Publicación:
Análisis exergético local de la gasificación de los residuos de la agroindustria del maíz en un reactor de tubos concéntricos

dc.contributor.advisorMendoza Fandiño, Jorge Mario
dc.contributor.advisorRhenals Julio, Jesús David
dc.contributor.authorSofán Germán, Stiven Javier
dc.date.accessioned2022-10-27T16:22:17Z
dc.date.available2022-10-27T16:22:17Z
dc.date.issued2022-10-26
dc.description.abstractSe desarrolló un modelo numérico para simular el proceso de gasificación de biomasa en un reactor de tubos concéntricos usando un enfoque euleriano-Lagrangiano a través de la mecánica computación del fluido (CFD). La biomasa se modeló en el marco de Lagrange usando el modelo de fase discreta (DPM) con interacción de fase continua. La incorporación de la mecánica computacional de fluidos permite representar escenarios que involucren procesos de conversión termoquímica orientados a la maximización del poder caloríficos del gas de síntesis, volviéndolos una herramienta más precisa de valorización de biomasas no maderables en el proceso de gasificación en el reactor de tubos concéntricos. Fue desarrollado un balance exergético local para determinar la cantidad de exergía destruida a lo largo del reactor de tubos concéntricos y para así, ver que mejoras ingenieriles pueden hacerse a este tipo de reactores de tal manera que esa destrucción de exergía por los procesos que ocurren pueda disminuir.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. Capítulo I. Descripción del trabajo de investigaciónspa
dc.description.tableofcontents1.1. Introducciónspa
dc.description.tableofcontents1.2. Objetivosspa
dc.description.tableofcontents1.2.1. Objetivo generalspa
dc.description.tableofcontents1.2.2. Objetivos específicosspa
dc.description.tableofcontents1.3. Estructura de la tesisspa
dc.description.tableofcontents1.4. Revisión de literaturaspa
dc.description.tableofcontents1.4.1. Biomasaspa
dc.description.tableofcontents1.4.2. Gasificación de residuos de maízspa
dc.description.tableofcontents1.4.3. Modelación CFD de Gasificaciónspa
dc.description.tableofcontents1.4.4. Análisis exergético de la Gasificaciónspa
dc.description.tableofcontents1.5. Trabajos derivadosspa
dc.description.tableofcontents2. Capítulo II. Caracterización de tusa de Maízspa
dc.description.tableofcontents2.1. Introducciónspa
dc.description.tableofcontents2.2. Materiales y métodosspa
dc.description.tableofcontents2.2.1. Materia primaspa
dc.description.tableofcontents2.3. Resultadosspa
dc.description.tableofcontents2.3.1. Análisis Próximo y Elementalspa
dc.description.tableofcontents2.4. Conclusionesspa
dc.description.tableofcontents3. Capítulo III. Modelación CFDspa
dc.description.tableofcontents3.1. Introducciónspa
dc.description.tableofcontents3.2. Materiales y Métodosspa
dc.description.tableofcontents3.2.1. Ecuaciones de conservaciónspa
dc.description.tableofcontents3.2.2. Transporte de especiesspa
dc.description.tableofcontents3.2.3. Extrapolación de Richardsonspa
dc.description.tableofcontents3.2.4. Mecanismo de reaccionesspa
dc.description.tableofcontents3.2.4.1. Devolatilización y pirólisisspa
dc.description.tableofcontents3.2.4.2. Reacciones homogéneasspa
dc.description.tableofcontents3.2.4.3. Reacciones Sólido-Gasspa
dc.description.tableofcontents3.2.5. Propiedades del sólidospa
dc.description.tableofcontents3.2.6. Régimen Cinéticospa
dc.description.tableofcontents3.2.7. Validación estadística del Modelospa
dc.description.tableofcontents3.3. Resultadosspa
dc.description.tableofcontents3.3.1. Independencia de mallaspa
dc.description.tableofcontents3.3.2. Proceso de gasificaciónspa
dc.description.tableofcontents3.3.3. Régimen Cinéticospa
dc.description.tableofcontents3.3.4. Análisis Estadísticospa
dc.description.tableofcontents3.4. Conclusionesspa
dc.description.tableofcontents4. Capítulo IV. Análisis Exergéticospa
dc.description.tableofcontents4.1. Introducciónspa
dc.description.tableofcontents4.2. Materiales y métodosspa
dc.description.tableofcontents4.2.1. Discretización del dominiospa
dc.description.tableofcontents4.2.2. Balance exergético localspa
dc.description.tableofcontents4.2.3. Eficiencia exergética y Eficiencias de Gasificaciónspa
dc.description.tableofcontents4.3. Resultadosspa
dc.description.tableofcontents4.3.1. Análisis Exergéticospa
dc.description.tableofcontents4.3.2. Eficiencia Exergética y Eficiencia de gasificaciónspa
dc.description.tableofcontents4.4. Conclusionesspa
dc.description.tableofcontents5. Conclusiones Generales y futuros trabajosspa
dc.description.tableofcontents5.1. Objetivo específico I: Caracterización de la tusa de Maízspa
dc.description.tableofcontents5.2. Objetivo específico II: Modelo CFD y validaciónspa
dc.description.tableofcontents5.3. Objetivo específico III: Análisis exergético localspa
dc.description.tableofcontents5.4. Futuros trabajosspa
dc.description.tableofcontents5.4.1. Producción de productos líquidosspa
dc.description.tableofcontents5.4.2. Análisis CFD-DEMspa
dc.description.tableofcontents5.4.3. Gasificación en lecho fluidizadospa
dc.description.tableofcontents6. Bibliografíaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6698
dc.language.isospaspa
dc.publisherUNIVERSIDAD DE CÓRDOBAspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ingeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsCFDeng
dc.subject.keywordsExergy analysiseng
dc.subject.keywordsCorn cob gasificationeng
dc.subject.keywordsConcentric tube reactoreng
dc.subject.proposalCFDspa
dc.subject.proposalAnálisis exergéticospa
dc.subject.proposalGasificación de tusa de maízspa
dc.subject.proposalReactor de tubos concéntricosspa
dc.titleAnálisis exergético local de la gasificación de los residuos de la agroindustria del maíz en un reactor de tubos concéntricosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAcevedo, L., Usón, S., & Uche, J. (2014). Exergy transfer analysis of microwave heating systems. Energy, 68, 349–363. https://doi.org/https://doi.org/10.1016/j.energy.2014.02.041spa
dcterms.referencesAcevedo, L., Usón, S., & Uche, J. (2015). Local exergy cost analysis of microwave heating systems. Energy, 80, 437–451. https://doi.org/https://doi.org/10.1016/j.energy.2014.11.085spa
dcterms.referencesAcosta Roca, R. (2009). El cultivo del maíz, SU origen y clasificación. EL MAIZ en Cuba. Cultivos Tropicales, 30.spa
dcterms.referencesAlonso, G., del Valle, E., & Ramirez, J. R. (2020). 6 - Thermoeconomic analysis. In G. Alonso, E. del Valle, & J. R. B. T.-D. in N. P. P. Ramirez (Eds.), Woodhead Publishing Series in Energy (pp. 77–131). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-820021-6.00006-5spa
dcterms.referencesÁlvarez Rodríguez, A., Pizarro García, C., & Folgueras Díaz, M. B. (2012). CARACTERIZACIÓN QUÍMICA DE BIOMASA Y SU RELACIÓN. 1–12. https://digibuo.uniovi.es/dspace/handle/10651/17777spa
dcterms.referencesÁlvarez, Y. R., & Silva, F. C. (2016). TRANSFERENCIA EN ENERGÍAS RENOVABLES PARA EL DEPARTAMENTO DE CÓRDOBA.spa
dcterms.referencesArenas, C. N., Navarro, M. V., & Martínez, J. D. (2019). Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresource Technology, 288, 121485. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121485spa
dcterms.referencesArenas Castiblanco, E., Montoya, J. H., Rincón, G. V., Zapata-Benabithe, Z., Gómez-Vásquez, R., & Camargo-Trillos, D. A. (2022). A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon, 8(8), e10195. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10195spa
dcterms.referencesArun, K., Venkata Ramanan, M., & Mohanasutan, S. (2022). Comparative studies and analysis on gasification of coconut shells and corn cobs in a perforated fixed bed downdraft reactor by admitting air through equally spaced conduits. Biomass Conversion and Biorefinery, 12(4), 1257–1269. https://doi.org/10.1007/s13399-020-00872-1spa
dcterms.referencesAskaripour, H. (2020). CFD modeling of gasification process in tapered fluidized bed gasifier. Energy, 191, 116515. https://doi.org/https://doi.org/10.1016/j.energy.2019.116515spa
dcterms.referencesAssureira, E., & Assureira, M. (2021). Bio-carbón de hojas de caña de azúcar para su empleo como combustible y agente reductor en procesos de reducción directa del mineral de hierro. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2021-July. https://doi.org/10.18687/LACCEI2021.1.1.28spa
dcterms.referencesBaruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806–815. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.129spa
dcterms.referencesBasu, P. (2018). Chapter 3 - Biomass Characteristics. In P. Basu (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition) (Third Edit, pp. 49–91). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812992-0.00003-0spa
dcterms.referencesBejan, A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research, 26(7), 0–43. https://doi.org/10.1002/er.804spa
dcterms.referencesBejan, A., Tsatsaronis, G., & Moran, M. J. (1995). Thermal design and optimization. John Wiley & Sons.spa
dcterms.referencesBukar, A. A., Ben Oumarou, M., Tela, B. M., Eljummah, A. M., & Oumarou, M. Ben. (2019). Assessment of Biomass Gasification: A Review of Basic Design Considerations "Assessment of Biomass Gasification: A Review of Basic Design Considerations. American Journal of Energy Research, 7(1), 1–14. https://doi.org/10.12691/ajer-7-1-1spa
dcterms.referencesBuragohain, B., & Mahanta, P. (2010). Biomass gasification for decentralized power generation: The Indian perspective. Renewable and Sustainable Energy Reviews, 14, 73–92. https://doi.org/10.1016/j.rser.2009.07.034spa
dcterms.referencesBustamante, F., Enick, R. M., Killmeyer, R. P., Howard, B. H., Rothenberger, K. S., Cugini, A. V., Morreale, B. D., & Ciocco, M. V. (2005). Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics. AIChE Journal. https://doi.org/10.1002/aic.10396spa
dcterms.referencesCaliskan, H., & Hepbasli, A. (2010). Energy and exergy analyses of ice rink buildings at varying reference temperatures. Energy and Buildings, 42, 1418–1425. https://doi.org/10.1016/j.enbuild.2010.03.011spa
dcterms.referencesCarta, J. A., R, C., A, C., Castro, M., & E, C. (2012). Centrales de energías renovables: Generación eléctrica con energías renovables.spa
dcterms.referencesCelik, I., & Karatekin, O. (1997). Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids. Journal of Fluids Engineering, 119(3), 584–590. https://doi.org/10.1115/1.2819284spa
dcterms.referencesÇengel, Y A, & Ghajar, A. J. (2015). Heat and Mass Transfer: Fundamentals \& Applications. McGraw Hill Education. https://books.google.com.co/books?id=1YPhoAEACAAJspa
dcterms.referencesÇengel, Yunus A, & Boles, M. A. (2008). Thermodynamics : an engineering approach. Sixth edition. Boston : McGraw-Hill Higher Education, [2008] ©2008. https://search.library.wisc.edu/catalog/9910062108002121spa
dcterms.referencesChapra, S., & Canale, R. (2006). Numerical Methods for Engineers. In Numerical Methods for Engineers. https://doi.org/10.1201/9781420010244spa
dcterms.referencesChen, B., & Chen, G. Q. (2007). Resource analysis of the Chinese society 1980–2002 based on exergy—Part 2: Renewable energy sources and forest. Energy Policy, 35(4), 2051–2064. https://doi.org/https://doi.org/10.1016/j.enpol.2006.07.001spa
dcterms.referencesChen, B., Chen, G. Q., & Yang, Z. F. (2006). Exergy-based resource accounting for China. Ecological Modelling, 196(3), 313–328. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2006.02.019spa
dcterms.referencesCohce, M. K., Dincer, I., & Rosen, M. A. (2010). Thermodynamic analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 35(10), 4970–4980. https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.08.066spa
dcterms.referencesCouto, N., Silva, V., Monteiro, E., & Rouboa, A. (2017). Exergy analysis of Portuguese municipal solid waste treatment via steam gasification. Energy Conversion and Management, 134, 235–246. https://doi.org/https://doi.org/10.1016/j.enconman.2016.12.040spa
dcterms.referencesDai, J., & Chen, B. (2010). Extended exergy-based fossil fuels resource accounting in spatial distribution in 2007, China. Procedia Environmental Sciences, 2, 1799–1807. https://doi.org/https://doi.org/10.1016/j.proenv.2010.10.191spa
dcterms.referencesDayton, D. C., & Foust, T. D. (2020). Chapter Two - Biomass Characterization. In D. C. Dayton & T. D. Foust (Eds.), Analytical Methods for Biomass Characterization and Conversion (pp. 19–35). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-815605-6.00002-0spa
dcterms.referencesDincer, I. (2002). The role of exergy in energy policy making. Energy Policy, 30(2), 137–149. https://doi.org/https://doi.org/10.1016/S0301-4215(01)00079-9spa
dcterms.referencesDincer, I., & Cengel, Y. A. (2001). Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering. Entropy, 3(3), 116–149. https://doi.org/10.3390/e3030116spa
dcterms.referencesDincer, I., & Rosen, M. (2004). Exergy as a Driver for Achieving Sustainability. International Journal of Green Energy - INT J GREEN ENERGY, 1, 1–19. https://doi.org/10.1081/GE-120027881spa
dcterms.referencesDryer, F. L., & Westbrook, C. K. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology. https://doi.org/10.1080/00102208108946970spa
dcterms.referencesEl-Emam, R. S., & Dincer, I. (2015). Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. International Journal of Hydrogen Energy, 40(24), 7694–7706. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.02.061spa
dcterms.referencesFederación, B. (2010). El cultivo del maíz, historia e importancia. http://hdl.handle.net/20.500.12324/1004spa
dcterms.referencesFernandez, C. (2018). 1.2. Panorámica energética mundial. 20–37.spa
dcterms.referencesFourcault, A., Marias, F., & Michon, U. (2010). Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch. Biomass and Bioenergy, 34(9), 1363–1374. https://doi.org/10.1016/j.biombioe.2010.04.018spa
dcterms.referencesGai, C., & Dong, Y. (2012). Experimental study on non-woody biomass gasification in a downdraft gasifier. International Journal of Hydrogen Energy, 37(6), 4935–4944. https://doi.org/10.1016/j.ijhydene.2011.12.031spa
dcterms.referencesGielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(January), 38–50. https://doi.org/10.1016/j.esr.2019.01.006spa
dcterms.referencesGomez, R., Camargo-Trillos, D., Arenas, E., Zapata, Z., & Bula, A. J. (2021). CaCO3 and air/steam effect on the gasification and biohydrogen both performance of corn cob as received: application in the Colombian Caribbean region. UnderReview.spa
dcterms.referencesGómez, R. D., Camargo, D. A., & Soto, C. C. (2019). Synergistic evaluation of residual biomass gasification in mixtures of corn and cotton. Informacion Tecnológica, 30(6), 11–20.spa
dcterms.referencesGómez, R. D., Castiblanco, E. A., Zapata Benabithe, Z., Bula Silvera, A. J., & Camargo-Trillos, D. A. (2021). CaCO3 and air/steam effect on the gasification and biohydrogen performance of corn cob as received: Application in the Colombian Caribbean region. Biomass and Bioenergy, 153, 106207. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106207spa
dcterms.referencesGómez, R., Palacio Vega, M., Arango Meneses, J., Avila, A., & Mendoza Fandiño, J. (2021). Evaluation of the energy generation potential by an experimental characterization of residual biomass blends from Córdoba, Colombia in a downdraft gasifier. Waste Management. https://doi.org/10.1016/j.wasman.2020.10.014spa
dcterms.referencesGómez Vásquez, R. D. (2022). Desarrollo de un modelo fenomenológico de transformación termoquímica de biomasa en un reactor de gasificación de biomasa para valoración del proceso de gasificación con enriquecimiento de hidrógeno (Tesis Doctoral). Universidad del Norte.spa
dcterms.referencesGorugantu, S. B., Carstensen, H.-H., Van Geem, K., & Marin, G. (2019). Measuring biomass fast pyrolysis kinetics : state of the art. WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 8(2). http://dx.doi.org/10.1002/wene.326spa
dcterms.referencesGovaerts, B. ., Vega, D. ., Chávez, X. ., Narro, L. ., San Vicente, F. M. ., San Vicente, F. M., Palacios, N. ., Palacios, N., Pérez, M. ., González, G. ., Ortega, P. ., Carvajal, A. ., Arcos, A. L. ., Bolaños, J. ., Romero, N. ., Bolaños, J. ., Vanegas, Y. F. ., Echeverría, R. ., Jarvis, A. ., … Tapasco, J. (2019). Maíz para Colombia Visión 2030 (E. . Figueroa & A. Aguilar (eds.); CIMMYT). https://repository.cimmyt.org/handle/10883/20218spa
dcterms.referencesHassan, H. Z. (2013). Evaluation of the local exergy destruction in the intake and fan of a turbofan engine. Energy, 63, 245–251. https://doi.org/https://doi.org/10.1016/j.energy.2013.10.062spa
dcterms.referencesHosseini, M., Dincer, I., & Rosen, M. A. (2012). Steam and air fed biomass gasification: Comparisons based on energy and exergy. International Journal of Hydrogen Energy, 37(21), 16446–16452. https://doi.org/10.1016/j.ijhydene.2012.02.115spa
dcterms.referencesHu, C., Luo, K., Wang, S., Sun, L., & Fan, J. (2019). Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 195, 693–706. https://doi.org/https://doi.org/10.1016/j.ces.2018.10.015spa
dcterms.referencesHwang, I. S., Sohn, J., Lee, U. Do, & Hwang, J. (2021). CFD-DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: Effects of equivalence ratio and fluidization number. Energy, 219, 119533. https://doi.org/https://doi.org/10.1016/j.energy.2020.119533spa
dcterms.referencesIshaq, H., Dincer, I., & Naterer, G. F. (2018). Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system. Energy, 159, 1206–1217. https://doi.org/https://doi.org/10.1016/j.energy.2018.06.213spa
dcterms.referencesJaén, R. L., Aseffe, J. A. M., & Ruiz, L. O. O. (2020). Estudio de la gasificación de la tusa del maíz para la generación de electricidad // Study of the corn cob gasification of the for the electricity generation.spa
dcterms.referencesJeguirim, M., Bikai, J., Elmay, Y., Limousy, L., & Njeugna, E. (2014). Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development, 23, 188–193. https://doi.org/https://doi.org/10.1016/j.esd.2014.09.009spa
dcterms.referencesJohn, J., Orrego, P., Castaño, D., & Mauro, J. (2016). No . 16-03 Un modelo Casi Ideal de Demanda de Combusti- 2016 bles para la Industria de Transporte. 16.spa
dcterms.referencesJones, W. P., & Lindstedt, R. P. (1988). Global reaction schemes for hydrocarbon combustion. Combustion and Flame. https://doi.org/10.1016/0010-2180(88)90021-spa
dcterms.referencesKaisalo, N., Simell, P., & Lehtonen, J. (2016). Benzene steam reforming kinetics in biomass gasification gas cleaning. Fuel, 182, 696–703. https://doi.org/10.1016/j.fuel.2016.06.042spa
dcterms.referencesKlimanek, A., & Bigda, J. (2018). CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor. Energy, 160, 710–719. https://doi.org/https://doi.org/10.1016/j.energy.2018.07.046spa
dcterms.referencesKock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47(10–11), 2205–2215. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.025spa
dcterms.referencesKumar, M., & Ghoniem, A. F. (2012). Multiphysics simulations of entrained flow gasification. Part II: Constructing and validating the overall model. Energy and Fuels, 26(1), 464–479. https://doi.org/10.1021/ef2008858spa
dcterms.referencesKumar, U., & Paul, M. C. (2019). CFD modelling of biomass gasification with a volatile break-up approach. Chemical Engineering Science, 195, 413–422. https://doi.org/10.1016/j.ces.2018.09.038spa
dcterms.referencesLaohalidanond, K., Kongkaew, N., & Kerdsuwan, S. (2017). Gasification Behavior Study of Torrefied Empty Corn Cobs. Energy Procedia, 138, 175–180. https://doi.org/10.1016/j.egypro.2017.10.146spa
dcterms.referencesLaunder, B. E. (Brian E. (1972). Lectures in mathematical models of turbulence [by] B. E. Launder and D. B. Spalding (D. B. (Dudley B. Spalding 1923- (ed.)). Academic Press.spa
dcterms.referencesLu, Y., Guo, L., Zhang, X., & Yan, Q. (2007). Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal, 131(1), 233–244. https://doi.org/https://doi.org/10.1016/j.cej.2006.11.016spa
dcterms.referencesMa, J., & Zitney, S. E. (2012). Computational fluid dynamic modeling of entrained-flow gasifiers with improved physical and chemical submodels. Energy and Fuels. https://doi.org/10.1021/ef301346zspa
dcterms.referencesMagniont, C., & Aubert, J. (2018). Energy & Buildings Hygrothermal properties of unfired earth bricks : Effect of barley straw , hemp shiv and corn cob addition. 178, 265–278. https://doi.org/10.1016/j.enbuild.2018.08.021spa
dcterms.referencesMaksimuk, Y., Antonava, Z., Krouk, V., Korsakova, A., & Kursevich, V. (2020). Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel, 263, 116727.spa
dcterms.referencesMartillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/https://doi.org/10.1016/j.renene.2020.10.053spa
dcterms.referencesMartínez, L. V, Rubiano, J. E., Figueredo, M., & Gómez, M. F. (2020). Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renewable Energy, 148, 1216–1226. https://doi.org/https://doi.org/10.1016/j.renene.2019.10.034spa
dcterms.referencesMehrpooya, M., Khalili, M., & Sharifzadeh, M. M. M. (2018). Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources). Renewable and Sustainable Energy Reviews, 91, 869–887. https://doi.org/https://doi.org/10.1016/j.rser.2018.04.076spa
dcterms.referencesMendoza Fandiño, J., Rhenals, J., Ávila, A., & Durando, E. (2021). Análise Exergoeconômica da Gasificação de Sabugo de Milho Integrado em um Sistema de Geração de Energia: Estudo de Caso na Colômbia. 13(76), 919–925.spa
dcterms.referencesMendoza, J., Sofan, S., Lopez, D., Martínez, A., & Rhenals, J. (2021). CARACTERIZAÇÃO ENERGÉTICA DOS RESÍDUOS DA AGROINDÚSTRIA DO MILHO NUM PROTÓTIPO DE GASIFICAÇÃO MULTIZONA (p. 11).spa
dcterms.referencesMohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., Mohammad Amran, M. S., Fakhru’L-Razi, A., & Taufiq-Yap, Y. H. (2011). Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15(2), 1258–1270. https://doi.org/10.1016/j.rser.2010.10.003spa
dcterms.referencesMolino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/https://doi.org/10.1016/j.jechem.2015.11.005spa
dcterms.referencesMoran, M. J., & Shapiro, H. N. (2009). Fundamentals of engineering thermodynamics (6th ed.). John Wiley and Sons Inc., New York, NY. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470540192.htmlspa
dcterms.referencesMorsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2), 193–208. https://doi.org/10.1017/S0022112072001806spa
dcterms.referencesNaterer, G., & Camberos, J. (2008). Entropy-based design and analysis of fluids engineering systems. With a foreword by David J. Moorhouse. https://doi.org/10.1201/9781420006919spa
dcterms.referencesNgamsidhiphongsa, N., Ponpesh, P., Shotipruk, A., & Arpornwichanop, A. (2020). Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.112808spa
dcterms.referencesNiembro, I., & Gonzalez, M. (2012). Energía y Exergía : Enfoques hacia la Sostenibilidad mediante el Análisis de Ciclo de Vida. Congreso Nacional Del Medio Ambiente, 1–5. http://www.conama9.conama.org/conama9/download/files/CTs/985791_INiembro.pdfspa
dcterms.referencesPandey, B., Prajapati, Y. K., & Sheth, P. N. (2021). CFD analysis of biomass gasification using downdraft gasifier. Materials Today: Proceedings, 44, 4107–4111. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.451spa
dcterms.referencesPandey, B., Prajapati, Y. K., & Sheth, P. N. (2022). CFD analysis of the downdraft gasifier using species-transport and discrete phase model. Fuel, 328, 125302. https://doi.org/https://doi.org/10.1016/j.fuel.2022.125302spa
dcterms.referencesPepiot, P., Dibble, C., & Foust, T. (2010). Computational fluid dynamics modeling of biomass gasification and pyrolysis. Computational Modeling in Lignocellulosic Biofuel Production, 273–298. https://doi.org/10.1021/bk-2010-1052.ch012spa
dcterms.referencesPielsticker, S., Gövert, B., Umeki, K., & Kneer, R. (2021). Flash Pyrolysis Kinetics of Extracted Lignocellulosic Biomass Components. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.737011spa
dcterms.referencesPinto, J., Sá, A. B., Pereira, S., Bentes, I., & Paiva, A. (2016). Possible Applications of Corncob as a Raw Insulation Material. Intech, 26–43. https://doi.org/10.5772/62339spa
dcterms.referencesPrins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). Torrefaction of wood: Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77(1), 28–34. https://doi.org/https://doi.org/10.1016/j.jaap.2006.01.002spa
dcterms.referencesRhenals, J. D., Fandiño, J., la Vega, T., & Mendoza Fandiño, J. (2021). Evaluación energética de la co-combustión de contenido ruminal-metano en frigoríficos y mataderos del departamento de Córdoba-Colombia. 44–53.spa
dcterms.referencesRhenals, J., Luis, M., & Montes, T. (2016). ANÁLISIS EXERGOECONÓMICO DE LA GASIFICACIÓN DE TUSA DE MAÍZ EMPLEANDO VAPOR DE AGUA COMO AGENTE GASIFICANTE, INTEGRADO A UN SISTEMA DE GENERACIÓN DE POTENCIA. https://repositorio.unicordoba.edu.co/bitstream/handle/ucordoba/669/Informe final.pdf?sequence=1&isAllowed=yspa
dcterms.referencesRhenals Julio, J. D. (2021). ANÁLISIS ENERGÉTICO Y EXERGÉTICO DE UN SISTEMA DE REFRIGERACIÓN ABSORCIÓN-DIFUSIÓN CON DIFERENTES FUENTES DE CALOR [Universidad de la Costa]. https://hdl.handle.net/11323/8516spa
dcterms.referencesRichardson, L. F. (1911). The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210, 307–357. http://www.jstor.org/stable/90994spa
dcterms.referencesRosen, M., & Tang, R. (2008). Improving steam power plant efficiency through exergy analysis: Effects of altering excess combustion air and stack-gas temperature. International Journal of Exergy - INT J EXERGY, 5. https://doi.org/10.1504/IJEX.2008.016011spa
dcterms.referencesRoychowdhury, D. (2020). Computational Fluid Dynamics for Incompressible Flows (Issue August). https://doi.org/10.1201/9780367809171spa
dcterms.referencesRuiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., & Mendívil, M. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. In Renewable and Sustainable Energy Reviews (Vol. 18, pp. 174–183). Pergamon. https://doi.org/10.1016/j.rser.2012.10.021spa
dcterms.referencesSagastume, A., Mendoza, J., Cabello Eras, J., & Rhenals, J. (2021). The Available Waste-to-energy Potential from Agricultural Wastes in the Department of Córdoba, Colombia. International Journal of Energ Economics and Policy, 11, 44–50. https://doi.org/10.32479/ijeep.10705spa
dcterms.referencesSerratos-Hernández, J.-A. (2009). El origen y la diversidad del maíz en el continente americano.spa
dcterms.referencesSooriyalakshmi, N., & H, J. H. (2021). Thermal conductivity of insulating materials : An overview. 6(9), 59–65.spa
dcterms.referencesSusastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. In Renewable and Sustainable Energy Reviews (Vol. 76, pp. 989–1003). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.03.112spa
dcterms.referencesSzargut, J., Morris, D. R., & Steward, F. R. (1987). Exergy analysis of thermal, chemical, and metallurgical processes. https://www.osti.gov/biblio/6157620spa
dcterms.referencesTaheri, A., Khoshnevis, A. B., & Lakzian, E. (2020). The effects of wall curvature and adverse pressure gradient on air ducts in HVAC systems using turbulent entropy generation analysis. International Journal of Refrigeration, 113, 21–30. https://doi.org/10.1016/j.ijrefrig.2020.01.014spa
dcterms.referencesValdés, C., Chejne Janna, F., Marrugo, G., Gomez, C., Montoya, J., Macías, R., Londoño G., C., De La Cruz, J., Ocampo, A., & Arenas, E. (2017). La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria.spa
dcterms.referencesVerissimo, G. L., Cruz, M. E., & Leiroz, A. J. K. (2019). Derivation of Entropy and Exergy Transport Equations, and Application to Second Law Analysis of Sugarcane Bagasse Gasification in Bubbling Fluidized Beds. Journal of Energy Resources Technology, 142(6). https://doi.org/10.1115/1.4045541spa
dcterms.referencesVillalón, J. M. M., Torrent, J. G., & Aragón, E. Q. (2009). Termoeconomía y optimización energética. Fundación Gómez Pardo.spa
dcterms.referencesWang, C. H., Zhao, D., Tsutsumi, A., & You, S. (2017). Sustainable energy technologies for energy saving and carbon emission reduction. Applied Energy, 194, 223–224. https://doi.org/10.1016/j.apenergy.2017.02.045spa
dcterms.referencesWang, L., Izaharuddin, A. N., Karimi, N., & Paul, M. C. (2021). A numerical investigation of CO2 gasification of biomass particles- analysis of energy, exergy and entropy generation. Energy, 228, 120615. https://doi.org/https://doi.org/10.1016/j.energy.2021.120615spa
dcterms.referencesWang, X., Lv, W., Guo, L., Zhai, M., Dong, P., & Qi, G. (2016). Energy and exergy analysis of rice husk high-temperature pyrolysis. International Journal of Hydrogen Energy, 41(46), 21121–21130. https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.09.155spa
dcterms.referencesWatanabe, H., & Otaka, M. (2006). Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel. https://doi.org/10.1016/j.fuel.2006.02.002spa
dcterms.referencesWBA. (2019). GLOBAL BIOENERGY STATISTICS 2019 World Bioenergy Association. Zafar, S., & Dincer, I. (2014). Thermodynamic analysis of a combined PV/T–fuel cell system for power, heat, fresh water and hydrogen production. International Journal of Hydrogen Energy, 39(19), 9962–9972. https://doi.org/https://doi.org/10.1016/j.ijhydene.2014.04.127spa
dcterms.referencesZafar, S., & Dincer, I. (2014). Thermodynamic analysis of a combined PV/T–fuel cell system for power, heat, fresh water and hydrogen production. International Journal of Hydrogen Energy, 39(19), 9962–9972. https://doi.org/https://doi.org/10.1016/j.ijhydene.2014.04.127spa
dcterms.referencesZhang, X., Li, H., Liu, L., Bai, C., Wang, S., Zeng, J., Liu, X., Li, N., & Zhang, G. (2018). Thermodynamic and economic analysis of biomass partial gasification process. Applied Thermal Engineering, 129, 410–420. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.10.069spa
dcterms.referencesZhang, Y., Fan, X., Li, B.-X., Li, H., & Xiaoyan, G. (2017). Assessing the potential environmental impact of fuel using exergy-cases of wheat straw and coal. International Journal of Exergy, 23, 85. https://doi.org/10.1504/IJEX.2017.084517spa
dcterms.referencesZhang, Y., Gao, X., Li, B., Li, H., & Zhao, W. (2018). Assessing the potential environmental impact of woody biomass using quantitative universal exergy. Journal of Cleaner Production, 176, 693–703. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.159spa
dcterms.referencesZhang, Y., Li, B., Li, H., & Liu, H. (2011). Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochimica Acta, 519(1), 65–71. https://doi.org/https://doi.org/10.1016/j.tca.2011.03.005spa
dcterms.referencesZhang, Y., Xu, P., Liang, S., Liu, B., Shuai, Y., & Li, B. (2019). Exergy analysis of hydrogen production from steam gasification of biomass: A review. International Journal of Hydrogen Energy, 44(28), 14290–14302. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.02.064spa
dcterms.referencesZhang, Y., Zhao, Y., Li, B.-X., Xiaoyan, G., & Jiang, B. (2017). Energy and exergy characteristics of syngas produced from air gasification of walnut sawdust in an entrained flow reactor. International Journal of Exergy, 23, 244. https://doi.org/10.1504/IJEX.2017.085772spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Tesis Stiven Javier Sofan German.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado de maestría
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
329.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización Publicación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones