieudonné. History of functional analysis. 1st reprint., volume 49. Elsevier, Amsterdam, 1983. | |
dc.relation.references | [26] R. Edwards. Functional analysis. Theory and applications. New York: Holt Rinehart and Winston., 1965. | |
dc.relation.references | [27] Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis. Functional analy- sis. An introduction., volume 66. Providence, RI: American Mathema- tical Society (AMS), 2004. | |
dc.relation.references | [28] H. Enderton. Elements of set theory. New York: Academic Press, 1977. | |
dc.relation.references | [29] Otto Endler. Valuation theory. Universitext. Springer, Cham, 1972. | |
dc.relation.references | [30] Per Enflo. A counterexample to the approximation problem in Banach spaces. Acta Math., 130:309–317, 1973. | |
dc.relation.references | [31] R. Espinosa. Los matemáticos del café escocés. Laberintos e Infinitos, pages 26–30, Invierno 2003. | |
dc.relation.references | [32] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalu- cía, Jan Pelant, and Václav Zizler. Functional analysis and infinite- dimensional geometry., volume 8. New York, NY: Springer, 2001. | |
dc.relation.references | [33] Douglas Farenick. Fundamentals of functional analysis. Cham: Springer, 2016. | |
dc.relation.references | [34] Shaul R. Foguel. On a theorem by A. E. Taylor. Proc. Am. Math. Soc., 9:325, 1958. | |
dc.relation.references | [35] G. Gatica. Introducción al Análisis Funcional. Teoría y Aplicaciones. Reverte Ediciones S.A. de C.V., 2014. | |
dc.relation.references | [36] J.R. Giles. Introduction to the Analysis of Normed Linear Spaces. Australian Mathematical Society Lecture Series. Cambridge University Press, 2000. | |
dc.relation.references | [37] C. Goffman and G. Pedrick. First course in functional analysis. 2nd ed. New York: Chelsea Publishing Company., 1983. | |
dc.relation.references | [38] Dzung Minh Ha. Functional analysis. Vol. 1: A gentle introduction. Ithaca, NY: Matrix Editions, 2006. | |
dc.relation.references | [39] Markus Haase. Functional analysis. An elementary introduction., volume 156. Providence, RI: American Mathematical Society (AMS), 2014. | |
dc.relation.references | [40] Paul R. Halmos. A Hilbert space problem book. Reprint., volume 19. Springer, New York, NY, 1974. | |
dc.relation.references | [41] Vagn Lundsgaard Hansen. Functional analysis. Entering Hilbert space. Hackensack, NJ: World Scientific, 2006. | |
dc.relation.references | [42] Vagn Lundsgaard Hansen. Functional analysis. Entering Hilbert space. 2nd edition. Hackensack, NJ: World Scientific, 2nd edition edition, 2016. | |
dc.relation.references | [43] H. Hasse. Number theory. Transl. from the 3rd German. Class. Math. Berlin: Springer, reprint of the 1980 edition edition, 2002. | |
dc.relation.references | [44] A. Ya. Helemskii. Lectures and exercises on functional analysis., volume 233. Providence, RI: American Mathematical Society (AMS), 2006. | |
dc.relation.references | [45] H. Heuser. Functional analysis. Transl. by John Horvath. A Wiley- Interscience Publication. Chichester etc.: John Wiley & Sons., 1982. | |
dc.relation.references | [46] Francis Hirsch and Gilles Lacombe. Elements of functional analysis. Transl. from the French by Silvio Levy., volume 192. New York, NY: Springer, 1999. | |
dc.relation.references | [47] Vivian Hutson, John S. Pym, and Michael J. Cloud. Applications of fun- ctional analysis and operator theory. 2nd ed., volume 200. Amsterdam: Elsevier, 2nd ed. edition, 2005. | |
dc.relation.references | [48] P. K. Jain, O. P. Ahuja, and Khalil Ahmad. Functional analysis. New Delhi: New Age International (P) Ltd, Publishers (formerly Wiley Eas- tern Ltd), 1995. | |
dc.relation.references | [49] R. C. James. Characterizations of reflexivity. Stud. Math., 23:205–216, 1964. | |
dc.relation.references | [50] Robert C. James. A nonrelexive Banach space isometric with its second conjugate space. Proc. Natl. Acad. Sci. USA, 37:174–177, 1951. | |
dc.relation.references | [51] T.J. Jech. The Axiom of Choice. Dover Books on Mathematics. Dover Publications, 2013. | |
dc.relation.references | [52] P. Jorden and J. von Neumann. On inner products in linear, metric spaces. Ann. Math. (2), 36:719–723, 1935. | |
dc.relation.references | [53] Hugo D. Junghenn. Principles of analysis. Measure, integration, fun- ctional analysis, and applications. Boca Raton, FL: CRC Press, 2018. | |
dc.relation.references | [54] Vladimir Kadets. A course in functional analysis and measure theory. Translated from the Russian by Andrei Iacob. Cham: Springer, 2018. | |
dc.relation.references | [55] Shizuo Kakutani. Some characterizations of Euclidean space. Jpn. J. Math., 16:93–97, 1939. | |
dc.relation.references | [56] L. Kantorovich and G. P. Akilov. Functional analysis. Transl. from the Russian by Howard L. Silcock. 2nd ed. Oxford etc.: Pergamon Press., 1982. | |
dc.relation.references | [57] S. Kesavan. Topics in functional analysis and applications. New York etc.: John Wiley &| Sons, Inc.; New Delhi: Wiley Eastern Limited, 1989. | |
dc.relation.references | [58] S. Kesavan. Functional analysis., volume 52. New Delhi: Hindustan Book Agency, 2009. | |
dc.relation.references | [59] S. Kesavan. Functional analysis. Corrected reprint of the 2009 hard- back edition., volume 52. New Delhi: Hindustan Book Agency, corrected reprint of the 2009 hardback edition edition, 2014. | |
dc.relation.references | [60] A. A. Kirillov and A. D. Gvishiani. Theorems and problems in functional analysis. Transl. from the Russian by Harold H. McFaden. Springer, Cham, 1982. | |
dc.relation.references | [61] Vilmos Komornik. Lectures on functional analysis and the Lebesgue integral. Translated from the French by the author. London: Springer, 2016. | |
dc.relation.references | [62] Erwin Kreyszig. Introductory functional analysis with applications. New York etc.: John Wiley & Sons., 1978. | |
dc.relation.references | [63] V. K. Krishnan. Textbook of functional analysis. A problem-oriented approach. 2nd edition. New Delhi: PHI Learning, 2nd edition edition, 2014. | |
dc.relation.references | [64] C.S. Kubrusly. The Elements of Operator Theory. Birkhäuser Boston, 2011. | |
dc.relation.references | [65] Marek Kuczma. An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality. Edited by Attila Gilányi. 2nd ed. Basel: Birkhäuser, 2nd ed. edition, 2009. | |
dc.relation.references | [66] A. Kumar, S. Kumaresan, and B.K. Sarma. A Foundation Course in Mathematics. Alpha Science International, 2017. | |
dc.relation.references | [67] S. Kumaresan. Topology of Metric Spaces. Alpha Science International, 2005. | |
dc.relation.references | [68] S. S. Kutateladze. Fundamentals of functional analysis. Transl. from the Russian. Dordrecht: Kluwer Academic Publishers, 1995. | |
dc.relation.references | [69] Serge Lang. Real and functional analysis. 3. ed., volume 142. New York: Springer-Verlag, 3. ed. edition, 1993. | |
dc.relation.references | [70] Peter D. Lax. Functional analysis. Chichester: Wiley, 2002. | |
dc.relation.references | [71] B. Limaye. Functional analysis. 2nd ed. New Delhi: New Age Interna- tional Limited, 1996. | |
dc.relation.references | [72] B. Limaye. Linear functional analysis for scientists and engineers. Sin- gapore: Springer, 2016. | |
dc.relation.references | [73] J. Lindenstrauss and L. Tzafriri. On the complemented subspaces pro- blem. Isr. J. Math., 9:263–269, 1971. | |
dc.relation.references | [74] L. Lusternik and V. Sobolev. Elements of functional analysis. Authori- sed 3rd English translation from 2nd extensively enlarged and rewritten Russian edition. A Halsted Press Book. Delhi: Hindustan Publishing Corpn.; New York: John Wiley & Sons, Inc., 1974. | |
dc.relation.references | [75] Barbara D. MacCluer. Elementary functional analysis., volume 253. New York, NY: Springer, 2009. | |
dc.relation.references | [76] D. Mauldin. The Scottish Book. Mathematics from the Scottish Cafe. Boston - Basel - Stuttgart: Birkhäuser. XIII, 268 p. DM 58.00 (1981)., 1981. | |
dc.relation.references | [77] Reinhold Meise and Dietmar Vogt. Introduction to functional analysis. Transl. from the German by M. S. Ramanujan., volume 2. Oxford: Clarendon Press, 1997. | |
dc.relation.references | [78] A. F. Monna. Functional analysis in historical perspective. Academische Paperbacks. Utrecht, The Netherlands: Oosthoek , 1973. | |
dc.relation.references | [79] Terry J. Morrison. Functional analysis. An introduction to Banach space theory. Chichester: Wiley, 2001. | |
dc.relation.references | [80] A. Mukherjea and K. Pothoven. Real and functional analysis. 2nd ed. Part A: Real analysis. Mathematical concepts and methods in Science and Engineering, 27. New York, 1984. | |
dc.relation.references | [81] A. Mukherjea and K. Pothoven. Real and functional analysis. 2nd ed. Part B: Functional analysis. Mathematical Concepts and Methods in Science and Engineering, 28. New York, 1986. | |
dc.relation.references | [82] Joseph Muscat. Functional analysis. An introduction to metric spaces, Hilbert spaces, and Banach algebras. Cham: Springer, 2014. | |
dc.relation.references | [83] M. Thamban Nair. Functional analysis. A first course. New Delhi: Prentice-Hall of India, 2002. | |
dc.relation.references | [84] Ivan Niven. Irrational numbers., volume 11. Mathematical Association of America, Washington, DC, 1956. | |
dc.relation.references | [85] J. Tinsley Oden and Leszek F. Demkowicz. Applied functional analysis. 2nd ed. Boca Raton, FL: CRC Press, 2nd ed. edition, 2010. | |
dc.relation.references | [86] Sergei Ovchinnikov. Functional analysis. An introductory course. Cham: Springer, 2018. | |
dc.relation.references | [87] A. Pietsch. History of Banach Spaces and Linear Operators. Birkhäuser Boston, 2007. | |
dc.relation.references | [88] S. Ponnusamy, editor. Foundations of functional analysis. Pangbourne: Alpha Science International; Boca Raton, FL: CRC Press, 2002. | |
dc.relation.references | [88] S. Ponnusamy, editor. Foundations of functional analysis. Pangbourne: Alpha Science International; Boca Raton, FL: CRC Press, 2002. | |
dc.relation.references | [90] Matthew A. Pons. Real analysis for the undergraduate. With an invita- tion to functional analysis. New York, NY: Springer, 2014. | |
dc.relation.references | [91] S. David Promislow. A first course in functional analysis. Hoboken, NJ: John Wiley & Sons, 2008. | |
dc.relation.references | [92] Frigyes Riesz and Béla Sz.-Nagy. Functional analysis. Transl. from the 2nd French ed. by Leo F. Boron. Reprint of the 1955 orig. publ. by Ungar Publ. Co. New York: Dover Publications, Inc., reprint of the 1955 orig. publ. by ungar publ. co. edition, 1990. | |
dc.relation.references | [93] W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, 1976. | |
dc.relation.references | [94] W. Rudin. Real and Complex Analysis. McGraw-Hill series in higher mathematics. Tata McGraw-Hill, 2006. | |
dc.relation.references | [95] Walter Rudin. Functional analysis. 2nd ed. New York, NY: McGraw- Hill, 2nd ed. edition, 1991. | |
dc.relation.references | [96] Bryan P. Rynne and Martin A. Youngson. Linear functional analysis. London: Springer, 2000. | |
dc.relation.references | [97] Bryan P. Rynne and Martin A. Youngson. Linear functional analysis. 2nd ed. London: Springer, 2nd ed. edition, 2008. | |
dc.relation.references | [98] Amol Sasane. A friendly approach to functional analysis. Hackensack, NJ: World Scientific, 2017. | |
dc.relation.references | [99] Karen Saxe. Beginning functional analysis. New York, NY: Springer, 2002. | |
dc.relation.references | [100] M. Schechter. Principles of functional analysis. New York-London: Academic Press, 1971. | |
dc.relation.references | [101] Martin Schechter. Principles of functional analysis. 2nd ed., volume 36. Providence, RI: American Mathematical Society (AMS), 2nd ed. edition, 2001. | |
dc.relation.references | [102] Peter Schneider. Nonarchimedean functional analysis. Springer Monogr. Math. Berlin: Springer, 2002. | |
dc.relation.references | [103] Rabindranath Sen. A first course in functional analysis. Theory and applications. London: Anthem Press, 2013. | |
dc.relation.references | [104] Orr Moshe Shalit. A first course in functional analysis. Boca Raton, FL: CRC Press, 2017. | |
dc.relation.references | [105] Abul Hasan Siddiqi. Functional analysis and applications. Singapore: Springer, 2018. | |
dc.relation.references | [106] Alan D. Sokal. A really simple elementary proof of the uniform boun- dedness theorem. Am. Math. Mon., 118(5):450–452, 2011. | |
dc.relation.references | [107] Elias M. Stein and Rami Shakarchi. Functional analysis. Introduction to further topics in analysis. Princeton, NJ: Princeton University Press, 2011. | |
dc.relation.references | [108] Erdoğan S. Şuhubi. Functional analysis. Dordrecht: Kluwer Academic Publishers, 2003. | |
dc.relation.references | [109] V. S. Sunder. Functional analysis: spectral theory., volume 13. New Delhi: Hindustan Book Agency, 1997. | |
dc.relation.references | [110] Charles Swartz. An introduction to functional analysis., volume 157. New York etc.: Marcel Dekker, 1992. | |
dc.relation.references | [111] Charles Swartz. Elementary functional analysis. Hackensack, NJ: World Scientific, 2009. | |
dc.relation.references | [112] A. Taylor and D. Lay. Introduction to functional analysis. 2nd ed. (Re- print of the orig. 1980, publ. by John Wiley & Sons, Inc., New York etc.). Malabar, Florida: Robert E. Krieger Publishing Company. XI, 467 p., 1986. | |
dc.relation.references | [113] Alberto Torchinsky. Problems in real and functional analysis., volume 166. Providence, RI: American Mathematical Society (AMS), 2015. | |
dc.relation.references | [114] V. Trénoguine. Analyse fonctionnelle. Traduit du Russe: Mathéma- tiques. [Translations of Russian Works: Mathematics]. “Mir”, Moscow, 1985. Translated from the Russian by V. Kotliar. | |
dc.relation.references | [115] A. C. M. van Rooij. Non-Archimedean functional analysis, volume 51 of Pure Appl. Math., Marcel Dekker. Marcel Dekker, Inc., New York, NY, 1978. | |
dc.relation.references | [116] B. Z. Vulikh. Introduction to functional analysis for scientists and tech- nologists. International Series of Monographs on Pure and Applied Mathematics. 32. Oxford etc.: Pergamon Press, 1963. | |
dc.relation.references | [117] William R. Wade. An introduction to analysis. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2nd ed. edition, 2000. | |
dc.relation.references | [118] J. F. Rigby; James Wiegold. Independent axioms for vector spaces. The Mathematical Gazette, 57(399):56–62, 1973. | |
dc.relation.references | [119] A. Wilansky. Functional analysis. New York-Toronto-London: Blaisdell Publishing Company, a division of Ginn and Company, 1964. | |
dc.relation.references | [120] Albert Wilansky. The bounded additive operation on Banach space. Proc. Am. Math. Soc., 2:46, 1951. | |
dc.relation.references | [121] Michel Willem. Functional analysis. Fundamentals and applications. New York, NY: Birkhäuser/Springer, 2013. | |
dc.relation.references | [122] Yutaka Yamamoto. From vector spaces to function spaces. Introduction to functional analysis with applications., volume 127. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2012. | |
dc.relation.references | [123] K. Yosida. Functional analysis. Berlin-Göttingen-Heidelberg: Springer- Verlag, 1965. | |
dc.relation.references | [124] Kosaku Yosida. Functional analysis. Repr. of the 6th ed. Berlin: Springer-Verlag, repr. of the 6th ed. edition, 1994. | |
dc.relation.references | [125] Robert J. Zimmer. Essential results of functional analysis. Chicago etc.: The University of Chicago Press, 1990. | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.lcsh | Análisis funcional | spa |
dc.subject.lcsh | Análisis matemático | spa |
dc.title | Fundamentos del análisis funcional | |
dc.type | Libro | |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/book | |
dc.type.redcol | http://purl.org/redcol/resource_type/LIB | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: