Publicación:
Adsorption of mercury species on the 1T-MnO2 and 1T-MnO2/Graphene surfaces

dc.contributor.advisorOrtega López, Césarspa
dc.contributor.authorMorinson Negrete, Juan David
dc.date.accessioned2022-08-22T18:17:16Z
dc.date.available2022-08-22T18:17:16Z
dc.date.issued2022-08-13
dc.description.abstractThe most relevant results are shown in this thesis report. In this thesis a first-principles study of the adsorption of some mercury species (HgCl and HgO) on the 1T- MnO2/Graphene heterostructure was carried out. Calculations were performed using the Density Functional Theory (DFT) within the framework of Generalized Gradient Approximation of Perdew-Burke and Ernzerhof (GGA-PBE) along with ultrasoft atomic pseudopotentials. In this investigation, the surface of interest is the monolayer of 1T-MnO2 coupled to a monolayer of Graphene and its interaction with the mercury species. The Graphene monolayer only acts as a substrate to support the 1T-MnO2 monolayer; for that reason, in all of the processes of adsorption of the mercury species onto the heterostructure, the atomic positions of the Graphene remain fixed. In order to establish the most energetically stable adsorption configurations, the following special sites on the heterostructure were considered: TO1 (top O atom of the lower horizontal plane), TO2 (top O atom of the upper horizontal plane), TM1 (top Mn atom located above a C atom) and TM2 (top Mn atom located above of the center of a Graphene hexagon), B1 (top bridge Mn-O1) and B2 (top bridge Mn-O2). In addition, for the molecurlar species (HgCl and HgO), different initial orientations (⊥, ∥ and ∡) with respect to the horizontal planes of the heterostructure were considered. It was found that the most stable adsorption configurations corresponds to: HgCl: chemisorbed molecule (Eads=−1.668 eV) perpendicularly with the Hg atom closest to the heterostructure in TO2. HgO: chemisorbed molecule (Eads=−1.904 eV) perpendicularly with the Hg atom closest to the heterostructure in TO2. Finally, the results obtained show that the 1T-MnO2/Graphene heterostructure is theoretically good-adsorbent material for the analyzed mercury species.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Ciencias Físicasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. Introductionspa
dc.description.tableofcontents2. Computational methodsspa
dc.description.tableofcontents3. Analysis of resultsspa
dc.description.tableofcontents3.1. Structural propertiesspa
dc.description.tableofcontents3.1.1. Structural properties of isolated monolayers of Graphene, 1T-MnO2 and the 1T-MnO2/Graphene heterostructurespa
dc.description.tableofcontents3.2. Adsorption of HgClspa
dc.description.tableofcontents3.2.1. Possible molecular dissociation scenarios of HgCl over the 1T-MnO2/Graphene heterostructurespa
dc.description.tableofcontents3.3. Adsorption of HgOspa
dc.description.tableofcontents3.2.1. Possible molecular dissociation scenarios of HgO over the 1T-MnO2/Graphene heterostructurespa
dc.description.tableofcontents4. Conclusionsspa
dc.description.tableofcontentsReferencesspa
dc.description.tableofcontentsAppendix A (Publications)spa
dc.description.tableofcontentsAppendix B (Participations in scientific events)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6358
dc.language.isoengspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programDoctorado en Ciencias Físicasspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsDensity Functional Theory (DFT)spa
dc.subject.keywordsAdsorptioneng
dc.subject.keywordsMercury specieseng
dc.titleAdsorption of mercury species on the 1T-MnO2 and 1T-MnO2/Graphene surfacesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references[1] Mercury, an inventory of anthropogenic. mercury study report to congress volume ii: an inventory of anthropogenic mercury emissions in the united states. environmental protection, 1997.spa
dcterms.references[2] Li, P., Feng, X. B., Qiu, G. L., Shang, L. H., & Li, Z. G. (2009). Mercury pollution in Asia: a review of the contaminated sites. Journal of hazardous materials, 168(2-3), 591-601.spa
dcterms.references[3] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.spa
dcterms.references[4] Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., ... & Goldberger, J. E. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano, 7(4), 2898-2926.spa
dcterms.references[5] Han, W. Q., Wu, L., Zhu, Y., Watanabe, K., & Taniguchi, T. (2008). Structure of chemically derived mono-and few-atomic-layer boron nitride sheets. Applied Physics Letters, 93(22), 223103.spa
dcterms.references[6] Tang, Q., Zhou, Z., & Chen, Z. (2015). Innovation and discovery of graphene‐like materials via density‐functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 5(5), 360-379.spa
dcterms.references[7] Cordero, G. B., & López, C. O. (2019). Adsorption effect of a chromium atom on the structure and electronic properties of a single ZnO monolayer. Physica B: Condensed Matter, 565, 44-47.spa
dcterms.references[8] Tusche, C., Meyerheim, H. L., & Kirschner, J. (2007). Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Physical review letters, 99(2), 026102.spa
dcterms.references[9] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712.spa
dcterms.references[10] Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014). Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 8(2), 1102-1120.spa
dcterms.references[11] Tang, Q., & Zhou, Z. (2013). Graphene-analogous low-dimensional materials. Progress in materials science, 58(8), 1244-1315.spa
dcterms.references[12] Ataca, C., Sahin, H., & Ciraci, S. (2012). Stable, single-layer MX_2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 116(16), 8983-8999.spa
dcterms.references[13] Zhou, B., Li, Z., Wang, J., & Wang, K. (2019). Superior spin-polarized electronic structure in MoS_2/MnO_2 heterostructures with an efficient hole injection. Physical Chemistry Chemical Physics, 21(20), 10706-10715.spa
dcterms.references[14] Omomo, Y., Sasaki, T., Wang, L., & Watanabe, M. (2003). Redoxable nanosheet crystallites of MnO_2 derived via delamination of a layered manganese oxide. Journal of the American Chemical Society, 125(12), 3568-3575.spa
dcterms.references[15] Fukuda, K., Nakai, I., Ebina, Y., Tanaka, M., Mori, T., & Sasaki, T. (2006). Structure analysis of exfoliated unilamellar crystallites of manganese oxide nanosheets. The Journal of Physical Chemistry B, 110(34), 17070-17075.spa
dcterms.references[16] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The intrinsic ferromagnetism in a MnO_2 monolayer. The journal of physical chemistry letters, 4(20), 3382-3386.spa
dcterms.references[17] Deng, S., Wang, L., Hou, T., & Li, Y. (2015). Two-dimensional MnO_2 as a better cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 119(52), 28783-28788.spa
dcterms.references[18] Zhang, B., Liu, J., Zheng, C., & Chang, M. (2014). Theoretical study of mercury species adsorption mechanism on MnO_2 (1 1 0) surface. Chemical Engineering Journal, 256, 93-100.spa
dcterms.references[19] Wang, Z., Liu, J., Yang, Y., Liu, F., & Ding, J. (2019). Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO_2 catalyst. Proceedings of the Combustion Institute, 37(3), 2967-2975.spa
dcterms.references[20] Kang, J., Li, J., Li, S. S., Xia, J. B., & Wang, L. W. (2013). Electronic structural Moiré pattern effects on MoS_2/MoSe_2 2D heterostructures. Nano letters, 13(11), 5485-5490.spa
dcterms.references[22] Wang, K., Wu, H., Meng, Y., & Wei, Z. (2014). Conducting polymer nanowire arrays for high performance supercapacitors. Small, 10(1), 14-31.spa
dcterms.references[23] Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014). Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 8(2), 1102-1120.spa
dcterms.references[24] Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., & Zhang, H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 5(4), 263-275.spa
dcterms.references[25] Du, A., Sanvito, S., Li, Z., Wang, D., Jiao, Y., Liao, T., ... & Smith, S. C. (2012). Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron–hole puddle, interfacial charge transfer, and enhanced visible light response. Journal of the American Chemical Society, 134(9), 4393-4397.spa
dcterms.references[26] Kou, L., Yan, B., Hu, F., Wu, S. C., Wehling, T. O., Felser, C., ... & Frauenheim, T. (2013). Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano letters, 13(12), 6251-6255.spa
dcterms.references[27] Britnell, L., Gorbachev, R. V., Jalil, R., Belle, B. D., Schedin, F., Mishchenko, A., ... & Ponomarenko, L. A. (2012). Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 335(6071), 947-950.spa
dcterms.references[28] Padilha, J. E., Fazzio, A., & da Silva, A. J. (2015). van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Physical review letters, 114(6), 066803.spa
dcterms.references[29] Huang, X., Tan, C., Yin, Z., & Zhang, H. (2014). 25th Anniversary article: hybrid nanostructures based on two‐dimensional nanomaterials. Advanced Materials, 26(14), 2185-2204.spa
dcterms.references[30] Gan, L. Y., Zhang, Q., Guo, C. S., Schwingenschlogl, U., & Zhao, Y. (2016). Two-dimensional MnO_2/graphene interface: half-metallicity and quantum anomalous hall state. The Journal of Physical Chemistry C, 120(4), 2119-2125.spa
dcterms.references[31] Zhang, H., Du, X., Ding, S., Wang, Q., Chang, L., Ma, X., ... & Pen, C. (2019). DFT calculations of the synergistic effect of λ-MnO_2/graphene composites for electrochemical adsorption of lithium ions. Physical Chemistry Chemical Physics, 21(15), 8133-8140.spa
dcterms.references[32] Wu, S., Fan, K., Wu, M., & Yin, G. (2016). Two-dimensional MnO_2/graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 30(27), 1650208.spa
dcterms.references[33] Deng, J., Wang, X., Duan, X., & Liu, P. (2015). Facile preparation of MnO_2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustainable Chemistry & Engineering, 3(7), 1330-1338.spa
dcterms.references[34] Peng, L., Peng, X., Liu, B., Wu, C., Xie, Y., & Yu, G. (2013). Ultrathin two-dimensional MnO_2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 13(5), 2151-2157.spa
dcterms.references[35] Lee, H., Kang, J., Cho, M. S., Choi, J. B., & Lee, Y. (2011). MnO_2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. Journal of Materials Chemistry, 21(45), 18215-18219.spa
dcterms.references[36] Mao, L., Zhang, K., Chan, H. S. O., & Wu, J. (2012). Nanostructured MnO_2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. Journal of Materials Chemistry, 22(5), 1845-1851.spa
dcterms.references[37] Liu, Y., Zhang, X., He, D., Ma, F., Fu, Q., & Hu, Y. (2016). An amperometric glucose biosensor based on a MnO_2/graphene composite modified electrode. RSC advances, 6(22), 18654-18661.spa
dcterms.references[38] Lu, L., Tian, H., He, J., & Yang, Q. (2016). Graphene–MnO_2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. The Journal of Physical Chemistry C, 120(41), 23660-23668.spa
dcterms.references[39] Song, Z., Ma, Y. L., & Li, C. E. (2019). The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO_2/graphene nanocomposite. Science of the Total Environment, 651, 580-590.spa
dcterms.references[40] Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical reviews in toxicology, 36(8), 609-662.spa
dcterms.references[41] Liu, J., Abanades, S., Gauthier, D., Flamant, G., Zheng, C., & Lu, J. (2005). Determination of kinetic law for toxic metals release during thermal treatment of model waste in a fluid-bed reactor. Environmental science & technology, 39(23), 9331-9336.spa
dcterms.references[42] Yu, J. G., Yue, B. Y., Wu, X. W., Liu, Q., Jiao, F. P., Jiang, X. Y., & Chen, X. Q. (2016). Removal of mercury by adsorption: a review. Environmental Science and Pollution Research, 23(6), 5056-5076.spa
dcterms.references[43] Panta, Y. M., Liu, J., Cheney, M. A., Joo, S. W., & Qian, S. (2009). Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection. Journal of colloid and interface science, 333(2), 485-490.spa
dcterms.references[44] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.spa
dcterms.references[45] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133.spa
dcterms.references[46] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892.spa
dcterms.references[47] Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142.spa
dcterms.references[48] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.spa
dcterms.references[49] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.spa
dcterms.references[50] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188.spa
dcterms.references[51] Van Troeye, B., Torrent, M., & Gonze, X. (2016). Interatomic force constants including the DFT-D dispersion contribution. Physical Review B, 93(14), 144304.spa
dcterms.references[52] Zhou, B., Li, Z., Wang, J., & Wang, K. (2019). Superior spin-polarized electronic structure in MoS_2/MnO_2 heterostructures with an efficient hole injection. Physical Chemistry Chemical Physics, 21(20), 10706-10715.spa
dcterms.references[53] Espitia-Rico, M., Rodríguez-Martínez, J. A., Moreno-Armenta, M. G., & Takeuchi, N. (2015). Graphene monolayers on GaN (0 0 0 1). Applied Surface Science, 326, 7-11.spa
dcterms.references[21] Tongay, S., Narang, D. S., Kang, J., Fan, W., Ko, C., Luce, A. V., ... & Wu, J. (2014). Two-dimensional semiconductor alloys: Monolayer Mo(1−x)W𝑥�����Se2. Applied Physics Letters, 104(1), 012101.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
morinsonnegretejuandavid.pdf
Tamaño:
2.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Thesis Report
No hay miniatura disponible
Nombre:
Formato de Autorización - Tesis.pdf
Tamaño:
638.81 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones