Publicación:
Fundamentos del análisis funcional

dc.contributor.authorAduén Muskus, Hugo
dc.contributor.authorHerrón Osorio, Sigifredo
dc.date.accessioned2025-08-29T20:32:47Z
dc.date.available2025-08-29T20:32:47Z
dc.date.issued2025-08-29
dc.description.abstractEste libro está dirigido principalmente a estudiantes de pregrado y se espera que el lector tenga conocimiento de la teoría de conjuntos, principalmente de cardinalidad y, además, de algunos tópicos relacionados con espacios métricos y análisis real.
dc.description.editionPrimera edición
dc.description.tableofcontentsIntroducción............ iv
dc.description.tableofcontents1. Espacios vectoriales 1
dc.description.tableofcontents1.1. Definición de campo y valuaciones . . . . . . . . . . . . . . . . 1
dc.description.tableofcontents1.2. Definición de espacio vectorial y ejemplos . . . . . . . . . . . . 9
dc.description.tableofcontents1.3. Bases de Hamel y dimensión . . . . . . . . . . . . . . . . . . . . 27
dc.description.tableofcontents1.4. Operadores Lineales . . . . . . . . . . . . . . . . . . . . . . . . 47
dc.description.tableofcontents1.5. Funcionales lineales . . . . . . . . . . . . . . . . . . . . . . . . . 59
dc.description.tableofcontents1.6. El teorema de Hahn-Banach en espacios lineales . . . . . . . . . 67
dc.description.tableofcontents2. Espacios normados 82
dc.description.tableofcontents2.1. Definiciones y ejemplos . . . . . . . . . . . . . . . . . . . . . . . 82
dc.description.tableofcontents2.2. Espacios de Banach y ejemplos . . . . . . . . . . . . . . . . . . 91
dc.description.tableofcontents2.3. Completación de un espacio normado . . . . . . . . . . . . . . . 114
dc.description.tableofcontents2.4. Espacios normados de dimensión finita . . . . . . . . . . . . . . 118
dc.description.tableofcontents2.5. El Teorema de Baire . . . . . . . . . . . . . . . . . . . . . . . . 130
dc.description.tableofcontents2.6. Bases de Schauder y separabilidad . . . . . . . . . . . . . . . . 137
dc.description.tableofcontents3. Operadores lineales acotados 147
dc.description.tableofcontents3.1. Definiciones, propiedades y ejemplos . . . . . . . . . . . . . . . 147
dc.description.tableofcontents3.2. Operadores invertibles . . . . . . . . . . . . . . . . . . . . . . . 162
dc.description.tableofcontents3.3. Funcionales lineales acotados . . . . . . . . . . . . . . . . . . . 166
dc.description.tableofcontents3.4. El teorema de Hahn-Banach en espacios normados . . . . . . . 186
dc.description.tableofcontents3.5. Dualidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
dc.description.tableofcontents3.6. Espacios reflexivos . . . . . . . . . . . . . . . . . . . . . . . . . 213
dc.description.tableofcontents3.7. El operador adjunto . . . . . . . . . . . . . . . . . . . . . . . . 220
dc.description.tableofcontents4. Teoremas fundamentales 224
dc.description.tableofcontents4.1. Teorema de Banach–Steinhaus . . . . . . . . . . . . . . . . . . 225
dc.description.tableofcontents4.2. Teorema de la aplicación abierta . . . . . . . . . . . . . . . . . 232
dc.description.tableofcontents4.3. Teorema de la gráfica cerrada . . . . . . . . . . . . . . . . . . . 238
dc.description.tableofcontents4.4. Teorema de normas equivalentes implica TBS . . . . . . . . . . 247
dc.description.tableofcontents5. Espacios de Hilbert 250
dc.description.tableofcontents5.1. Espacios prehilbertiano y espacios de Hilbert . . . . . . . . . . 251
dc.description.tableofcontents5.2. Ortogonalidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
dc.description.tableofcontents5.3. Teorema de la distancia mínima . . . . . . . . . . . . . . . . . . 270
dc.description.tableofcontents5.4. Teorema de representación de Riesz . . . . . . . . . . . . . . . 280
dc.description.tableofcontents5.5. Sumas no ordenadas . . . . . . . . . . . . . . . . . . . . . . . . 288
dc.description.tableofcontents5.6. Conjuntos Ortonormales Completos . . . . . . . . . . . . . . . 299
dc.description.tableofcontents5.7. Adjunto de operador lineal acotado en un Hilbert . . . . . . . . 303
dc.description.tableofcontents5.8. Operadores autoadjunto, unitario y normal . . . . . . . . . . . 308
dc.description.tableofcontentsBibliografía....... 314
dc.description.tableofcontentsÍndice alfabético........... 323
dc.format.mimetypeapplication/pdf
dc.identifier.eisbn978-628-7808-08-9
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9543
dc.language.isospa
dc.publisherFondo Editorial - Universidad de Córdoba
dc.publisher.placeMontería, Córdoba, Colombia
dc.relation.references[1] Hans Wilhelm Alt. Linear functional analysis. An application-oriented introduction. Translated from the 6th German edition by Robert Nürn- berg. London: Springer, 2016.
dc.relation.references[2] Dan Amir. Characterizations of Inner Product Spaces. Operator Theory: Advances and Applications. Birkhäuser Basel, 2013.
dc.relation.references[3] T. Apostol. Mathematical analysis. 2nd ed. Addison-Wesley Publishing Company, 1974.
dc.relation.references[4] George Bachman and Lawrence Narici. Functional analysis. Reprint of the 1966 original. Mineola, NY: Dover Publications, reprint of the 1966 original edition, 2000.
dc.relation.references[5] Sterling K. Berberian. Lectures in functional analysis and operator theory., volume 15. Springer, New York, NY, 1974.
dc.relation.references[6] Rajendra Bhatia. Notes on functional analysis., volume 50. New Delhi: Hindustan Book Agency, 2009.
dc.relation.references[7] Piotr Biler and Alfred Witkowski. Problems in mathematical analysis., volume 132. New York etc.: Marcel Dekker, Inc., 1990.
dc.relation.references[8] Charles E. Blair. The Baire category theorem implies the principle of dependent choices. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 25:933–934, 1977.
dc.relation.references[9] R. Bonic. Linear functional analysis. Gordon and Breach Science Pu- blishers., 1969.
dc.relation.references[10] Adam Bowers and Nigel J. Kalton. An introductory course in functional analysis. New York, NY: Springer, 2014.
dc.relation.references[11] Alberto Bressan. Lecture notes on functional analysis. With applications to linear partial differential equations., volume 143. Providence, RI: American Mathematical Society (AMS), 2013.
dc.relation.references[12] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. New York, NY: Springer, 2011.
dc.relation.references[13] A. Brown and A. Page. Elements of functional analysis. The New Uni- versity Mathematics Series. London etc.: Van Nostrand Reinhold Com- pany., 1970.
dc.relation.references[14] Arlen Brown and Carl Pearcy. Introduction to operator theory. I. Ele- ments of functional analysis., volume 55. Springer, New York, NY, 1977.
dc.relation.references[15] Victor Bryant. Reducing classical axioms. The Mathematical Gazette, 55(391):38–40, 1971.
dc.relation.references[16] J. W. S. Cassels. Local fields, volume 3 of Lond. Math. Soc. Stud. Texts. Cambridge University Press, Cambridge, 1986.
dc.relation.references[17] Joan Cerdà. Linear functional analysis., volume 116. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Mate- mática Española, 2010.
dc.relation.references[18] Gerardo R. Chacón, Humberto Rafeiro, and Juan Camilo Vallejo. Fun- ctional analysis. A terse introduction. Berlin: De Gruyter, 2017.
dc.relation.references[19] Philippe G. Ciarlet. Linear and nonlinear functional analysis with ap- plications. With 401 problems and 52 figures., volume 130. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM)., 2013.
dc.relation.references[20] John B. Conway. A course in functional analysis. 2nd ed., volume 96. New York etc.: Springer-Verlag, 2nd ed. edition, 1990.
dc.relation.references[21] Constantin Costara and Dumitru Popa. Exercises in functional analysis. Dordrecht: Kluwer Academic Publishers, 2003.
dc.relation.references[22] D. G. DeFigueiredo and L. A. Karlovitz. On the radial projection in normed spaces. Bull. Amer. Math. Soc., 73(3):364–368, 05 1967.
dc.relation.references[23] F.R. Deutsch. Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer New York, 2012.
dc.relation.references[24] Jean Dieudonné. History of functional analysis., volume 49. Elsevier, Amsterdam, 1981.
dc.relation.references[25] Jean Dieudonné. History of functional analysis. 1st reprint., volume 49. Elsevier, Amsterdam, 1983.
dc.relation.references[26] R. Edwards. Functional analysis. Theory and applications. New York: Holt Rinehart and Winston., 1965.
dc.relation.references[27] Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis. Functional analy- sis. An introduction., volume 66. Providence, RI: American Mathema- tical Society (AMS), 2004.
dc.relation.references[28] H. Enderton. Elements of set theory. New York: Academic Press, 1977.
dc.relation.references[29] Otto Endler. Valuation theory. Universitext. Springer, Cham, 1972.
dc.relation.references[30] Per Enflo. A counterexample to the approximation problem in Banach spaces. Acta Math., 130:309–317, 1973.
dc.relation.references[31] R. Espinosa. Los matemáticos del café escocés. Laberintos e Infinitos, pages 26–30, Invierno 2003.
dc.relation.references[32] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalu- cía, Jan Pelant, and Václav Zizler. Functional analysis and infinite- dimensional geometry., volume 8. New York, NY: Springer, 2001.
dc.relation.references[33] Douglas Farenick. Fundamentals of functional analysis. Cham: Springer, 2016.
dc.relation.references[34] Shaul R. Foguel. On a theorem by A. E. Taylor. Proc. Am. Math. Soc., 9:325, 1958.
dc.relation.references[35] G. Gatica. Introducción al Análisis Funcional. Teoría y Aplicaciones. Reverte Ediciones S.A. de C.V., 2014.
dc.relation.references[36] J.R. Giles. Introduction to the Analysis of Normed Linear Spaces. Australian Mathematical Society Lecture Series. Cambridge University Press, 2000.
dc.relation.references[37] C. Goffman and G. Pedrick. First course in functional analysis. 2nd ed. New York: Chelsea Publishing Company., 1983.
dc.relation.references[38] Dzung Minh Ha. Functional analysis. Vol. 1: A gentle introduction. Ithaca, NY: Matrix Editions, 2006.
dc.relation.references[39] Markus Haase. Functional analysis. An elementary introduction., volume 156. Providence, RI: American Mathematical Society (AMS), 2014.
dc.relation.references[40] Paul R. Halmos. A Hilbert space problem book. Reprint., volume 19. Springer, New York, NY, 1974.
dc.relation.references[41] Vagn Lundsgaard Hansen. Functional analysis. Entering Hilbert space. Hackensack, NJ: World Scientific, 2006.
dc.relation.references[42] Vagn Lundsgaard Hansen. Functional analysis. Entering Hilbert space. 2nd edition. Hackensack, NJ: World Scientific, 2nd edition edition, 2016.
dc.relation.references[43] H. Hasse. Number theory. Transl. from the 3rd German. Class. Math. Berlin: Springer, reprint of the 1980 edition edition, 2002.
dc.relation.references[44] A. Ya. Helemskii. Lectures and exercises on functional analysis., volume 233. Providence, RI: American Mathematical Society (AMS), 2006.
dc.relation.references[45] H. Heuser. Functional analysis. Transl. by John Horvath. A Wiley- Interscience Publication. Chichester etc.: John Wiley & Sons., 1982.
dc.relation.references[46] Francis Hirsch and Gilles Lacombe. Elements of functional analysis. Transl. from the French by Silvio Levy., volume 192. New York, NY: Springer, 1999.
dc.relation.references[47] Vivian Hutson, John S. Pym, and Michael J. Cloud. Applications of fun- ctional analysis and operator theory. 2nd ed., volume 200. Amsterdam: Elsevier, 2nd ed. edition, 2005.
dc.relation.references[48] P. K. Jain, O. P. Ahuja, and Khalil Ahmad. Functional analysis. New Delhi: New Age International (P) Ltd, Publishers (formerly Wiley Eas- tern Ltd), 1995.
dc.relation.references[49] R. C. James. Characterizations of reflexivity. Stud. Math., 23:205–216, 1964.
dc.relation.references[50] Robert C. James. A nonrelexive Banach space isometric with its second conjugate space. Proc. Natl. Acad. Sci. USA, 37:174–177, 1951.
dc.relation.references[51] T.J. Jech. The Axiom of Choice. Dover Books on Mathematics. Dover Publications, 2013.
dc.relation.references[52] P. Jorden and J. von Neumann. On inner products in linear, metric spaces. Ann. Math. (2), 36:719–723, 1935.
dc.relation.references[53] Hugo D. Junghenn. Principles of analysis. Measure, integration, fun- ctional analysis, and applications. Boca Raton, FL: CRC Press, 2018.
dc.relation.references[54] Vladimir Kadets. A course in functional analysis and measure theory. Translated from the Russian by Andrei Iacob. Cham: Springer, 2018.
dc.relation.references[55] Shizuo Kakutani. Some characterizations of Euclidean space. Jpn. J. Math., 16:93–97, 1939.
dc.relation.references[56] L. Kantorovich and G. P. Akilov. Functional analysis. Transl. from the Russian by Howard L. Silcock. 2nd ed. Oxford etc.: Pergamon Press., 1982.
dc.relation.references[57] S. Kesavan. Topics in functional analysis and applications. New York etc.: John Wiley &| Sons, Inc.; New Delhi: Wiley Eastern Limited, 1989.
dc.relation.references[58] S. Kesavan. Functional analysis., volume 52. New Delhi: Hindustan Book Agency, 2009.
dc.relation.references[59] S. Kesavan. Functional analysis. Corrected reprint of the 2009 hard- back edition., volume 52. New Delhi: Hindustan Book Agency, corrected reprint of the 2009 hardback edition edition, 2014.
dc.relation.references[60] A. A. Kirillov and A. D. Gvishiani. Theorems and problems in functional analysis. Transl. from the Russian by Harold H. McFaden. Springer, Cham, 1982.
dc.relation.references[61] Vilmos Komornik. Lectures on functional analysis and the Lebesgue integral. Translated from the French by the author. London: Springer, 2016.
dc.relation.references[62] Erwin Kreyszig. Introductory functional analysis with applications. New York etc.: John Wiley & Sons., 1978.
dc.relation.references[63] V. K. Krishnan. Textbook of functional analysis. A problem-oriented approach. 2nd edition. New Delhi: PHI Learning, 2nd edition edition, 2014.
dc.relation.references[64] C.S. Kubrusly. The Elements of Operator Theory. Birkhäuser Boston, 2011.
dc.relation.references[65] Marek Kuczma. An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality. Edited by Attila Gilányi. 2nd ed. Basel: Birkhäuser, 2nd ed. edition, 2009.
dc.relation.references[66] A. Kumar, S. Kumaresan, and B.K. Sarma. A Foundation Course in Mathematics. Alpha Science International, 2017.
dc.relation.references[67] S. Kumaresan. Topology of Metric Spaces. Alpha Science International, 2005.
dc.relation.references[68] S. S. Kutateladze. Fundamentals of functional analysis. Transl. from the Russian. Dordrecht: Kluwer Academic Publishers, 1995.
dc.relation.references[69] Serge Lang. Real and functional analysis. 3. ed., volume 142. New York: Springer-Verlag, 3. ed. edition, 1993.
dc.relation.references[70] Peter D. Lax. Functional analysis. Chichester: Wiley, 2002.
dc.relation.references[71] B. Limaye. Functional analysis. 2nd ed. New Delhi: New Age Interna- tional Limited, 1996.
dc.relation.references[72] B. Limaye. Linear functional analysis for scientists and engineers. Sin- gapore: Springer, 2016.
dc.relation.references[73] J. Lindenstrauss and L. Tzafriri. On the complemented subspaces pro- blem. Isr. J. Math., 9:263–269, 1971.
dc.relation.references[74] L. Lusternik and V. Sobolev. Elements of functional analysis. Authori- sed 3rd English translation from 2nd extensively enlarged and rewritten Russian edition. A Halsted Press Book. Delhi: Hindustan Publishing Corpn.; New York: John Wiley & Sons, Inc., 1974.
dc.relation.references[75] Barbara D. MacCluer. Elementary functional analysis., volume 253. New York, NY: Springer, 2009.
dc.relation.references[76] D. Mauldin. The Scottish Book. Mathematics from the Scottish Cafe. Boston - Basel - Stuttgart: Birkhäuser. XIII, 268 p. DM 58.00 (1981)., 1981.
dc.relation.references[77] Reinhold Meise and Dietmar Vogt. Introduction to functional analysis. Transl. from the German by M. S. Ramanujan., volume 2. Oxford: Clarendon Press, 1997.
dc.relation.references[78] A. F. Monna. Functional analysis in historical perspective. Academische Paperbacks. Utrecht, The Netherlands: Oosthoek , 1973.
dc.relation.references[79] Terry J. Morrison. Functional analysis. An introduction to Banach space theory. Chichester: Wiley, 2001.
dc.relation.references[80] A. Mukherjea and K. Pothoven. Real and functional analysis. 2nd ed. Part A: Real analysis. Mathematical concepts and methods in Science and Engineering, 27. New York, 1984.
dc.relation.references[81] A. Mukherjea and K. Pothoven. Real and functional analysis. 2nd ed. Part B: Functional analysis. Mathematical Concepts and Methods in Science and Engineering, 28. New York, 1986.
dc.relation.references[82] Joseph Muscat. Functional analysis. An introduction to metric spaces, Hilbert spaces, and Banach algebras. Cham: Springer, 2014.
dc.relation.references[83] M. Thamban Nair. Functional analysis. A first course. New Delhi: Prentice-Hall of India, 2002.
dc.relation.references[84] Ivan Niven. Irrational numbers., volume 11. Mathematical Association of America, Washington, DC, 1956.
dc.relation.references[85] J. Tinsley Oden and Leszek F. Demkowicz. Applied functional analysis. 2nd ed. Boca Raton, FL: CRC Press, 2nd ed. edition, 2010.
dc.relation.references[86] Sergei Ovchinnikov. Functional analysis. An introductory course. Cham: Springer, 2018.
dc.relation.references[87] A. Pietsch. History of Banach Spaces and Linear Operators. Birkhäuser Boston, 2007.
dc.relation.references[88] S. Ponnusamy, editor. Foundations of functional analysis. Pangbourne: Alpha Science International; Boca Raton, FL: CRC Press, 2002.
dc.relation.references[88] S. Ponnusamy, editor. Foundations of functional analysis. Pangbourne: Alpha Science International; Boca Raton, FL: CRC Press, 2002.
dc.relation.references[90] Matthew A. Pons. Real analysis for the undergraduate. With an invita- tion to functional analysis. New York, NY: Springer, 2014.
dc.relation.references[91] S. David Promislow. A first course in functional analysis. Hoboken, NJ: John Wiley & Sons, 2008.
dc.relation.references[92] Frigyes Riesz and Béla Sz.-Nagy. Functional analysis. Transl. from the 2nd French ed. by Leo F. Boron. Reprint of the 1955 orig. publ. by Ungar Publ. Co. New York: Dover Publications, Inc., reprint of the 1955 orig. publ. by ungar publ. co. edition, 1990.
dc.relation.references[93] W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, 1976.
dc.relation.references[94] W. Rudin. Real and Complex Analysis. McGraw-Hill series in higher mathematics. Tata McGraw-Hill, 2006.
dc.relation.references[95] Walter Rudin. Functional analysis. 2nd ed. New York, NY: McGraw- Hill, 2nd ed. edition, 1991.
dc.relation.references[96] Bryan P. Rynne and Martin A. Youngson. Linear functional analysis. London: Springer, 2000.
dc.relation.references[97] Bryan P. Rynne and Martin A. Youngson. Linear functional analysis. 2nd ed. London: Springer, 2nd ed. edition, 2008.
dc.relation.references[98] Amol Sasane. A friendly approach to functional analysis. Hackensack, NJ: World Scientific, 2017.
dc.relation.references[99] Karen Saxe. Beginning functional analysis. New York, NY: Springer, 2002.
dc.relation.references[100] M. Schechter. Principles of functional analysis. New York-London: Academic Press, 1971.
dc.relation.references[101] Martin Schechter. Principles of functional analysis. 2nd ed., volume 36. Providence, RI: American Mathematical Society (AMS), 2nd ed. edition, 2001.
dc.relation.references[102] Peter Schneider. Nonarchimedean functional analysis. Springer Monogr. Math. Berlin: Springer, 2002.
dc.relation.references[103] Rabindranath Sen. A first course in functional analysis. Theory and applications. London: Anthem Press, 2013.
dc.relation.references[104] Orr Moshe Shalit. A first course in functional analysis. Boca Raton, FL: CRC Press, 2017.
dc.relation.references[105] Abul Hasan Siddiqi. Functional analysis and applications. Singapore: Springer, 2018.
dc.relation.references[106] Alan D. Sokal. A really simple elementary proof of the uniform boun- dedness theorem. Am. Math. Mon., 118(5):450–452, 2011.
dc.relation.references[107] Elias M. Stein and Rami Shakarchi. Functional analysis. Introduction to further topics in analysis. Princeton, NJ: Princeton University Press, 2011.
dc.relation.references[108] Erdoğan S. Şuhubi. Functional analysis. Dordrecht: Kluwer Academic Publishers, 2003.
dc.relation.references[109] V. S. Sunder. Functional analysis: spectral theory., volume 13. New Delhi: Hindustan Book Agency, 1997.
dc.relation.references[110] Charles Swartz. An introduction to functional analysis., volume 157. New York etc.: Marcel Dekker, 1992.
dc.relation.references[111] Charles Swartz. Elementary functional analysis. Hackensack, NJ: World Scientific, 2009.
dc.relation.references[112] A. Taylor and D. Lay. Introduction to functional analysis. 2nd ed. (Re- print of the orig. 1980, publ. by John Wiley & Sons, Inc., New York etc.). Malabar, Florida: Robert E. Krieger Publishing Company. XI, 467 p., 1986.
dc.relation.references[113] Alberto Torchinsky. Problems in real and functional analysis., volume 166. Providence, RI: American Mathematical Society (AMS), 2015.
dc.relation.references[114] V. Trénoguine. Analyse fonctionnelle. Traduit du Russe: Mathéma- tiques. [Translations of Russian Works: Mathematics]. “Mir”, Moscow, 1985. Translated from the Russian by V. Kotliar.
dc.relation.references[115] A. C. M. van Rooij. Non-Archimedean functional analysis, volume 51 of Pure Appl. Math., Marcel Dekker. Marcel Dekker, Inc., New York, NY, 1978.
dc.relation.references[116] B. Z. Vulikh. Introduction to functional analysis for scientists and tech- nologists. International Series of Monographs on Pure and Applied Mathematics. 32. Oxford etc.: Pergamon Press, 1963.
dc.relation.references[117] William R. Wade. An introduction to analysis. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2nd ed. edition, 2000.
dc.relation.references[118] J. F. Rigby; James Wiegold. Independent axioms for vector spaces. The Mathematical Gazette, 57(399):56–62, 1973.
dc.relation.references[119] A. Wilansky. Functional analysis. New York-Toronto-London: Blaisdell Publishing Company, a division of Ginn and Company, 1964.
dc.relation.references[120] Albert Wilansky. The bounded additive operation on Banach space. Proc. Am. Math. Soc., 2:46, 1951.
dc.relation.references[121] Michel Willem. Functional analysis. Fundamentals and applications. New York, NY: Birkhäuser/Springer, 2013.
dc.relation.references[122] Yutaka Yamamoto. From vector spaces to function spaces. Introduction to functional analysis with applications., volume 127. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2012.
dc.relation.references[123] K. Yosida. Functional analysis. Berlin-Göttingen-Heidelberg: Springer- Verlag, 1965.
dc.relation.references[124] Kosaku Yosida. Functional analysis. Repr. of the 6th ed. Berlin: Springer-Verlag, repr. of the 6th ed. edition, 1994.
dc.relation.references[125] Robert J. Zimmer. Essential results of functional analysis. Chicago etc.: The University of Chicago Press, 1990.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lcshAnálisis funcionalspa
dc.subject.lcshAnálisis matemáticospa
dc.titleFundamentos del análisis funcional
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.redcolhttp://purl.org/redcol/resource_type/LIB
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Fundamentos analisis funcional.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización de publicación.pdf
Tamaño:
295.84 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones