Publicación: Evaluación energética de la cogeneración mediante un motor de combustión interna acoplado a un sistema de refrigeración por absorción usando biogás como combustible
dc.contributor.advisor | Rhenals Julio, Jesús David | |
dc.contributor.author | Avilez Olea, Juan Rafael | |
dc.contributor.author | Peréz Dickson, José Camilo | |
dc.date.accessioned | 2021-09-29T00:24:06Z | |
dc.date.available | 2021-09-29T00:24:06Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Cogeneration systems are now increasingly appearing in the industrial and commercial sector, since their implementation brings with it a number of energy, economic and environmental benefits. This makes a study of the general operation of the cogeneration system implemented with a biogas-fueled ICM and coupled to an absorption refrigeration system, which is a very useful application of this type of system. The objective of this work was to perform an energy analysis of the entire cogeneration system. The development of this strategy begins with the definition of the operating parameters in the engine, and then the modeling of the system using the ASPEN HYSYS® computational tool. Subsequently, a parametric analysis of the output variables in the system is presented. The results show that if an adequate selection of the methane composition in the fuel is made and the optimal operating parameters are adjusted in the ICM, good results can be obtained, being possible to implement them in real industrial applications. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | Los sistemas de cogeneración empiezan aparecer actualmente cada vez más en el sector industrial y comercial, puesto que su implementación trae consigo una serie de beneficios energéticos, económicos y ambientales. Lo que hace plantear un estudio sobre el funcionamiento general del sistema de cogeneración implementado un MCI alimentado con biogás y acoplado a un sistema de refrigeración por absorción, siendo esta una aplicación muy útil de este tipo de sistemas. El objetivo del presente trabajo fue realizar un análisis energético de todo el sistema de cogeneración. El desarrollo de esta estrategia inicia con la definición de los parámetro operativos en el motor, para en segunda instancia realizar el modelamiento del sistema haciendo uso de la herramienta computación ASPEN HYSYS®. Y posteriormente presentar un análisis paramétrico de las variables de salida en el sistema. Los resultados muestran que se puede si se realiza una selección adecuada de la composición de metano en el combustible y se ajustan los parámetros operativos óptimos en el MCI se pueden obtener unos buenos resultados, siendo posible implementarlos en la industrial real. | spa |
dc.description.tableofcontents | 1. Resumen ____________________________________________________________ 6 | spa |
dc.description.tableofcontents | 2. Abstract _____________________________________________________________ 7 | spa |
dc.description.tableofcontents | 3. Introducción _________________________________________________________ 8 | spa |
dc.description.tableofcontents | 4. Objetivos ___________________________________________________________ 10 | spa |
dc.description.tableofcontents | 4.1. Objetivo General ________________________________________________________ 10 | spa |
dc.description.tableofcontents | 4.2. Objetivos Específicos _____________________________________________________ 10 | spa |
dc.description.tableofcontents | 5. Desarrollo __________________________________________________________ 11 | spa |
dc.description.tableofcontents | 5.1. Contexto de la cogeneración en Colombia ___________________________________ 11 | spa |
dc.description.tableofcontents | 6. Antecedentes ________________________________________________________ 12 | spa |
dc.description.tableofcontents | 7. Metodología ________________________________________________________ 19 | spa |
dc.description.tableofcontents | 7.1. Selección de parámetros operativos, combustible y ficha técnica del MCI __________ 19 | spa |
dc.description.tableofcontents | 7.2. Modelo computacional del sistema de cogeneración. ___________________________ 21 | spa |
dc.description.tableofcontents | 7.3. Simulación del motor_____________________________________________________ 22 | spa |
dc.description.tableofcontents | 7.4. Modelo del ciclo de refrigeración por absorción _______________________________ 24 | spa |
dc.description.tableofcontents | 8. Análisis y Resultados _________________________________________________ 26 | spa |
dc.description.tableofcontents | 8.1. Cálculos previos _________________________________________________________ 26 | spa |
dc.description.tableofcontents | 8.2. Variación en el exceso de aire _____________________________________________ 29 | spa |
dc.description.tableofcontents | 8.3. Variación en la presión ___________________________________________________ 31 | spa |
dc.description.tableofcontents | 8.4. Variación de la temperatura _______________________________________________ 33 | spa |
dc.description.tableofcontents | 8.5. Variación de la composición del combustible. _________________________________ 35 | spa |
dc.description.tableofcontents | 8.6. Validación _____________________________________________________________ 42 | spa |
dc.description.tableofcontents | 9. Conclusiones ________________________________________________________ 44 | spa |
dc.description.tableofcontents | 10. Bibliografía _______________________________________________________ 46 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4585 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Internal combustion engine | eng |
dc.subject.keywords | Absorption refrigeration system | eng |
dc.subject.keywords | Biogas | eng |
dc.subject.proposal | Motor de combustión interna | spa |
dc.subject.proposal | Sistema de refrigeración por absorción | spa |
dc.subject.proposal | Biogás | spa |
dc.title | Evaluación energética de la cogeneración mediante un motor de combustión interna acoplado a un sistema de refrigeración por absorción usando biogás como combustible | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Al Moussawi, H., Fardoun, F., & Louahlia, H. (2017). Selection based on differences between cogeneration and trigeneration in various prime mover technologies. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.02.077 | spa |
dcterms.references | Arbabi, P., Abbassi, A., Mansoori, Z., & Seyfi, M. (2017). Joint numerical-technical analysis and economical evaluation of applying small internal combustion engines in combined heat and power (CHP). Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.11.064 | spa |
dcterms.references | Balakheli, M. M., Chahartaghi, M., Sheykhi, M., Hashemian, S. M., & Rafiee, N. (2020). Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.112253 | spa |
dcterms.references | Chen, Y., Han, W., & Jin, H. (2016). Investigation of an ammonia-water combined power and cooling system driven by jacket water and exhaust gas heat of internal combustion engine. ECOS 2016 - Proceedings of the 29th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems. https://doi.org/10.1016/j.ijrefrig.2017.06.018 | spa |
dcterms.references | Dalpaz, R., Konrad, O., Cândido da Silva Cyrne, C., Panis Barzotto, H., Hasan, C., & Guerini Filho, M. (2020). Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2020.100774 | spa |
dcterms.references | Galp. (2011). Definición de cogeneración. https://www.galpenergia.com/ES/agalpenergia/Os-nossos-negocios/Gas-Power/Power/Cogeracao/Paginas/Definicion-de-cogeneracion.aspx | spa |
dcterms.references | Hassan, A. A., Elwardany, A. E., Ookawara, S., Ahmed, M., & El-Sharkawy, I. I. (2020). Integrated adsorption-based multigeneration systems: A critical review and future trends. In International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2020.04.001 | spa |
dcterms.references | IDAE. (2007). Biomasa: Producción eléctrica y cogeneración. Energias Renovables, 44. https://www.idae.es/sites/default/files/documentos/publicaciones_idae/documentos_10737_biomasa_prod_elec_y_cogeneracion_07_50465b78.pdf | spa |
dcterms.references | Jiménez, G. (2016). Análisis de la Eficiencia De La Combustión De Biogás en en Quemador Boliviano. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales. | spa |
dcterms.references | John, A., Andrés, A., & Francisco, C. (2016). Nuevos elementos para el estudio de cogeneración en Colombia. https://revistas.udea.edu.co/index.php/ingenieria/article/view/326339/20783614 | spa |
dcterms.references | Lamidi, R. O., Jiang, L., Wang, Y., Pathare, P. B., Aguilar, M. C., Wang, R., Eshoul, N. M., & Roskilly, A. P. (2019). Techno-economic analysis of a cogeneration system for post-harvest loss reduction: A case study in sub-Saharan rural community. Energies. https://doi.org/10.3390/en12050872 | spa |
dcterms.references | Liu, Z., Zhao, Y., & Wang, X. (2020). Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response. Applied Energy. https://doi.org/10.1016/j.apenergy.2020.115819 | spa |
dcterms.references | Perrone, D., Morrone, P., Castiglione, T., Algieri, A., & Bova, S. (2018). Analysis of a Trigeneration Plant under Transient Operating Conditions. Energy Procedia. https://doi.org/10.1016/j.egypro.2018.08.144 | spa |
dcterms.references | Sheykhi, M., Chahartaghi, M., Safaei Pirooz, A. A., & Flay, R. G. J. (2020). Investigation of the effects of operating parameters of an internal combustion engine on the performance and fuel consumption of a CCHP system. Energy. https://doi.org/10.1016/j.energy.2020.119041 | spa |
dcterms.references | Soltani, M., Chahartaghi, M., Majid Hashemian, S., & Faghih Shojaei, A. (2020). Technical and economic evaluations of combined cooling, heating and power (CCHP) system with gas engine in commercial cold storages. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.112877 | spa |
dcterms.references | Sui, J., Liu, H., Liu, F., & Han, W. (2018). A distributed energy system with advanced utilization of internal combustion engine waste heat. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/cseejpes.2015.01260 | spa |
dcterms.references | Tian, H., Jing, D., Wang, X., Liu, P., & Yu, Z. (2018). Part-load performance analysis of cogeneration system for engine waste heat recovery. Huagong Xuebao/CIESC Journal. https://doi.org/10.11949/j.issn.0438-1157.20170903 | spa |
dcterms.references | UPME. (2015). Evaluación de la contribución económica del sector de hidrocarburos colombiano frente a diversos escenarios de producción. Upme. | spa |
dcterms.references | VARÓN LÓPEZ, R. (2020). CONTEXTUALIZACIÓN DE LA GENERACIÓN DISTRIBUIDA DE ENERGÍA ELÉCTRICA POR SISTEMAS DE COGENERACIÓN Y ENERGÍAS ALTERNATIVAS EN COLOMBIA. EAN. | spa |
dcterms.references | Wang, X., Shu, G., Tian, H., Wang, R., & Cai, J. (2020). Dynamic performance comparison of different cascade waste heat recovery systems for internal combustion engine in combined cooling, heating and power. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.114245 | spa |
dcterms.references | Wegener, M., Malmquist, A., Isalgué, A., & Martin, A. (2018). Biomass-fired combined cooling, heating and power for small scale applications – A review. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2018.07.044 | spa |
dcterms.references | Xu, X., Li, Y., Yang, S. Y., & Chen, G. (2017). A review of fishing vessel refrigeration systems driven by exhaust heat from engines. In Applied Energy. https://doi.org/10.1016/j.apenergy.2017.06.019 | spa |
dcterms.references | Zhang, D., Zhang, B., Zheng, Y., Zhang, R., Liu, P., & An, Z. (2021). Economic assessment and regional adaptability analysis of CCHP system coupled with biomass-gas based on year-round performance. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2021.101141 | spa |
dcterms.references | Zhou, S., He, G., Li, Y., Liang, X., Pang, Q., & Cai, D. (2021). Comprehensive experimental evaluation of an exhaust-heat-driven absorption refrigeration cycle system using NH3-NaSCN as working pair. International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2021.01.013 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: