Publicación:
Microestructura y aplicaciones de aceros inoxidables austeníticos tratados por nitruración y cementación a plasma

dc.audience
dc.contributor.advisorEspitia Sanjuán, Luis Armandospa
dc.contributor.authorTovar Falón, Hernán Nicolás
dc.date.accessioned2023-08-14T03:26:56Z
dc.date.available2023-08-14T03:26:56Z
dc.date.issued2023-08-10
dc.description.abstractLos aceros inoxidables austeníticos usados en componentes de ingeniería, industria y aplicaciones biomédicas son susceptibles a desgaste y corrosión. Este inconveniente se puede controlar adecuadamente mediante aplicación de recubrimientos o modificando la superficie, a través de métodos termoquímicos, como la nitruración y la cementación por plasma. La modificación de la superficie de los componentes de aceros inoxidables austeníticos se puede realizar con la implantación de nitrógeno y/o carbono que modifican microestructuralmente la superficie. Asimismo, propio de los aceros inoxidables austeníticos, se remarca su estructura cristalina de austenita, que permite mejor difusión del carbono y nitrógeno intersticial en los procesos aquí descritos, destacándose por presentar una mejor resistencia a la corrosión que los aceros ferríticos y martensíticos, además de la superior resistencia a la fatiga mecánica y resistencia a la oxidación a elevadas temperaturas. En los procesos de cementación y nitruración por plasma de los aceros inoxidables auténticos se da la formación de la austenita expandida, también llamada fase S, que provoca tensión residual de compresión, aumento de densidad y mejora de propiedades tribológicas. Esta monografía indaga en las principales producciones académicas, como libros, artículos y publicaciones de reconocidas fuentes internacionales de investigación, sobre la optimización de los métodos y técnicas mencionadas, que muestran, contrastan y sugieren mediante ensayos, análisis superficial y microestructural mejoras y avances para desarrollar y proporcionar protección en diversos aspectos de la mecánica de materiales y la tribología; como la resistencia al desgaste y la corrosión a los aceros inoxidables austeníticos.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Mecánico(a)spa
dc.description.modalityMonografíasspa
dc.description.tableofcontents1. RESUMEN ..................................................................................................................... 18spa
dc.description.tableofcontents1. ABSTRACT ................................................................................................................ 19spa
dc.description.tableofcontents2. INTRODUCCIÓN ...................................................................................................... 20spa
dc.description.tableofcontents3. OBJETIVO GENERAL .............................................................................................. 22spa
dc.description.tableofcontents4. TRATAMIENTOS TERMOQUÍMICOS ................................................................... 23spa
dc.description.tableofcontents4.1. Difusión en estado sólido .................................................................................... 23spa
dc.description.tableofcontents4.2. Primera ley de Fick .............................................................................................. 23spa
dc.description.tableofcontents4.3. Segunda ley de Fick ............................................................................................... 24spa
dc.description.tableofcontents4.3. Métodos de endurecimiento superficial por difusión .......................................... 26spa
dc.description.tableofcontents5. NITRURACIÓN Y CEMENTACIÓN POR PLASMA ............................................. 26spa
dc.description.tableofcontents5.1. Técnica del plasma pulsado .................................................................................... 30spa
dc.description.tableofcontents5.2. Implantación de iones por inmersión en plasma (PIII) .......................................... 31spa
dc.description.tableofcontents5.3. Nitruración por plasma de pantalla activa (ASPN) y jaula catódica (CCPN) ......... 31spa
dc.description.tableofcontents5.4. La fase austenita expandida .................................................................................... 33spa
dc.description.tableofcontents5.4.1. Características de la fase S ................................................................................ 34spa
dc.description.tableofcontents5.4.2. Microestructura de la fase S .............................................................................. 34spa
dc.description.tableofcontents5.4.3. Pruebas experimentales ..................................................................................... 35spa
dc.description.tableofcontents5.4.4. Tipo de fase S ................................................................................................... 35spa
dc.description.tableofcontents6. ACEROS INOXIDABLES ......................................................................................... 36spa
dc.description.tableofcontents6.1. Sistemas de designación de aleaciones ................................................................ 36spa
dc.description.tableofcontents6.2. Clasificación de Aceros inoxidables ................................................................... 37spa
dc.description.tableofcontents6.2.1. Acero Inoxidable Austenítico ........................................................................... 37spa
dc.description.tableofcontents7. CARACTERIZACIÓN MICROESTRUCTURAL DE ACEROS INOXIDABLES AUSTENÍTICOS NITRURADOS A PLASMA ............................................................... 39spa
dc.description.tableofcontents8. CARACTERIZACIÓN MICROESTRUCTURAL DE ACEROS INOXIDABLES AUSTENÍTICOS CEMENTADOS A PLASMA .............................................................. 97spa
dc.description.tableofcontents9. ESTADO DE LA TÉCNICA EN COLOMBIA ......................................................... 132spa
dc.description.tableofcontents10. CONCLUSIONES .................................................................................................. 134spa
dc.description.tableofcontentsBIBLIOGRAFÍA .............................................................................................................. 137spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7626
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsSteelsspa
dc.subject.keywordsaustenitespa
dc.subject.keywordscarburizingspa
dc.subject.keywordsnitridingspa
dc.subject.keywordsplasmaspa
dc.subject.keywordswearspa
dc.subject.keywordscorrosionspa
dc.subject.proposalAcerosspa
dc.subject.proposalAustenitaspa
dc.subject.proposalcementaciónspa
dc.subject.proposalnitruraciónspa
dc.subject.proposalplasmaspa
dc.subject.proposaldesgastespa
dc.subject.proposalcorrosiónspa
dc.titleMicroestructura y aplicaciones de aceros inoxidables austeníticos tratados por nitruración y cementación a plasmaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesE. Rolinski and M. Woods, Engineering the Surface 2019spa
dcterms.referencesEric J. Mittemeijer and Marcel A. J. Somers, Woodhead Publishing Series in Metals and Surface Engineering: Number 62, Thermochemical Surface Engineering of Steels, 2015spa
dcterms.referencesWilliam D. Callister, Jr., David G. Rethwisch, Ciencia E Ingeniería De Materiales, 2015spa
dcterms.referencesHelmut Mehrer Diffusion in Solids Fundamentals, Methods, Materials, DiffusionControlled Processes, 2007spa
dcterms.referencesClodomiro Alves, Odolberto De Francisco Araujo, Magalhaes De Romulo, Ribeiro De Sousa. Comparison of Plasma-Assisted Nitriding Techniques, Encyclopedia of Tribology pp 402–410, 2013spa
dcterms.referencesSteel Products Manual: Stainless Steels, The Iron & Steel Society, 1999spa
dcterms.referencesJames Newell, Ciencia de Materiales, Aplicaciones en Ingeniería, 2010spa
dcterms.referencesJ.R. Davis, Surface Hardening of Steels, ASM International, 2002spa
dcterms.referencesSantosh S. Hosmani,P. Kuppusami, Rajendra Kumar Goyal. An Introduction to Surface Alloying of Metals. 2014spa
dcterms.referencesASM, Heat Treating, in Metals Handbook, Vol. 4, ASM International. 1991spa
dcterms.referencesArthur C. Reardon, Metallurgy for the Non-Metallurgist, ASM International. 2011spa
dcterms.referencesDavid Pye, Practical Nitriding and Ferritic Nitrocarburizing, 2003spa
dcterms.referencesLuis B. López Vázquez, Aceros y Fundiciones, 2015spa
dcterms.referencesPere Molera Solá, Tratamientos Térmicos de los Metales, 1991spa
dcterms.referencesHossein Aghajani, Sahand Behrangi, Plasma Nitriding of Steels, 2017spa
dcterms.referencesGeorge E. Totten, Steel Heat Treatment Handbook, 2014spa
dcterms.referencesOutokumpu Oyj, Handbook of Stainless Steel, 2013spa
dcterms.referencesRenedo Rouco, J. (2010, February). Comportamiento al desgaste por deslizamiento en aceros inoxidables: ferrítico, austenítico, dúplex y martensítico. (Projecte/Treball Final de Carrera). UPC, Escola Tècnica Superior d'Enginyeria 137 Industrial de Barcelona, Departament de Ciència dels Materials i Enginyeria Metallúrgicaspa
dcterms.referencesMaria Cristina Tanzi, Silvia Farè, Gabriele Candiani, 2019. Chapter 4 - Biomaterials and Applications. Foundations of Biomaterials Engineering, Academic Press.spa
dcterms.referencesBorgioli, F. The Corrosion Behavior in Different Environments of Austenitic Stainless Steels Subjected to Thermochemical Surface Treatments at Low Temperatures: An Overview. Metals 2023, 13, 776spa
dcterms.referencesSun, Y., Bailey, R. Comparison of Wear Performance of Low Temperature Nitrided and Carburized 316L Stainless Steel under Dry Sliding and CorrosiveWear Conditions. J. of Materi Eng and Perform 32, 1238–1247 (2023)spa
dcterms.referencesMali, A.S.; Vagge, S.T.; Rathod, M.J. Mapping the Accouterment Effects of Plasma Nitriding on AISI 316L in Biomedical Applications. Coatings 2023, 13, 839spa
dcterms.references23. H.L. Che, X. Yang, M.K. Lei, Marcel A.J. Somers, Co-existence of γ'N phase and γN phase on nitrided austenitic Fe-Cr-Ni alloys - III. An investigation of the evolution of long-range ordered domains, Acta Materialia, Volume 253, 2023, 118971, ISSN 1359-6454spa
dcterms.referencesXiao Tao, Yepeng Yang, Jiahui Qi, Biao Cai, W.M. Rainforth, Xiaoying Li, Hanshan Dong, Active screen plasma nitriding of a Si-alloyed FeCrNi medium entropy alloy: High interstitial absorption and an anomalous Si-induced decomposition mechanism in N-expanded austenite, Applied Surface Science, Volume 624, 2023, 157137, ISSN 0169-4332spa
dcterms.referencesDarina Manova, Stephan Mändl, Initial phase formation during nitriding of austenitic stainless steel, Surface and Coatings Technology, Volume 456, 2023, 129258, ISSN 0257-8972spa
dcterms.referencesYulin Xie, Goro Miyamoto, Tadashi Furuhara, High-throughput investigation of Cr-N cluster formation in Fe-35Ni-Cr system during low-temperature nitriding, Acta Materialia, Volume 253, 2023, 118921, ISSN 1359-6454spa
dcterms.referencesSchibicheski Kurelo, B.C.E.; De Souza, G.B.; Da Silva, S.L.R.; Lepienski, C.M.; Alves Júnior, C.; Chuproski, R.F.; Pintaúde, G. Tribo-Mechanical Behavior of Films and Modified Layers Produced by Cathodic Cage and Glow Discharge Plasma Nitriding Techniques. Metals 2023, 13, 430spa
dcterms.referencesAdachi, Shinichiro, Egawa, Motoo, Yamaguchi, Takuto, Ueda, Nobuhiro LowTemperature Plasma Nitriding for Austenitic Stainless-Steel Layers with Various Nickel Contents Fabricated via Direct Laser Metal Deposition,2020spa
dcterms.referencesFarghali, A.; Aizawa, T.; Yoshino, T. Microstructure/Mechanical Characterization of Plasma Nitrided Fine-Grain Austenitic Stainless Steels in Low Temperature. Nitrogen 2021, 2, 244-258spa
dcterms.referencesYetim, A.F. & Yildiz, F. & Alsaran, Akgun & Çelik, Ayhan. (2008). Surface modification of 316L stainless steel with plasma nitriding. Kovove Materialy. 46. 105-115spa
dcterms.referencesPatel, S., Ganguli, B. & Chaudhury, S.K. Active Screen Plasma Nitriding Characteristics of 347H Austenitic Stainless Steel. Trans Indian Inst Met 75, 663– 671 (2022)spa
dcterms.referencesBabur, M.Z., Iqbal, Z., Shafiq, M. et al. Comparative study of PVD titanium nitride coating with cathodic cage plasma nitriding of austenitic 201 stainless steel for enhanced tribological properties. Appl. Phys. A 127, 954 (2021spa
dcterms.referencesNaofumi Ohtsu, Koyo Miura, Mitsuhiro Hirano, Kenji Kodama,Investigation of admixed gas effect on plasma nitriding of AISI316L austenitic stainless steel, Vacuum, Volume 193,(2021)spa
dcterms.referencesFraczek, T.; Prusak, R.; Ogórek, M.; Skuza, Z. Nitriding of 316L Steel in a Glow Discharge Plasma. Materials 2022spa
dcterms.referencesJuan Guillermo Schlief Carvajal, Jairo Arturo Escobar Gutiérrez. Estudio experimental de la nitruración por plasma y comparación con el proceso industrial Tenifer en Colombia para aceros de herramientas. 2009, https://repositorio.uniandes.edu.co/handle/1992/20726spa
dcterms.referencesZhen Huang, Zi-Xin Guo, Lei Liu, Yuan-Yuan Guo, Jun Chen, Ze Zhang, JinLong Li, Yan Li, Yan-Wen Zhou, Ying-Shuang Liang, Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel, Surface and Coatings Technology, Volume 405, 2021spa
dcterms.referencesWerner, K. V., Che, H. L., Lei, M. K., Christiansen, T. L., & Somers, M. A. J. (2022). Low Temperature Carburizing of Stainless Steels and the Development of Carbon Expanded Austenite*. H T M, 77(1), 3-15. 2022spa
dcterms.referencesH.Y. Liu, H.L. Che, J.Y. Gao, G.B. Li, M.K. Lei, Low-pressure hollow cathode plasma source carburizing of AISI 304L austenitic stainless steel at low temperature, Surface and Coatings Technology, Volume 442, 2022spa
dcterms.referencesH.Y. Liu, H.L. Che, G.B. Li, M.K. Lei, Low-pressure hollow cathode plasma source carburizing technique at low temperature, Surface and Coatings Technology, Volume 422, 2021spa
dcterms.referencesMontanari, R.; Lanzutti, A.; Richetta, M.; Tursunbaev, J.; Vaglio, E.; Varone, A.; Verona, C. Plasma Carburizing of Laser Powder Bed Fusion Manufactured 316 L Steel for Enhancing the Surface Hardness. Coatings 2022, 12, 258spa
dcterms.referencesE., Edrees & Hmood, Mahmood & Salman, Yahya. Study of the Structural Properties and Microscopic Hardness of a Carburized Stainless Steel Alloy AISI304. RIET-IJSET International Journal of Science Engineering and Technology. (2021)spa
dcterms.referencesNaofumi Ohtsu, Koyo Miura, Mitsuhiro Hirano, Kenji Kodama, Investigation of admixed gas effect on plasma nitriding of AISI316L austenitic stainless steel, Vacuum, Volume 193, 2021spa
dcterms.referencesSumiya, K.; Tokuyama, S.; Nishimoto, A.; Fukui, J.; Nishiyama, A. Application of Active-Screen Plasma Nitriding to an Austenitic Stainless Steel Small-Diameter Thin Pipe. Metals 2021, 11, 366spa
dcterms.referencesHaruman, E., Sun, Y., Adenan, M.S. A comparative study of the tribocorrosion behaviour of low temperature nitrided austenitic and duplex stainless steels in NaCl solution, 2020spa
dcterms.referencesS. Rajendran Pillai, - High Temperature Corrosion of Austenitic Stainless Steels, Editor(s): H.S. Khatak, Baldev Raj, In Woodhead Publishing Series in Metals and Surface Engineering, Corrosion of Austenitic Stainless Steels, Woodhead Publishing, 2002spa
dcterms.referencesIchii, K., Fujimura, K., & Takase, T. Technol. Reports Kansai Univ, 127, 134. (1986)spa
dcterms.referencesKoppula, Shivani, Gugulothu, Pallavi, Sateesh, N., Subbiah, Ram A review on AISI 2205 duplex stainless steel treated with plasma nitriding process, 2020spa
dcterms.referencesNuñez de la Rosa, Yamid E., Palma Calabokis, Oriana, Borges, Paulo César, Ballesteros Ballesteros, Vladimir Effect of Low-Temperature Plasma Nitriding on Corrosion and Surface Properties of Duplex Stainless Steel UNS S32205, 2020spa
dcterms.referencesSingh, Pankaj Kumar, Kumar, Arbind, Sinha, Sanjay Kumar, Aggarwal, Aman, Singh, Gajendra Prasad2017 Enhancement of surface properties of nanocrystalline TiN coated plasma nitrided AISI 310 austenitic stainless Steel, 2017.spa
dcterms.referencesYin, S., Zhou, Y., & Lu, J. (2021). Friction and Wear Performance of Austenitic Stainless Steel under Different Lubrication Conditions. Journal of Materials Engineering and Performance, 30(1), 394-404. 4spa
dcterms.referencesLiu, Zhiqi, Wang, Huanhuan, Lin, Naiming, Duan, Renhui Combined Plasma Nitriding And Surface Texturing For Improving Tribological Performance Of 316 Stainless Steel, 2020spa
dcterms.referencesShen, Hongyu, Wang, Liang, Sun, Juncai Effect of plasma nitriding at low temperature on the corrosion resistance and conductivity of 2205 duplex stainless steel, 2020spa
dcterms.referencesZhidkov, Ivan S., Kukharenko, Andrey I., Makarov, Alexey V., Savrai, Roman A., Gavrilov, Nikolay V., Cholakh, Seif O., Kurmaev, Ernst Z. XPS characterization of surface layers of stainless steel nitrided in electron beam plasma at low temperatura, 2020spa
dcterms.referencesBorgioli, Francesca, Galvanetto, Emanuele, Bacci, Tiberio, Effects of Surface Modification by Means of Low-Temperature Plasma Nitriding on Wetting and Corrosion Behavior of Austenitic Stainless Steel. 2020spa
dcterms.referencesLee, Insup, Effect of Gas Content and Treatment Temperature on the Characteristic of Surface Layers of Low Temperature Plasma Nitrided 316L Austenitic Stainless Steel, 2018spa
dcterms.referencesMendes, Aércio Fernando, Scheuer, Cristiano José, Joanidis, Ioanis Labhardt, Cardoso, Rodrigo Perito, Mafra, Márcio, Klein, Aloísio Nelmo, Brunatto, Silvio Francisco Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless Steel, 2014spa
dcterms.referencesKao, Wen-Hsien, Su, Yean-Liang. Tribological properties of biomedical 316L stainless steel after plasma nitriding and Ti-C:H sputtering coating, 2018spa
dcterms.referencesMindivan, H Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding, 2018spa
dcterms.referencesLuo, Quanshun, Oluwafemi, Oluwaseun, Kitchen, Matthew, Yang, Shicai Tribological properties and wear mechanisms of DC pulse plasma nitrided austenitic stainless steel in dry reciprocating sliding tests, 2016spa
dcterms.referencesHoshiyama, Yasuhiro, Mizobata, Ryoji, Miyake, Hidekazu Mechanical properties of austenitic stainless steel treated by active screen plasma nitriding, 2016.spa
dcterms.referencesGao, Yuxin, Zheng, Shaomei , Effect Of Plasma Nitriding Temperatures On Characteristics Of Aisi 201 Austenitic Stainless Steel, 2016spa
dcterms.referencesLu, Shijing, Zhao, Xiaobing, Wang, Shukai, Li, Jingcai, Wei, Wei, Hu, Jing, Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless Steel, 2017spa
dcterms.referencesKeng-Liang Ou, Hsin-Hua Chou, Chung-Ming Liu, Pei-Wen Peng, Surface modification of austenitic stainless steel with plasma nitriding for biomedical applications, Surface and Coatings Technology, Volume 206, Issue 6, 2011spa
dcterms.referencesMirza Zaheer Babur, Zafar Iqbal, Muhammad Shafiq, Muhammad Y. Naz, Mohamed M. Makhlouf, Hybrid TiN-CCPN coating of AISI-201 stainless steel by physical vapor deposition combined with cathodic cage plasma nitriding for improved tribological properties, Journal of Building Engineering, Volume 45, 2022spa
dcterms.referencesPinedo, Carlos Eduardo, Tschiptschin, André Paulo, Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless Steel, 2013spa
dcterms.referencesInoue, Waka, Muto, Izumi, Sugawara, Yu, Hara, Nobuyoshi Effect of Plasma Carburizing Treatment on Pitting Corrosion Resistance of Type 304 Stainless Steel, 2017spa
dcterms.referencesSaravanan, M., Venkateshwaran, N., Devaraju, A., Krishnakumari, A., Saarvesh, J.Surface Modification Of AISI 316L Stainless Steel By Plasma-Assisted Low Temperature Carburizing Process, 2017.spa
dcterms.referencesZhang, Ting, Tong, Xing Sheng, The Effect of Wear and Corrosion Resistance of Austenitic Stainless Steel on Plasma Carburizing, 2014spa
dcterms.referencesTong, Xing Sheng, Zhang, Ting, Ye, Wei Effect of Carburizing Atmosphere Proportion on Low Temperature Plasma Carburizing of Austenitic Stainless Steel, 2014spa
dcterms.referencesS. Corujeira Gallo, X. Li, H. Dong Dry Sliding Wear of Active Screen Plasma Carburised Austenitic Stainless Steel, 2012spa
dcterms.referencesFlis-Kabulska, Iwona, Sun, Yong, Flis, Janusz Corrosion Characteristics of Low Temperature Plasma Carburised and Nitrocarburised 316L Stainless Steel in Sulphate-Chloride Solution, 2013spa
dcterms.referencesZhang, Z.L.; Bell, T. Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel. Surf. Eng. 1985, 1, 131–136spa
dcterms.referencesJoseph Buhagiar, André Spiteri, Malcolm Sacco, Emmanuel Sinagra, Hanshan Dong, Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising, 2012spa
dcterms.referencesGaleano Osorio, D. (2015). Influencia de la nitruración iónica en la respuesta hemocompatible de aceros inoxidables austeníticosspa
dcterms.referencesLi, Y., Li, W., Zhu, X., Zhou, H., Jin, X. Mechanism of improved hydrogen embrittlement resistance of low-temperature plasma carburised stainless Steel, 2016spa
dcterms.referencesSun, Y., Tribocorrosion Behavior Of Low Temperature Plasma Carburized Stainless Steel, 2013spa
dcterms.referencesGarcía Molleja, J., Milanese, M., Gómez, B. J., Moroso, R., Piccoli, M., Niedbalski, J., Bürgi, J., Bemporad, E., Feugeas, J., Behavior of nitrided and carburized AISI 904 L Stainless Steels Under Severe light ion beam irradiation with plasma focus, 2015spa
dcterms.referencesBarcelos, Marcos Antônio, Barcelos, Mariana Valinhos, Araújo Filho, Juraci de Sousa, Franco Jr., Adonias Ribeiro, Vieira, Estéfano Aparecido, Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing, 2017spa
dcterms.referencesBiswas, S., Singh, Y., Mukherjee, M. (2021). A Study on Austenitic StainlessSteel Machining by Wire EDM. In: Patnaik, A., Kozeschnik, E., Kukshal, V. (eds) Advances in Materials Processing and Manufacturing Applications. iCADMA 2020. Lecture Notes in Mechanical Engineering. Springer, Singaporespa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
tovarfalonhernannicolas.pdf
Tamaño:
6.15 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorizacion.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: