Publicación: Adsorption of mercury species on the 1T-MnO2 and 1T-MnO2/Graphene surfaces
dc.contributor.advisor | Ortega López, César | spa |
dc.contributor.author | Morinson Negrete, Juan David | |
dc.date.accessioned | 2022-08-22T18:17:16Z | |
dc.date.available | 2022-08-22T18:17:16Z | |
dc.date.issued | 2022-08-13 | |
dc.description.abstract | The most relevant results are shown in this thesis report. In this thesis a first-principles study of the adsorption of some mercury species (HgCl and HgO) on the 1T- MnO2/Graphene heterostructure was carried out. Calculations were performed using the Density Functional Theory (DFT) within the framework of Generalized Gradient Approximation of Perdew-Burke and Ernzerhof (GGA-PBE) along with ultrasoft atomic pseudopotentials. In this investigation, the surface of interest is the monolayer of 1T-MnO2 coupled to a monolayer of Graphene and its interaction with the mercury species. The Graphene monolayer only acts as a substrate to support the 1T-MnO2 monolayer; for that reason, in all of the processes of adsorption of the mercury species onto the heterostructure, the atomic positions of the Graphene remain fixed. In order to establish the most energetically stable adsorption configurations, the following special sites on the heterostructure were considered: TO1 (top O atom of the lower horizontal plane), TO2 (top O atom of the upper horizontal plane), TM1 (top Mn atom located above a C atom) and TM2 (top Mn atom located above of the center of a Graphene hexagon), B1 (top bridge Mn-O1) and B2 (top bridge Mn-O2). In addition, for the molecurlar species (HgCl and HgO), different initial orientations (⊥, ∥ and ∡) with respect to the horizontal planes of the heterostructure were considered. It was found that the most stable adsorption configurations corresponds to: HgCl: chemisorbed molecule (Eads=−1.668 eV) perpendicularly with the Hg atom closest to the heterostructure in TO2. HgO: chemisorbed molecule (Eads=−1.904 eV) perpendicularly with the Hg atom closest to the heterostructure in TO2. Finally, the results obtained show that the 1T-MnO2/Graphene heterostructure is theoretically good-adsorbent material for the analyzed mercury species. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor(a) en Ciencias Físicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. Introduction | spa |
dc.description.tableofcontents | 2. Computational methods | spa |
dc.description.tableofcontents | 3. Analysis of results | spa |
dc.description.tableofcontents | 3.1. Structural properties | spa |
dc.description.tableofcontents | 3.1.1. Structural properties of isolated monolayers of Graphene, 1T-MnO2 and the 1T-MnO2/Graphene heterostructure | spa |
dc.description.tableofcontents | 3.2. Adsorption of HgCl | spa |
dc.description.tableofcontents | 3.2.1. Possible molecular dissociation scenarios of HgCl over the 1T-MnO2/Graphene heterostructure | spa |
dc.description.tableofcontents | 3.3. Adsorption of HgO | spa |
dc.description.tableofcontents | 3.2.1. Possible molecular dissociation scenarios of HgO over the 1T-MnO2/Graphene heterostructure | spa |
dc.description.tableofcontents | 4. Conclusions | spa |
dc.description.tableofcontents | References | spa |
dc.description.tableofcontents | Appendix A (Publications) | spa |
dc.description.tableofcontents | Appendix B (Participations in scientific events) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6358 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Doctorado en Ciencias Físicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Density Functional Theory (DFT) | spa |
dc.subject.keywords | Adsorption | eng |
dc.subject.keywords | Mercury species | eng |
dc.title | Adsorption of mercury species on the 1T-MnO2 and 1T-MnO2/Graphene surfaces | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Mercury, an inventory of anthropogenic. mercury study report to congress volume ii: an inventory of anthropogenic mercury emissions in the united states. environmental protection, 1997. | spa |
dcterms.references | [2] Li, P., Feng, X. B., Qiu, G. L., Shang, L. H., & Li, Z. G. (2009). Mercury pollution in Asia: a review of the contaminated sites. Journal of hazardous materials, 168(2-3), 591-601. | spa |
dcterms.references | [3] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. | spa |
dcterms.references | [4] Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., ... & Goldberger, J. E. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano, 7(4), 2898-2926. | spa |
dcterms.references | [5] Han, W. Q., Wu, L., Zhu, Y., Watanabe, K., & Taniguchi, T. (2008). Structure of chemically derived mono-and few-atomic-layer boron nitride sheets. Applied Physics Letters, 93(22), 223103. | spa |
dcterms.references | [6] Tang, Q., Zhou, Z., & Chen, Z. (2015). Innovation and discovery of graphene‐like materials via density‐functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 5(5), 360-379. | spa |
dcterms.references | [7] Cordero, G. B., & López, C. O. (2019). Adsorption effect of a chromium atom on the structure and electronic properties of a single ZnO monolayer. Physica B: Condensed Matter, 565, 44-47. | spa |
dcterms.references | [8] Tusche, C., Meyerheim, H. L., & Kirschner, J. (2007). Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Physical review letters, 99(2), 026102. | spa |
dcterms.references | [9] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712. | spa |
dcterms.references | [10] Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014). Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 8(2), 1102-1120. | spa |
dcterms.references | [11] Tang, Q., & Zhou, Z. (2013). Graphene-analogous low-dimensional materials. Progress in materials science, 58(8), 1244-1315. | spa |
dcterms.references | [12] Ataca, C., Sahin, H., & Ciraci, S. (2012). Stable, single-layer MX_2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 116(16), 8983-8999. | spa |
dcterms.references | [13] Zhou, B., Li, Z., Wang, J., & Wang, K. (2019). Superior spin-polarized electronic structure in MoS_2/MnO_2 heterostructures with an efficient hole injection. Physical Chemistry Chemical Physics, 21(20), 10706-10715. | spa |
dcterms.references | [14] Omomo, Y., Sasaki, T., Wang, L., & Watanabe, M. (2003). Redoxable nanosheet crystallites of MnO_2 derived via delamination of a layered manganese oxide. Journal of the American Chemical Society, 125(12), 3568-3575. | spa |
dcterms.references | [15] Fukuda, K., Nakai, I., Ebina, Y., Tanaka, M., Mori, T., & Sasaki, T. (2006). Structure analysis of exfoliated unilamellar crystallites of manganese oxide nanosheets. The Journal of Physical Chemistry B, 110(34), 17070-17075. | spa |
dcterms.references | [16] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The intrinsic ferromagnetism in a MnO_2 monolayer. The journal of physical chemistry letters, 4(20), 3382-3386. | spa |
dcterms.references | [17] Deng, S., Wang, L., Hou, T., & Li, Y. (2015). Two-dimensional MnO_2 as a better cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 119(52), 28783-28788. | spa |
dcterms.references | [18] Zhang, B., Liu, J., Zheng, C., & Chang, M. (2014). Theoretical study of mercury species adsorption mechanism on MnO_2 (1 1 0) surface. Chemical Engineering Journal, 256, 93-100. | spa |
dcterms.references | [19] Wang, Z., Liu, J., Yang, Y., Liu, F., & Ding, J. (2019). Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO_2 catalyst. Proceedings of the Combustion Institute, 37(3), 2967-2975. | spa |
dcterms.references | [20] Kang, J., Li, J., Li, S. S., Xia, J. B., & Wang, L. W. (2013). Electronic structural Moiré pattern effects on MoS_2/MoSe_2 2D heterostructures. Nano letters, 13(11), 5485-5490. | spa |
dcterms.references | [22] Wang, K., Wu, H., Meng, Y., & Wei, Z. (2014). Conducting polymer nanowire arrays for high performance supercapacitors. Small, 10(1), 14-31. | spa |
dcterms.references | [23] Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014). Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 8(2), 1102-1120. | spa |
dcterms.references | [24] Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., & Zhang, H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 5(4), 263-275. | spa |
dcterms.references | [25] Du, A., Sanvito, S., Li, Z., Wang, D., Jiao, Y., Liao, T., ... & Smith, S. C. (2012). Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron–hole puddle, interfacial charge transfer, and enhanced visible light response. Journal of the American Chemical Society, 134(9), 4393-4397. | spa |
dcterms.references | [26] Kou, L., Yan, B., Hu, F., Wu, S. C., Wehling, T. O., Felser, C., ... & Frauenheim, T. (2013). Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano letters, 13(12), 6251-6255. | spa |
dcterms.references | [27] Britnell, L., Gorbachev, R. V., Jalil, R., Belle, B. D., Schedin, F., Mishchenko, A., ... & Ponomarenko, L. A. (2012). Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 335(6071), 947-950. | spa |
dcterms.references | [28] Padilha, J. E., Fazzio, A., & da Silva, A. J. (2015). van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Physical review letters, 114(6), 066803. | spa |
dcterms.references | [29] Huang, X., Tan, C., Yin, Z., & Zhang, H. (2014). 25th Anniversary article: hybrid nanostructures based on two‐dimensional nanomaterials. Advanced Materials, 26(14), 2185-2204. | spa |
dcterms.references | [30] Gan, L. Y., Zhang, Q., Guo, C. S., Schwingenschlogl, U., & Zhao, Y. (2016). Two-dimensional MnO_2/graphene interface: half-metallicity and quantum anomalous hall state. The Journal of Physical Chemistry C, 120(4), 2119-2125. | spa |
dcterms.references | [31] Zhang, H., Du, X., Ding, S., Wang, Q., Chang, L., Ma, X., ... & Pen, C. (2019). DFT calculations of the synergistic effect of λ-MnO_2/graphene composites for electrochemical adsorption of lithium ions. Physical Chemistry Chemical Physics, 21(15), 8133-8140. | spa |
dcterms.references | [32] Wu, S., Fan, K., Wu, M., & Yin, G. (2016). Two-dimensional MnO_2/graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 30(27), 1650208. | spa |
dcterms.references | [33] Deng, J., Wang, X., Duan, X., & Liu, P. (2015). Facile preparation of MnO_2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustainable Chemistry & Engineering, 3(7), 1330-1338. | spa |
dcterms.references | [34] Peng, L., Peng, X., Liu, B., Wu, C., Xie, Y., & Yu, G. (2013). Ultrathin two-dimensional MnO_2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 13(5), 2151-2157. | spa |
dcterms.references | [35] Lee, H., Kang, J., Cho, M. S., Choi, J. B., & Lee, Y. (2011). MnO_2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. Journal of Materials Chemistry, 21(45), 18215-18219. | spa |
dcterms.references | [36] Mao, L., Zhang, K., Chan, H. S. O., & Wu, J. (2012). Nanostructured MnO_2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. Journal of Materials Chemistry, 22(5), 1845-1851. | spa |
dcterms.references | [37] Liu, Y., Zhang, X., He, D., Ma, F., Fu, Q., & Hu, Y. (2016). An amperometric glucose biosensor based on a MnO_2/graphene composite modified electrode. RSC advances, 6(22), 18654-18661. | spa |
dcterms.references | [38] Lu, L., Tian, H., He, J., & Yang, Q. (2016). Graphene–MnO_2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. The Journal of Physical Chemistry C, 120(41), 23660-23668. | spa |
dcterms.references | [39] Song, Z., Ma, Y. L., & Li, C. E. (2019). The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO_2/graphene nanocomposite. Science of the Total Environment, 651, 580-590. | spa |
dcterms.references | [40] Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical reviews in toxicology, 36(8), 609-662. | spa |
dcterms.references | [41] Liu, J., Abanades, S., Gauthier, D., Flamant, G., Zheng, C., & Lu, J. (2005). Determination of kinetic law for toxic metals release during thermal treatment of model waste in a fluid-bed reactor. Environmental science & technology, 39(23), 9331-9336. | spa |
dcterms.references | [42] Yu, J. G., Yue, B. Y., Wu, X. W., Liu, Q., Jiao, F. P., Jiang, X. Y., & Chen, X. Q. (2016). Removal of mercury by adsorption: a review. Environmental Science and Pollution Research, 23(6), 5056-5076. | spa |
dcterms.references | [43] Panta, Y. M., Liu, J., Cheney, M. A., Joo, S. W., & Qian, S. (2009). Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection. Journal of colloid and interface science, 333(2), 485-490. | spa |
dcterms.references | [44] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. | spa |
dcterms.references | [45] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. | spa |
dcterms.references | [46] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892. | spa |
dcterms.references | [47] Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142. | spa |
dcterms.references | [48] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502. | spa |
dcterms.references | [49] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. | spa |
dcterms.references | [50] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188. | spa |
dcterms.references | [51] Van Troeye, B., Torrent, M., & Gonze, X. (2016). Interatomic force constants including the DFT-D dispersion contribution. Physical Review B, 93(14), 144304. | spa |
dcterms.references | [52] Zhou, B., Li, Z., Wang, J., & Wang, K. (2019). Superior spin-polarized electronic structure in MoS_2/MnO_2 heterostructures with an efficient hole injection. Physical Chemistry Chemical Physics, 21(20), 10706-10715. | spa |
dcterms.references | [53] Espitia-Rico, M., Rodríguez-Martínez, J. A., Moreno-Armenta, M. G., & Takeuchi, N. (2015). Graphene monolayers on GaN (0 0 0 1). Applied Surface Science, 326, 7-11. | spa |
dcterms.references | [21] Tongay, S., Narang, D. S., Kang, J., Fan, W., Ko, C., Luce, A. V., ... & Wu, J. (2014). Two-dimensional semiconductor alloys: Monolayer Mo(1−x)W𝑥�����Se2. Applied Physics Letters, 104(1), 012101. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: