Publicación: Microestructura y aplicaciones de aceros inoxidables austeníticos tratados por nitruración y cementación a plasma
dc.audience | ||
dc.contributor.advisor | Espitia Sanjuán, Luis Armando | spa |
dc.contributor.author | Tovar Falón, Hernán Nicolás | |
dc.date.accessioned | 2023-08-14T03:26:56Z | |
dc.date.available | 2023-08-14T03:26:56Z | |
dc.date.issued | 2023-08-10 | |
dc.description.abstract | Los aceros inoxidables austeníticos usados en componentes de ingeniería, industria y aplicaciones biomédicas son susceptibles a desgaste y corrosión. Este inconveniente se puede controlar adecuadamente mediante aplicación de recubrimientos o modificando la superficie, a través de métodos termoquímicos, como la nitruración y la cementación por plasma. La modificación de la superficie de los componentes de aceros inoxidables austeníticos se puede realizar con la implantación de nitrógeno y/o carbono que modifican microestructuralmente la superficie. Asimismo, propio de los aceros inoxidables austeníticos, se remarca su estructura cristalina de austenita, que permite mejor difusión del carbono y nitrógeno intersticial en los procesos aquí descritos, destacándose por presentar una mejor resistencia a la corrosión que los aceros ferríticos y martensíticos, además de la superior resistencia a la fatiga mecánica y resistencia a la oxidación a elevadas temperaturas. En los procesos de cementación y nitruración por plasma de los aceros inoxidables auténticos se da la formación de la austenita expandida, también llamada fase S, que provoca tensión residual de compresión, aumento de densidad y mejora de propiedades tribológicas. Esta monografía indaga en las principales producciones académicas, como libros, artículos y publicaciones de reconocidas fuentes internacionales de investigación, sobre la optimización de los métodos y técnicas mencionadas, que muestran, contrastan y sugieren mediante ensayos, análisis superficial y microestructural mejoras y avances para desarrollar y proporcionar protección en diversos aspectos de la mecánica de materiales y la tribología; como la resistencia al desgaste y la corrosión a los aceros inoxidables austeníticos. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | 1. RESUMEN ..................................................................................................................... 18 | spa |
dc.description.tableofcontents | 1. ABSTRACT ................................................................................................................ 19 | spa |
dc.description.tableofcontents | 2. INTRODUCCIÓN ...................................................................................................... 20 | spa |
dc.description.tableofcontents | 3. OBJETIVO GENERAL .............................................................................................. 22 | spa |
dc.description.tableofcontents | 4. TRATAMIENTOS TERMOQUÍMICOS ................................................................... 23 | spa |
dc.description.tableofcontents | 4.1. Difusión en estado sólido .................................................................................... 23 | spa |
dc.description.tableofcontents | 4.2. Primera ley de Fick .............................................................................................. 23 | spa |
dc.description.tableofcontents | 4.3. Segunda ley de Fick ............................................................................................... 24 | spa |
dc.description.tableofcontents | 4.3. Métodos de endurecimiento superficial por difusión .......................................... 26 | spa |
dc.description.tableofcontents | 5. NITRURACIÓN Y CEMENTACIÓN POR PLASMA ............................................. 26 | spa |
dc.description.tableofcontents | 5.1. Técnica del plasma pulsado .................................................................................... 30 | spa |
dc.description.tableofcontents | 5.2. Implantación de iones por inmersión en plasma (PIII) .......................................... 31 | spa |
dc.description.tableofcontents | 5.3. Nitruración por plasma de pantalla activa (ASPN) y jaula catódica (CCPN) ......... 31 | spa |
dc.description.tableofcontents | 5.4. La fase austenita expandida .................................................................................... 33 | spa |
dc.description.tableofcontents | 5.4.1. Características de la fase S ................................................................................ 34 | spa |
dc.description.tableofcontents | 5.4.2. Microestructura de la fase S .............................................................................. 34 | spa |
dc.description.tableofcontents | 5.4.3. Pruebas experimentales ..................................................................................... 35 | spa |
dc.description.tableofcontents | 5.4.4. Tipo de fase S ................................................................................................... 35 | spa |
dc.description.tableofcontents | 6. ACEROS INOXIDABLES ......................................................................................... 36 | spa |
dc.description.tableofcontents | 6.1. Sistemas de designación de aleaciones ................................................................ 36 | spa |
dc.description.tableofcontents | 6.2. Clasificación de Aceros inoxidables ................................................................... 37 | spa |
dc.description.tableofcontents | 6.2.1. Acero Inoxidable Austenítico ........................................................................... 37 | spa |
dc.description.tableofcontents | 7. CARACTERIZACIÓN MICROESTRUCTURAL DE ACEROS INOXIDABLES AUSTENÍTICOS NITRURADOS A PLASMA ............................................................... 39 | spa |
dc.description.tableofcontents | 8. CARACTERIZACIÓN MICROESTRUCTURAL DE ACEROS INOXIDABLES AUSTENÍTICOS CEMENTADOS A PLASMA .............................................................. 97 | spa |
dc.description.tableofcontents | 9. ESTADO DE LA TÉCNICA EN COLOMBIA ......................................................... 132 | spa |
dc.description.tableofcontents | 10. CONCLUSIONES .................................................................................................. 134 | spa |
dc.description.tableofcontents | BIBLIOGRAFÍA .............................................................................................................. 137 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7626 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Steels | spa |
dc.subject.keywords | austenite | spa |
dc.subject.keywords | carburizing | spa |
dc.subject.keywords | nitriding | spa |
dc.subject.keywords | plasma | spa |
dc.subject.keywords | wear | spa |
dc.subject.keywords | corrosion | spa |
dc.subject.proposal | Aceros | spa |
dc.subject.proposal | Austenita | spa |
dc.subject.proposal | cementación | spa |
dc.subject.proposal | nitruración | spa |
dc.subject.proposal | plasma | spa |
dc.subject.proposal | desgaste | spa |
dc.subject.proposal | corrosión | spa |
dc.title | Microestructura y aplicaciones de aceros inoxidables austeníticos tratados por nitruración y cementación a plasma | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | E. Rolinski and M. Woods, Engineering the Surface 2019 | spa |
dcterms.references | Eric J. Mittemeijer and Marcel A. J. Somers, Woodhead Publishing Series in Metals and Surface Engineering: Number 62, Thermochemical Surface Engineering of Steels, 2015 | spa |
dcterms.references | William D. Callister, Jr., David G. Rethwisch, Ciencia E Ingeniería De Materiales, 2015 | spa |
dcterms.references | Helmut Mehrer Diffusion in Solids Fundamentals, Methods, Materials, DiffusionControlled Processes, 2007 | spa |
dcterms.references | Clodomiro Alves, Odolberto De Francisco Araujo, Magalhaes De Romulo, Ribeiro De Sousa. Comparison of Plasma-Assisted Nitriding Techniques, Encyclopedia of Tribology pp 402–410, 2013 | spa |
dcterms.references | Steel Products Manual: Stainless Steels, The Iron & Steel Society, 1999 | spa |
dcterms.references | James Newell, Ciencia de Materiales, Aplicaciones en Ingeniería, 2010 | spa |
dcterms.references | J.R. Davis, Surface Hardening of Steels, ASM International, 2002 | spa |
dcterms.references | Santosh S. Hosmani,P. Kuppusami, Rajendra Kumar Goyal. An Introduction to Surface Alloying of Metals. 2014 | spa |
dcterms.references | ASM, Heat Treating, in Metals Handbook, Vol. 4, ASM International. 1991 | spa |
dcterms.references | Arthur C. Reardon, Metallurgy for the Non-Metallurgist, ASM International. 2011 | spa |
dcterms.references | David Pye, Practical Nitriding and Ferritic Nitrocarburizing, 2003 | spa |
dcterms.references | Luis B. López Vázquez, Aceros y Fundiciones, 2015 | spa |
dcterms.references | Pere Molera Solá, Tratamientos Térmicos de los Metales, 1991 | spa |
dcterms.references | Hossein Aghajani, Sahand Behrangi, Plasma Nitriding of Steels, 2017 | spa |
dcterms.references | George E. Totten, Steel Heat Treatment Handbook, 2014 | spa |
dcterms.references | Outokumpu Oyj, Handbook of Stainless Steel, 2013 | spa |
dcterms.references | Renedo Rouco, J. (2010, February). Comportamiento al desgaste por deslizamiento en aceros inoxidables: ferrítico, austenítico, dúplex y martensítico. (Projecte/Treball Final de Carrera). UPC, Escola Tècnica Superior d'Enginyeria 137 Industrial de Barcelona, Departament de Ciència dels Materials i Enginyeria Metallúrgica | spa |
dcterms.references | Maria Cristina Tanzi, Silvia Farè, Gabriele Candiani, 2019. Chapter 4 - Biomaterials and Applications. Foundations of Biomaterials Engineering, Academic Press. | spa |
dcterms.references | Borgioli, F. The Corrosion Behavior in Different Environments of Austenitic Stainless Steels Subjected to Thermochemical Surface Treatments at Low Temperatures: An Overview. Metals 2023, 13, 776 | spa |
dcterms.references | Sun, Y., Bailey, R. Comparison of Wear Performance of Low Temperature Nitrided and Carburized 316L Stainless Steel under Dry Sliding and CorrosiveWear Conditions. J. of Materi Eng and Perform 32, 1238–1247 (2023) | spa |
dcterms.references | Mali, A.S.; Vagge, S.T.; Rathod, M.J. Mapping the Accouterment Effects of Plasma Nitriding on AISI 316L in Biomedical Applications. Coatings 2023, 13, 839 | spa |
dcterms.references | 23. H.L. Che, X. Yang, M.K. Lei, Marcel A.J. Somers, Co-existence of γ'N phase and γN phase on nitrided austenitic Fe-Cr-Ni alloys - III. An investigation of the evolution of long-range ordered domains, Acta Materialia, Volume 253, 2023, 118971, ISSN 1359-6454 | spa |
dcterms.references | Xiao Tao, Yepeng Yang, Jiahui Qi, Biao Cai, W.M. Rainforth, Xiaoying Li, Hanshan Dong, Active screen plasma nitriding of a Si-alloyed FeCrNi medium entropy alloy: High interstitial absorption and an anomalous Si-induced decomposition mechanism in N-expanded austenite, Applied Surface Science, Volume 624, 2023, 157137, ISSN 0169-4332 | spa |
dcterms.references | Darina Manova, Stephan Mändl, Initial phase formation during nitriding of austenitic stainless steel, Surface and Coatings Technology, Volume 456, 2023, 129258, ISSN 0257-8972 | spa |
dcterms.references | Yulin Xie, Goro Miyamoto, Tadashi Furuhara, High-throughput investigation of Cr-N cluster formation in Fe-35Ni-Cr system during low-temperature nitriding, Acta Materialia, Volume 253, 2023, 118921, ISSN 1359-6454 | spa |
dcterms.references | Schibicheski Kurelo, B.C.E.; De Souza, G.B.; Da Silva, S.L.R.; Lepienski, C.M.; Alves Júnior, C.; Chuproski, R.F.; Pintaúde, G. Tribo-Mechanical Behavior of Films and Modified Layers Produced by Cathodic Cage and Glow Discharge Plasma Nitriding Techniques. Metals 2023, 13, 430 | spa |
dcterms.references | Adachi, Shinichiro, Egawa, Motoo, Yamaguchi, Takuto, Ueda, Nobuhiro LowTemperature Plasma Nitriding for Austenitic Stainless-Steel Layers with Various Nickel Contents Fabricated via Direct Laser Metal Deposition,2020 | spa |
dcterms.references | Farghali, A.; Aizawa, T.; Yoshino, T. Microstructure/Mechanical Characterization of Plasma Nitrided Fine-Grain Austenitic Stainless Steels in Low Temperature. Nitrogen 2021, 2, 244-258 | spa |
dcterms.references | Yetim, A.F. & Yildiz, F. & Alsaran, Akgun & Çelik, Ayhan. (2008). Surface modification of 316L stainless steel with plasma nitriding. Kovove Materialy. 46. 105-115 | spa |
dcterms.references | Patel, S., Ganguli, B. & Chaudhury, S.K. Active Screen Plasma Nitriding Characteristics of 347H Austenitic Stainless Steel. Trans Indian Inst Met 75, 663– 671 (2022) | spa |
dcterms.references | Babur, M.Z., Iqbal, Z., Shafiq, M. et al. Comparative study of PVD titanium nitride coating with cathodic cage plasma nitriding of austenitic 201 stainless steel for enhanced tribological properties. Appl. Phys. A 127, 954 (2021 | spa |
dcterms.references | Naofumi Ohtsu, Koyo Miura, Mitsuhiro Hirano, Kenji Kodama,Investigation of admixed gas effect on plasma nitriding of AISI316L austenitic stainless steel, Vacuum, Volume 193,(2021) | spa |
dcterms.references | Fraczek, T.; Prusak, R.; Ogórek, M.; Skuza, Z. Nitriding of 316L Steel in a Glow Discharge Plasma. Materials 2022 | spa |
dcterms.references | Juan Guillermo Schlief Carvajal, Jairo Arturo Escobar Gutiérrez. Estudio experimental de la nitruración por plasma y comparación con el proceso industrial Tenifer en Colombia para aceros de herramientas. 2009, https://repositorio.uniandes.edu.co/handle/1992/20726 | spa |
dcterms.references | Zhen Huang, Zi-Xin Guo, Lei Liu, Yuan-Yuan Guo, Jun Chen, Ze Zhang, JinLong Li, Yan Li, Yan-Wen Zhou, Ying-Shuang Liang, Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel, Surface and Coatings Technology, Volume 405, 2021 | spa |
dcterms.references | Werner, K. V., Che, H. L., Lei, M. K., Christiansen, T. L., & Somers, M. A. J. (2022). Low Temperature Carburizing of Stainless Steels and the Development of Carbon Expanded Austenite*. H T M, 77(1), 3-15. 2022 | spa |
dcterms.references | H.Y. Liu, H.L. Che, J.Y. Gao, G.B. Li, M.K. Lei, Low-pressure hollow cathode plasma source carburizing of AISI 304L austenitic stainless steel at low temperature, Surface and Coatings Technology, Volume 442, 2022 | spa |
dcterms.references | H.Y. Liu, H.L. Che, G.B. Li, M.K. Lei, Low-pressure hollow cathode plasma source carburizing technique at low temperature, Surface and Coatings Technology, Volume 422, 2021 | spa |
dcterms.references | Montanari, R.; Lanzutti, A.; Richetta, M.; Tursunbaev, J.; Vaglio, E.; Varone, A.; Verona, C. Plasma Carburizing of Laser Powder Bed Fusion Manufactured 316 L Steel for Enhancing the Surface Hardness. Coatings 2022, 12, 258 | spa |
dcterms.references | E., Edrees & Hmood, Mahmood & Salman, Yahya. Study of the Structural Properties and Microscopic Hardness of a Carburized Stainless Steel Alloy AISI304. RIET-IJSET International Journal of Science Engineering and Technology. (2021) | spa |
dcterms.references | Naofumi Ohtsu, Koyo Miura, Mitsuhiro Hirano, Kenji Kodama, Investigation of admixed gas effect on plasma nitriding of AISI316L austenitic stainless steel, Vacuum, Volume 193, 2021 | spa |
dcterms.references | Sumiya, K.; Tokuyama, S.; Nishimoto, A.; Fukui, J.; Nishiyama, A. Application of Active-Screen Plasma Nitriding to an Austenitic Stainless Steel Small-Diameter Thin Pipe. Metals 2021, 11, 366 | spa |
dcterms.references | Haruman, E., Sun, Y., Adenan, M.S. A comparative study of the tribocorrosion behaviour of low temperature nitrided austenitic and duplex stainless steels in NaCl solution, 2020 | spa |
dcterms.references | S. Rajendran Pillai, - High Temperature Corrosion of Austenitic Stainless Steels, Editor(s): H.S. Khatak, Baldev Raj, In Woodhead Publishing Series in Metals and Surface Engineering, Corrosion of Austenitic Stainless Steels, Woodhead Publishing, 2002 | spa |
dcterms.references | Ichii, K., Fujimura, K., & Takase, T. Technol. Reports Kansai Univ, 127, 134. (1986) | spa |
dcterms.references | Koppula, Shivani, Gugulothu, Pallavi, Sateesh, N., Subbiah, Ram A review on AISI 2205 duplex stainless steel treated with plasma nitriding process, 2020 | spa |
dcterms.references | Nuñez de la Rosa, Yamid E., Palma Calabokis, Oriana, Borges, Paulo César, Ballesteros Ballesteros, Vladimir Effect of Low-Temperature Plasma Nitriding on Corrosion and Surface Properties of Duplex Stainless Steel UNS S32205, 2020 | spa |
dcterms.references | Singh, Pankaj Kumar, Kumar, Arbind, Sinha, Sanjay Kumar, Aggarwal, Aman, Singh, Gajendra Prasad2017 Enhancement of surface properties of nanocrystalline TiN coated plasma nitrided AISI 310 austenitic stainless Steel, 2017. | spa |
dcterms.references | Yin, S., Zhou, Y., & Lu, J. (2021). Friction and Wear Performance of Austenitic Stainless Steel under Different Lubrication Conditions. Journal of Materials Engineering and Performance, 30(1), 394-404. 4 | spa |
dcterms.references | Liu, Zhiqi, Wang, Huanhuan, Lin, Naiming, Duan, Renhui Combined Plasma Nitriding And Surface Texturing For Improving Tribological Performance Of 316 Stainless Steel, 2020 | spa |
dcterms.references | Shen, Hongyu, Wang, Liang, Sun, Juncai Effect of plasma nitriding at low temperature on the corrosion resistance and conductivity of 2205 duplex stainless steel, 2020 | spa |
dcterms.references | Zhidkov, Ivan S., Kukharenko, Andrey I., Makarov, Alexey V., Savrai, Roman A., Gavrilov, Nikolay V., Cholakh, Seif O., Kurmaev, Ernst Z. XPS characterization of surface layers of stainless steel nitrided in electron beam plasma at low temperatura, 2020 | spa |
dcterms.references | Borgioli, Francesca, Galvanetto, Emanuele, Bacci, Tiberio, Effects of Surface Modification by Means of Low-Temperature Plasma Nitriding on Wetting and Corrosion Behavior of Austenitic Stainless Steel. 2020 | spa |
dcterms.references | Lee, Insup, Effect of Gas Content and Treatment Temperature on the Characteristic of Surface Layers of Low Temperature Plasma Nitrided 316L Austenitic Stainless Steel, 2018 | spa |
dcterms.references | Mendes, Aércio Fernando, Scheuer, Cristiano José, Joanidis, Ioanis Labhardt, Cardoso, Rodrigo Perito, Mafra, Márcio, Klein, Aloísio Nelmo, Brunatto, Silvio Francisco Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless Steel, 2014 | spa |
dcterms.references | Kao, Wen-Hsien, Su, Yean-Liang. Tribological properties of biomedical 316L stainless steel after plasma nitriding and Ti-C:H sputtering coating, 2018 | spa |
dcterms.references | Mindivan, H Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding, 2018 | spa |
dcterms.references | Luo, Quanshun, Oluwafemi, Oluwaseun, Kitchen, Matthew, Yang, Shicai Tribological properties and wear mechanisms of DC pulse plasma nitrided austenitic stainless steel in dry reciprocating sliding tests, 2016 | spa |
dcterms.references | Hoshiyama, Yasuhiro, Mizobata, Ryoji, Miyake, Hidekazu Mechanical properties of austenitic stainless steel treated by active screen plasma nitriding, 2016. | spa |
dcterms.references | Gao, Yuxin, Zheng, Shaomei , Effect Of Plasma Nitriding Temperatures On Characteristics Of Aisi 201 Austenitic Stainless Steel, 2016 | spa |
dcterms.references | Lu, Shijing, Zhao, Xiaobing, Wang, Shukai, Li, Jingcai, Wei, Wei, Hu, Jing, Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless Steel, 2017 | spa |
dcterms.references | Keng-Liang Ou, Hsin-Hua Chou, Chung-Ming Liu, Pei-Wen Peng, Surface modification of austenitic stainless steel with plasma nitriding for biomedical applications, Surface and Coatings Technology, Volume 206, Issue 6, 2011 | spa |
dcterms.references | Mirza Zaheer Babur, Zafar Iqbal, Muhammad Shafiq, Muhammad Y. Naz, Mohamed M. Makhlouf, Hybrid TiN-CCPN coating of AISI-201 stainless steel by physical vapor deposition combined with cathodic cage plasma nitriding for improved tribological properties, Journal of Building Engineering, Volume 45, 2022 | spa |
dcterms.references | Pinedo, Carlos Eduardo, Tschiptschin, André Paulo, Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless Steel, 2013 | spa |
dcterms.references | Inoue, Waka, Muto, Izumi, Sugawara, Yu, Hara, Nobuyoshi Effect of Plasma Carburizing Treatment on Pitting Corrosion Resistance of Type 304 Stainless Steel, 2017 | spa |
dcterms.references | Saravanan, M., Venkateshwaran, N., Devaraju, A., Krishnakumari, A., Saarvesh, J.Surface Modification Of AISI 316L Stainless Steel By Plasma-Assisted Low Temperature Carburizing Process, 2017. | spa |
dcterms.references | Zhang, Ting, Tong, Xing Sheng, The Effect of Wear and Corrosion Resistance of Austenitic Stainless Steel on Plasma Carburizing, 2014 | spa |
dcterms.references | Tong, Xing Sheng, Zhang, Ting, Ye, Wei Effect of Carburizing Atmosphere Proportion on Low Temperature Plasma Carburizing of Austenitic Stainless Steel, 2014 | spa |
dcterms.references | S. Corujeira Gallo, X. Li, H. Dong Dry Sliding Wear of Active Screen Plasma Carburised Austenitic Stainless Steel, 2012 | spa |
dcterms.references | Flis-Kabulska, Iwona, Sun, Yong, Flis, Janusz Corrosion Characteristics of Low Temperature Plasma Carburised and Nitrocarburised 316L Stainless Steel in Sulphate-Chloride Solution, 2013 | spa |
dcterms.references | Zhang, Z.L.; Bell, T. Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel. Surf. Eng. 1985, 1, 131–136 | spa |
dcterms.references | Joseph Buhagiar, André Spiteri, Malcolm Sacco, Emmanuel Sinagra, Hanshan Dong, Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising, 2012 | spa |
dcterms.references | Galeano Osorio, D. (2015). Influencia de la nitruración iónica en la respuesta hemocompatible de aceros inoxidables austeníticos | spa |
dcterms.references | Li, Y., Li, W., Zhu, X., Zhou, H., Jin, X. Mechanism of improved hydrogen embrittlement resistance of low-temperature plasma carburised stainless Steel, 2016 | spa |
dcterms.references | Sun, Y., Tribocorrosion Behavior Of Low Temperature Plasma Carburized Stainless Steel, 2013 | spa |
dcterms.references | García Molleja, J., Milanese, M., Gómez, B. J., Moroso, R., Piccoli, M., Niedbalski, J., Bürgi, J., Bemporad, E., Feugeas, J., Behavior of nitrided and carburized AISI 904 L Stainless Steels Under Severe light ion beam irradiation with plasma focus, 2015 | spa |
dcterms.references | Barcelos, Marcos Antônio, Barcelos, Mariana Valinhos, Araújo Filho, Juraci de Sousa, Franco Jr., Adonias Ribeiro, Vieira, Estéfano Aparecido, Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing, 2017 | spa |
dcterms.references | Biswas, S., Singh, Y., Mukherjee, M. (2021). A Study on Austenitic StainlessSteel Machining by Wire EDM. In: Patnaik, A., Kozeschnik, E., Kukshal, V. (eds) Advances in Materials Processing and Manufacturing Applications. iCADMA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: