Publicación: Análisis exergético local de la gasificación de los residuos de la agroindustria del maíz en un reactor de tubos concéntricos
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | |
dc.contributor.advisor | Rhenals Julio, Jesús David | |
dc.contributor.author | Sofán Germán, Stiven Javier | |
dc.date.accessioned | 2022-10-27T16:22:17Z | |
dc.date.available | 2022-10-27T16:22:17Z | |
dc.date.issued | 2022-10-26 | |
dc.description.abstract | Se desarrolló un modelo numérico para simular el proceso de gasificación de biomasa en un reactor de tubos concéntricos usando un enfoque euleriano-Lagrangiano a través de la mecánica computación del fluido (CFD). La biomasa se modeló en el marco de Lagrange usando el modelo de fase discreta (DPM) con interacción de fase continua. La incorporación de la mecánica computacional de fluidos permite representar escenarios que involucren procesos de conversión termoquímica orientados a la maximización del poder caloríficos del gas de síntesis, volviéndolos una herramienta más precisa de valorización de biomasas no maderables en el proceso de gasificación en el reactor de tubos concéntricos. Fue desarrollado un balance exergético local para determinar la cantidad de exergía destruida a lo largo del reactor de tubos concéntricos y para así, ver que mejoras ingenieriles pueden hacerse a este tipo de reactores de tal manera que esa destrucción de exergía por los procesos que ocurren pueda disminuir. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Mecánica | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación | spa |
dc.description.tableofcontents | 1.1. Introducción | spa |
dc.description.tableofcontents | 1.2. Objetivos | spa |
dc.description.tableofcontents | 1.2.1. Objetivo general | spa |
dc.description.tableofcontents | 1.2.2. Objetivos específicos | spa |
dc.description.tableofcontents | 1.3. Estructura de la tesis | spa |
dc.description.tableofcontents | 1.4. Revisión de literatura | spa |
dc.description.tableofcontents | 1.4.1. Biomasa | spa |
dc.description.tableofcontents | 1.4.2. Gasificación de residuos de maíz | spa |
dc.description.tableofcontents | 1.4.3. Modelación CFD de Gasificación | spa |
dc.description.tableofcontents | 1.4.4. Análisis exergético de la Gasificación | spa |
dc.description.tableofcontents | 1.5. Trabajos derivados | spa |
dc.description.tableofcontents | 2. Capítulo II. Caracterización de tusa de Maíz | spa |
dc.description.tableofcontents | 2.1. Introducción | spa |
dc.description.tableofcontents | 2.2. Materiales y métodos | spa |
dc.description.tableofcontents | 2.2.1. Materia prima | spa |
dc.description.tableofcontents | 2.3. Resultados | spa |
dc.description.tableofcontents | 2.3.1. Análisis Próximo y Elemental | spa |
dc.description.tableofcontents | 2.4. Conclusiones | spa |
dc.description.tableofcontents | 3. Capítulo III. Modelación CFD | spa |
dc.description.tableofcontents | 3.1. Introducción | spa |
dc.description.tableofcontents | 3.2. Materiales y Métodos | spa |
dc.description.tableofcontents | 3.2.1. Ecuaciones de conservación | spa |
dc.description.tableofcontents | 3.2.2. Transporte de especies | spa |
dc.description.tableofcontents | 3.2.3. Extrapolación de Richardson | spa |
dc.description.tableofcontents | 3.2.4. Mecanismo de reacciones | spa |
dc.description.tableofcontents | 3.2.4.1. Devolatilización y pirólisis | spa |
dc.description.tableofcontents | 3.2.4.2. Reacciones homogéneas | spa |
dc.description.tableofcontents | 3.2.4.3. Reacciones Sólido-Gas | spa |
dc.description.tableofcontents | 3.2.5. Propiedades del sólido | spa |
dc.description.tableofcontents | 3.2.6. Régimen Cinético | spa |
dc.description.tableofcontents | 3.2.7. Validación estadística del Modelo | spa |
dc.description.tableofcontents | 3.3. Resultados | spa |
dc.description.tableofcontents | 3.3.1. Independencia de malla | spa |
dc.description.tableofcontents | 3.3.2. Proceso de gasificación | spa |
dc.description.tableofcontents | 3.3.3. Régimen Cinético | spa |
dc.description.tableofcontents | 3.3.4. Análisis Estadístico | spa |
dc.description.tableofcontents | 3.4. Conclusiones | spa |
dc.description.tableofcontents | 4. Capítulo IV. Análisis Exergético | spa |
dc.description.tableofcontents | 4.1. Introducción | spa |
dc.description.tableofcontents | 4.2. Materiales y métodos | spa |
dc.description.tableofcontents | 4.2.1. Discretización del dominio | spa |
dc.description.tableofcontents | 4.2.2. Balance exergético local | spa |
dc.description.tableofcontents | 4.2.3. Eficiencia exergética y Eficiencias de Gasificación | spa |
dc.description.tableofcontents | 4.3. Resultados | spa |
dc.description.tableofcontents | 4.3.1. Análisis Exergético | spa |
dc.description.tableofcontents | 4.3.2. Eficiencia Exergética y Eficiencia de gasificación | spa |
dc.description.tableofcontents | 4.4. Conclusiones | spa |
dc.description.tableofcontents | 5. Conclusiones Generales y futuros trabajos | spa |
dc.description.tableofcontents | 5.1. Objetivo específico I: Caracterización de la tusa de Maíz | spa |
dc.description.tableofcontents | 5.2. Objetivo específico II: Modelo CFD y validación | spa |
dc.description.tableofcontents | 5.3. Objetivo específico III: Análisis exergético local | spa |
dc.description.tableofcontents | 5.4. Futuros trabajos | spa |
dc.description.tableofcontents | 5.4.1. Producción de productos líquidos | spa |
dc.description.tableofcontents | 5.4.2. Análisis CFD-DEM | spa |
dc.description.tableofcontents | 5.4.3. Gasificación en lecho fluidizado | spa |
dc.description.tableofcontents | 6. Bibliografía | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6698 | |
dc.language.iso | spa | spa |
dc.publisher | UNIVERSIDAD DE CÓRDOBA | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | CFD | eng |
dc.subject.keywords | Exergy analysis | eng |
dc.subject.keywords | Corn cob gasification | eng |
dc.subject.keywords | Concentric tube reactor | eng |
dc.subject.proposal | CFD | spa |
dc.subject.proposal | Análisis exergético | spa |
dc.subject.proposal | Gasificación de tusa de maíz | spa |
dc.subject.proposal | Reactor de tubos concéntricos | spa |
dc.title | Análisis exergético local de la gasificación de los residuos de la agroindustria del maíz en un reactor de tubos concéntricos | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Acevedo, L., Usón, S., & Uche, J. (2014). Exergy transfer analysis of microwave heating systems. Energy, 68, 349–363. https://doi.org/https://doi.org/10.1016/j.energy.2014.02.041 | spa |
dcterms.references | Acevedo, L., Usón, S., & Uche, J. (2015). Local exergy cost analysis of microwave heating systems. Energy, 80, 437–451. https://doi.org/https://doi.org/10.1016/j.energy.2014.11.085 | spa |
dcterms.references | Acosta Roca, R. (2009). El cultivo del maíz, SU origen y clasificación. EL MAIZ en Cuba. Cultivos Tropicales, 30. | spa |
dcterms.references | Alonso, G., del Valle, E., & Ramirez, J. R. (2020). 6 - Thermoeconomic analysis. In G. Alonso, E. del Valle, & J. R. B. T.-D. in N. P. P. Ramirez (Eds.), Woodhead Publishing Series in Energy (pp. 77–131). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-820021-6.00006-5 | spa |
dcterms.references | Álvarez Rodríguez, A., Pizarro García, C., & Folgueras Díaz, M. B. (2012). CARACTERIZACIÓN QUÍMICA DE BIOMASA Y SU RELACIÓN. 1–12. https://digibuo.uniovi.es/dspace/handle/10651/17777 | spa |
dcterms.references | Álvarez, Y. R., & Silva, F. C. (2016). TRANSFERENCIA EN ENERGÍAS RENOVABLES PARA EL DEPARTAMENTO DE CÓRDOBA. | spa |
dcterms.references | Arenas, C. N., Navarro, M. V., & Martínez, J. D. (2019). Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresource Technology, 288, 121485. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121485 | spa |
dcterms.references | Arenas Castiblanco, E., Montoya, J. H., Rincón, G. V., Zapata-Benabithe, Z., Gómez-Vásquez, R., & Camargo-Trillos, D. A. (2022). A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon, 8(8), e10195. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10195 | spa |
dcterms.references | Arun, K., Venkata Ramanan, M., & Mohanasutan, S. (2022). Comparative studies and analysis on gasification of coconut shells and corn cobs in a perforated fixed bed downdraft reactor by admitting air through equally spaced conduits. Biomass Conversion and Biorefinery, 12(4), 1257–1269. https://doi.org/10.1007/s13399-020-00872-1 | spa |
dcterms.references | Askaripour, H. (2020). CFD modeling of gasification process in tapered fluidized bed gasifier. Energy, 191, 116515. https://doi.org/https://doi.org/10.1016/j.energy.2019.116515 | spa |
dcterms.references | Assureira, E., & Assureira, M. (2021). Bio-carbón de hojas de caña de azúcar para su empleo como combustible y agente reductor en procesos de reducción directa del mineral de hierro. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2021-July. https://doi.org/10.18687/LACCEI2021.1.1.28 | spa |
dcterms.references | Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806–815. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.129 | spa |
dcterms.references | Basu, P. (2018). Chapter 3 - Biomass Characteristics. In P. Basu (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition) (Third Edit, pp. 49–91). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812992-0.00003-0 | spa |
dcterms.references | Bejan, A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research, 26(7), 0–43. https://doi.org/10.1002/er.804 | spa |
dcterms.references | Bejan, A., Tsatsaronis, G., & Moran, M. J. (1995). Thermal design and optimization. John Wiley & Sons. | spa |
dcterms.references | Bukar, A. A., Ben Oumarou, M., Tela, B. M., Eljummah, A. M., & Oumarou, M. Ben. (2019). Assessment of Biomass Gasification: A Review of Basic Design Considerations "Assessment of Biomass Gasification: A Review of Basic Design Considerations. American Journal of Energy Research, 7(1), 1–14. https://doi.org/10.12691/ajer-7-1-1 | spa |
dcterms.references | Buragohain, B., & Mahanta, P. (2010). Biomass gasification for decentralized power generation: The Indian perspective. Renewable and Sustainable Energy Reviews, 14, 73–92. https://doi.org/10.1016/j.rser.2009.07.034 | spa |
dcterms.references | Bustamante, F., Enick, R. M., Killmeyer, R. P., Howard, B. H., Rothenberger, K. S., Cugini, A. V., Morreale, B. D., & Ciocco, M. V. (2005). Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics. AIChE Journal. https://doi.org/10.1002/aic.10396 | spa |
dcterms.references | Caliskan, H., & Hepbasli, A. (2010). Energy and exergy analyses of ice rink buildings at varying reference temperatures. Energy and Buildings, 42, 1418–1425. https://doi.org/10.1016/j.enbuild.2010.03.011 | spa |
dcterms.references | Carta, J. A., R, C., A, C., Castro, M., & E, C. (2012). Centrales de energías renovables: Generación eléctrica con energías renovables. | spa |
dcterms.references | Celik, I., & Karatekin, O. (1997). Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids. Journal of Fluids Engineering, 119(3), 584–590. https://doi.org/10.1115/1.2819284 | spa |
dcterms.references | Çengel, Y A, & Ghajar, A. J. (2015). Heat and Mass Transfer: Fundamentals \& Applications. McGraw Hill Education. https://books.google.com.co/books?id=1YPhoAEACAAJ | spa |
dcterms.references | Çengel, Yunus A, & Boles, M. A. (2008). Thermodynamics : an engineering approach. Sixth edition. Boston : McGraw-Hill Higher Education, [2008] ©2008. https://search.library.wisc.edu/catalog/9910062108002121 | spa |
dcterms.references | Chapra, S., & Canale, R. (2006). Numerical Methods for Engineers. In Numerical Methods for Engineers. https://doi.org/10.1201/9781420010244 | spa |
dcterms.references | Chen, B., & Chen, G. Q. (2007). Resource analysis of the Chinese society 1980–2002 based on exergy—Part 2: Renewable energy sources and forest. Energy Policy, 35(4), 2051–2064. https://doi.org/https://doi.org/10.1016/j.enpol.2006.07.001 | spa |
dcterms.references | Chen, B., Chen, G. Q., & Yang, Z. F. (2006). Exergy-based resource accounting for China. Ecological Modelling, 196(3), 313–328. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2006.02.019 | spa |
dcterms.references | Cohce, M. K., Dincer, I., & Rosen, M. A. (2010). Thermodynamic analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 35(10), 4970–4980. https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.08.066 | spa |
dcterms.references | Couto, N., Silva, V., Monteiro, E., & Rouboa, A. (2017). Exergy analysis of Portuguese municipal solid waste treatment via steam gasification. Energy Conversion and Management, 134, 235–246. https://doi.org/https://doi.org/10.1016/j.enconman.2016.12.040 | spa |
dcterms.references | Dai, J., & Chen, B. (2010). Extended exergy-based fossil fuels resource accounting in spatial distribution in 2007, China. Procedia Environmental Sciences, 2, 1799–1807. https://doi.org/https://doi.org/10.1016/j.proenv.2010.10.191 | spa |
dcterms.references | Dayton, D. C., & Foust, T. D. (2020). Chapter Two - Biomass Characterization. In D. C. Dayton & T. D. Foust (Eds.), Analytical Methods for Biomass Characterization and Conversion (pp. 19–35). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-815605-6.00002-0 | spa |
dcterms.references | Dincer, I. (2002). The role of exergy in energy policy making. Energy Policy, 30(2), 137–149. https://doi.org/https://doi.org/10.1016/S0301-4215(01)00079-9 | spa |
dcterms.references | Dincer, I., & Cengel, Y. A. (2001). Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering. Entropy, 3(3), 116–149. https://doi.org/10.3390/e3030116 | spa |
dcterms.references | Dincer, I., & Rosen, M. (2004). Exergy as a Driver for Achieving Sustainability. International Journal of Green Energy - INT J GREEN ENERGY, 1, 1–19. https://doi.org/10.1081/GE-120027881 | spa |
dcterms.references | Dryer, F. L., & Westbrook, C. K. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology. https://doi.org/10.1080/00102208108946970 | spa |
dcterms.references | El-Emam, R. S., & Dincer, I. (2015). Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. International Journal of Hydrogen Energy, 40(24), 7694–7706. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.02.061 | spa |
dcterms.references | Federación, B. (2010). El cultivo del maíz, historia e importancia. http://hdl.handle.net/20.500.12324/1004 | spa |
dcterms.references | Fernandez, C. (2018). 1.2. Panorámica energética mundial. 20–37. | spa |
dcterms.references | Fourcault, A., Marias, F., & Michon, U. (2010). Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch. Biomass and Bioenergy, 34(9), 1363–1374. https://doi.org/10.1016/j.biombioe.2010.04.018 | spa |
dcterms.references | Gai, C., & Dong, Y. (2012). Experimental study on non-woody biomass gasification in a downdraft gasifier. International Journal of Hydrogen Energy, 37(6), 4935–4944. https://doi.org/10.1016/j.ijhydene.2011.12.031 | spa |
dcterms.references | Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(January), 38–50. https://doi.org/10.1016/j.esr.2019.01.006 | spa |
dcterms.references | Gomez, R., Camargo-Trillos, D., Arenas, E., Zapata, Z., & Bula, A. J. (2021). CaCO3 and air/steam effect on the gasification and biohydrogen both performance of corn cob as received: application in the Colombian Caribbean region. UnderReview. | spa |
dcterms.references | Gómez, R. D., Camargo, D. A., & Soto, C. C. (2019). Synergistic evaluation of residual biomass gasification in mixtures of corn and cotton. Informacion Tecnológica, 30(6), 11–20. | spa |
dcterms.references | Gómez, R. D., Castiblanco, E. A., Zapata Benabithe, Z., Bula Silvera, A. J., & Camargo-Trillos, D. A. (2021). CaCO3 and air/steam effect on the gasification and biohydrogen performance of corn cob as received: Application in the Colombian Caribbean region. Biomass and Bioenergy, 153, 106207. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106207 | spa |
dcterms.references | Gómez, R., Palacio Vega, M., Arango Meneses, J., Avila, A., & Mendoza Fandiño, J. (2021). Evaluation of the energy generation potential by an experimental characterization of residual biomass blends from Córdoba, Colombia in a downdraft gasifier. Waste Management. https://doi.org/10.1016/j.wasman.2020.10.014 | spa |
dcterms.references | Gómez Vásquez, R. D. (2022). Desarrollo de un modelo fenomenológico de transformación termoquímica de biomasa en un reactor de gasificación de biomasa para valoración del proceso de gasificación con enriquecimiento de hidrógeno (Tesis Doctoral). Universidad del Norte. | spa |
dcterms.references | Gorugantu, S. B., Carstensen, H.-H., Van Geem, K., & Marin, G. (2019). Measuring biomass fast pyrolysis kinetics : state of the art. WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 8(2). http://dx.doi.org/10.1002/wene.326 | spa |
dcterms.references | Govaerts, B. ., Vega, D. ., Chávez, X. ., Narro, L. ., San Vicente, F. M. ., San Vicente, F. M., Palacios, N. ., Palacios, N., Pérez, M. ., González, G. ., Ortega, P. ., Carvajal, A. ., Arcos, A. L. ., Bolaños, J. ., Romero, N. ., Bolaños, J. ., Vanegas, Y. F. ., Echeverría, R. ., Jarvis, A. ., … Tapasco, J. (2019). Maíz para Colombia Visión 2030 (E. . Figueroa & A. Aguilar (eds.); CIMMYT). https://repository.cimmyt.org/handle/10883/20218 | spa |
dcterms.references | Hassan, H. Z. (2013). Evaluation of the local exergy destruction in the intake and fan of a turbofan engine. Energy, 63, 245–251. https://doi.org/https://doi.org/10.1016/j.energy.2013.10.062 | spa |
dcterms.references | Hosseini, M., Dincer, I., & Rosen, M. A. (2012). Steam and air fed biomass gasification: Comparisons based on energy and exergy. International Journal of Hydrogen Energy, 37(21), 16446–16452. https://doi.org/10.1016/j.ijhydene.2012.02.115 | spa |
dcterms.references | Hu, C., Luo, K., Wang, S., Sun, L., & Fan, J. (2019). Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 195, 693–706. https://doi.org/https://doi.org/10.1016/j.ces.2018.10.015 | spa |
dcterms.references | Hwang, I. S., Sohn, J., Lee, U. Do, & Hwang, J. (2021). CFD-DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: Effects of equivalence ratio and fluidization number. Energy, 219, 119533. https://doi.org/https://doi.org/10.1016/j.energy.2020.119533 | spa |
dcterms.references | Ishaq, H., Dincer, I., & Naterer, G. F. (2018). Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system. Energy, 159, 1206–1217. https://doi.org/https://doi.org/10.1016/j.energy.2018.06.213 | spa |
dcterms.references | Jaén, R. L., Aseffe, J. A. M., & Ruiz, L. O. O. (2020). Estudio de la gasificación de la tusa del maíz para la generación de electricidad // Study of the corn cob gasification of the for the electricity generation. | spa |
dcterms.references | Jeguirim, M., Bikai, J., Elmay, Y., Limousy, L., & Njeugna, E. (2014). Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development, 23, 188–193. https://doi.org/https://doi.org/10.1016/j.esd.2014.09.009 | spa |
dcterms.references | John, J., Orrego, P., Castaño, D., & Mauro, J. (2016). No . 16-03 Un modelo Casi Ideal de Demanda de Combusti- 2016 bles para la Industria de Transporte. 16. | spa |
dcterms.references | Jones, W. P., & Lindstedt, R. P. (1988). Global reaction schemes for hydrocarbon combustion. Combustion and Flame. https://doi.org/10.1016/0010-2180(88)90021- | spa |
dcterms.references | Kaisalo, N., Simell, P., & Lehtonen, J. (2016). Benzene steam reforming kinetics in biomass gasification gas cleaning. Fuel, 182, 696–703. https://doi.org/10.1016/j.fuel.2016.06.042 | spa |
dcterms.references | Klimanek, A., & Bigda, J. (2018). CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor. Energy, 160, 710–719. https://doi.org/https://doi.org/10.1016/j.energy.2018.07.046 | spa |
dcterms.references | Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47(10–11), 2205–2215. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.025 | spa |
dcterms.references | Kumar, M., & Ghoniem, A. F. (2012). Multiphysics simulations of entrained flow gasification. Part II: Constructing and validating the overall model. Energy and Fuels, 26(1), 464–479. https://doi.org/10.1021/ef2008858 | spa |
dcterms.references | Kumar, U., & Paul, M. C. (2019). CFD modelling of biomass gasification with a volatile break-up approach. Chemical Engineering Science, 195, 413–422. https://doi.org/10.1016/j.ces.2018.09.038 | spa |
dcterms.references | Laohalidanond, K., Kongkaew, N., & Kerdsuwan, S. (2017). Gasification Behavior Study of Torrefied Empty Corn Cobs. Energy Procedia, 138, 175–180. https://doi.org/10.1016/j.egypro.2017.10.146 | spa |
dcterms.references | Launder, B. E. (Brian E. (1972). Lectures in mathematical models of turbulence [by] B. E. Launder and D. B. Spalding (D. B. (Dudley B. Spalding 1923- (ed.)). Academic Press. | spa |
dcterms.references | Lu, Y., Guo, L., Zhang, X., & Yan, Q. (2007). Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal, 131(1), 233–244. https://doi.org/https://doi.org/10.1016/j.cej.2006.11.016 | spa |
dcterms.references | Ma, J., & Zitney, S. E. (2012). Computational fluid dynamic modeling of entrained-flow gasifiers with improved physical and chemical submodels. Energy and Fuels. https://doi.org/10.1021/ef301346z | spa |
dcterms.references | Magniont, C., & Aubert, J. (2018). Energy & Buildings Hygrothermal properties of unfired earth bricks : Effect of barley straw , hemp shiv and corn cob addition. 178, 265–278. https://doi.org/10.1016/j.enbuild.2018.08.021 | spa |
dcterms.references | Maksimuk, Y., Antonava, Z., Krouk, V., Korsakova, A., & Kursevich, V. (2020). Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel, 263, 116727. | spa |
dcterms.references | Martillo Aseffe, J. A., Martínez González, A., Jaén, R. L., & Silva Lora, E. E. (2021). The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study. Renewable Energy, 163, 1523–1535. https://doi.org/https://doi.org/10.1016/j.renene.2020.10.053 | spa |
dcterms.references | Martínez, L. V, Rubiano, J. E., Figueredo, M., & Gómez, M. F. (2020). Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renewable Energy, 148, 1216–1226. https://doi.org/https://doi.org/10.1016/j.renene.2019.10.034 | spa |
dcterms.references | Mehrpooya, M., Khalili, M., & Sharifzadeh, M. M. M. (2018). Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources). Renewable and Sustainable Energy Reviews, 91, 869–887. https://doi.org/https://doi.org/10.1016/j.rser.2018.04.076 | spa |
dcterms.references | Mendoza Fandiño, J., Rhenals, J., Ávila, A., & Durando, E. (2021). Análise Exergoeconômica da Gasificação de Sabugo de Milho Integrado em um Sistema de Geração de Energia: Estudo de Caso na Colômbia. 13(76), 919–925. | spa |
dcterms.references | Mendoza, J., Sofan, S., Lopez, D., Martínez, A., & Rhenals, J. (2021). CARACTERIZAÇÃO ENERGÉTICA DOS RESÍDUOS DA AGROINDÚSTRIA DO MILHO NUM PROTÓTIPO DE GASIFICAÇÃO MULTIZONA (p. 11). | spa |
dcterms.references | Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., Mohammad Amran, M. S., Fakhru’L-Razi, A., & Taufiq-Yap, Y. H. (2011). Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15(2), 1258–1270. https://doi.org/10.1016/j.rser.2010.10.003 | spa |
dcterms.references | Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/https://doi.org/10.1016/j.jechem.2015.11.005 | spa |
dcterms.references | Moran, M. J., & Shapiro, H. N. (2009). Fundamentals of engineering thermodynamics (6th ed.). John Wiley and Sons Inc., New York, NY. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470540192.html | spa |
dcterms.references | Morsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2), 193–208. https://doi.org/10.1017/S0022112072001806 | spa |
dcterms.references | Naterer, G., & Camberos, J. (2008). Entropy-based design and analysis of fluids engineering systems. With a foreword by David J. Moorhouse. https://doi.org/10.1201/9781420006919 | spa |
dcterms.references | Ngamsidhiphongsa, N., Ponpesh, P., Shotipruk, A., & Arpornwichanop, A. (2020). Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.112808 | spa |
dcterms.references | Niembro, I., & Gonzalez, M. (2012). Energía y Exergía : Enfoques hacia la Sostenibilidad mediante el Análisis de Ciclo de Vida. Congreso Nacional Del Medio Ambiente, 1–5. http://www.conama9.conama.org/conama9/download/files/CTs/985791_INiembro.pdf | spa |
dcterms.references | Pandey, B., Prajapati, Y. K., & Sheth, P. N. (2021). CFD analysis of biomass gasification using downdraft gasifier. Materials Today: Proceedings, 44, 4107–4111. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.451 | spa |
dcterms.references | Pandey, B., Prajapati, Y. K., & Sheth, P. N. (2022). CFD analysis of the downdraft gasifier using species-transport and discrete phase model. Fuel, 328, 125302. https://doi.org/https://doi.org/10.1016/j.fuel.2022.125302 | spa |
dcterms.references | Pepiot, P., Dibble, C., & Foust, T. (2010). Computational fluid dynamics modeling of biomass gasification and pyrolysis. Computational Modeling in Lignocellulosic Biofuel Production, 273–298. https://doi.org/10.1021/bk-2010-1052.ch012 | spa |
dcterms.references | Pielsticker, S., Gövert, B., Umeki, K., & Kneer, R. (2021). Flash Pyrolysis Kinetics of Extracted Lignocellulosic Biomass Components. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.737011 | spa |
dcterms.references | Pinto, J., Sá, A. B., Pereira, S., Bentes, I., & Paiva, A. (2016). Possible Applications of Corncob as a Raw Insulation Material. Intech, 26–43. https://doi.org/10.5772/62339 | spa |
dcterms.references | Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). Torrefaction of wood: Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77(1), 28–34. https://doi.org/https://doi.org/10.1016/j.jaap.2006.01.002 | spa |
dcterms.references | Rhenals, J. D., Fandiño, J., la Vega, T., & Mendoza Fandiño, J. (2021). Evaluación energética de la co-combustión de contenido ruminal-metano en frigoríficos y mataderos del departamento de Córdoba-Colombia. 44–53. | spa |
dcterms.references | Rhenals, J., Luis, M., & Montes, T. (2016). ANÁLISIS EXERGOECONÓMICO DE LA GASIFICACIÓN DE TUSA DE MAÍZ EMPLEANDO VAPOR DE AGUA COMO AGENTE GASIFICANTE, INTEGRADO A UN SISTEMA DE GENERACIÓN DE POTENCIA. https://repositorio.unicordoba.edu.co/bitstream/handle/ucordoba/669/Informe final.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Rhenals Julio, J. D. (2021). ANÁLISIS ENERGÉTICO Y EXERGÉTICO DE UN SISTEMA DE REFRIGERACIÓN ABSORCIÓN-DIFUSIÓN CON DIFERENTES FUENTES DE CALOR [Universidad de la Costa]. https://hdl.handle.net/11323/8516 | spa |
dcterms.references | Richardson, L. F. (1911). The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210, 307–357. http://www.jstor.org/stable/90994 | spa |
dcterms.references | Rosen, M., & Tang, R. (2008). Improving steam power plant efficiency through exergy analysis: Effects of altering excess combustion air and stack-gas temperature. International Journal of Exergy - INT J EXERGY, 5. https://doi.org/10.1504/IJEX.2008.016011 | spa |
dcterms.references | Roychowdhury, D. (2020). Computational Fluid Dynamics for Incompressible Flows (Issue August). https://doi.org/10.1201/9780367809171 | spa |
dcterms.references | Ruiz, J. A., Juárez, M. C., Morales, M. P., Muñoz, P., & Mendívil, M. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. In Renewable and Sustainable Energy Reviews (Vol. 18, pp. 174–183). Pergamon. https://doi.org/10.1016/j.rser.2012.10.021 | spa |
dcterms.references | Sagastume, A., Mendoza, J., Cabello Eras, J., & Rhenals, J. (2021). The Available Waste-to-energy Potential from Agricultural Wastes in the Department of Córdoba, Colombia. International Journal of Energ Economics and Policy, 11, 44–50. https://doi.org/10.32479/ijeep.10705 | spa |
dcterms.references | Serratos-Hernández, J.-A. (2009). El origen y la diversidad del maíz en el continente americano. | spa |
dcterms.references | Sooriyalakshmi, N., & H, J. H. (2021). Thermal conductivity of insulating materials : An overview. 6(9), 59–65. | spa |
dcterms.references | Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. In Renewable and Sustainable Energy Reviews (Vol. 76, pp. 989–1003). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.03.112 | spa |
dcterms.references | Szargut, J., Morris, D. R., & Steward, F. R. (1987). Exergy analysis of thermal, chemical, and metallurgical processes. https://www.osti.gov/biblio/6157620 | spa |
dcterms.references | Taheri, A., Khoshnevis, A. B., & Lakzian, E. (2020). The effects of wall curvature and adverse pressure gradient on air ducts in HVAC systems using turbulent entropy generation analysis. International Journal of Refrigeration, 113, 21–30. https://doi.org/10.1016/j.ijrefrig.2020.01.014 | spa |
dcterms.references | Valdés, C., Chejne Janna, F., Marrugo, G., Gomez, C., Montoya, J., Macías, R., Londoño G., C., De La Cruz, J., Ocampo, A., & Arenas, E. (2017). La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria. | spa |
dcterms.references | Verissimo, G. L., Cruz, M. E., & Leiroz, A. J. K. (2019). Derivation of Entropy and Exergy Transport Equations, and Application to Second Law Analysis of Sugarcane Bagasse Gasification in Bubbling Fluidized Beds. Journal of Energy Resources Technology, 142(6). https://doi.org/10.1115/1.4045541 | spa |
dcterms.references | Villalón, J. M. M., Torrent, J. G., & Aragón, E. Q. (2009). Termoeconomía y optimización energética. Fundación Gómez Pardo. | spa |
dcterms.references | Wang, C. H., Zhao, D., Tsutsumi, A., & You, S. (2017). Sustainable energy technologies for energy saving and carbon emission reduction. Applied Energy, 194, 223–224. https://doi.org/10.1016/j.apenergy.2017.02.045 | spa |
dcterms.references | Wang, L., Izaharuddin, A. N., Karimi, N., & Paul, M. C. (2021). A numerical investigation of CO2 gasification of biomass particles- analysis of energy, exergy and entropy generation. Energy, 228, 120615. https://doi.org/https://doi.org/10.1016/j.energy.2021.120615 | spa |
dcterms.references | Wang, X., Lv, W., Guo, L., Zhai, M., Dong, P., & Qi, G. (2016). Energy and exergy analysis of rice husk high-temperature pyrolysis. International Journal of Hydrogen Energy, 41(46), 21121–21130. https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.09.155 | spa |
dcterms.references | Watanabe, H., & Otaka, M. (2006). Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel. https://doi.org/10.1016/j.fuel.2006.02.002 | spa |
dcterms.references | WBA. (2019). GLOBAL BIOENERGY STATISTICS 2019 World Bioenergy Association. Zafar, S., & Dincer, I. (2014). Thermodynamic analysis of a combined PV/T–fuel cell system for power, heat, fresh water and hydrogen production. International Journal of Hydrogen Energy, 39(19), 9962–9972. https://doi.org/https://doi.org/10.1016/j.ijhydene.2014.04.127 | spa |
dcterms.references | Zafar, S., & Dincer, I. (2014). Thermodynamic analysis of a combined PV/T–fuel cell system for power, heat, fresh water and hydrogen production. International Journal of Hydrogen Energy, 39(19), 9962–9972. https://doi.org/https://doi.org/10.1016/j.ijhydene.2014.04.127 | spa |
dcterms.references | Zhang, X., Li, H., Liu, L., Bai, C., Wang, S., Zeng, J., Liu, X., Li, N., & Zhang, G. (2018). Thermodynamic and economic analysis of biomass partial gasification process. Applied Thermal Engineering, 129, 410–420. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.10.069 | spa |
dcterms.references | Zhang, Y., Fan, X., Li, B.-X., Li, H., & Xiaoyan, G. (2017). Assessing the potential environmental impact of fuel using exergy-cases of wheat straw and coal. International Journal of Exergy, 23, 85. https://doi.org/10.1504/IJEX.2017.084517 | spa |
dcterms.references | Zhang, Y., Gao, X., Li, B., Li, H., & Zhao, W. (2018). Assessing the potential environmental impact of woody biomass using quantitative universal exergy. Journal of Cleaner Production, 176, 693–703. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.159 | spa |
dcterms.references | Zhang, Y., Li, B., Li, H., & Liu, H. (2011). Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochimica Acta, 519(1), 65–71. https://doi.org/https://doi.org/10.1016/j.tca.2011.03.005 | spa |
dcterms.references | Zhang, Y., Xu, P., Liang, S., Liu, B., Shuai, Y., & Li, B. (2019). Exergy analysis of hydrogen production from steam gasification of biomass: A review. International Journal of Hydrogen Energy, 44(28), 14290–14302. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.02.064 | spa |
dcterms.references | Zhang, Y., Zhao, Y., Li, B.-X., Xiaoyan, G., & Jiang, B. (2017). Energy and exergy characteristics of syngas produced from air gasification of walnut sawdust in an entrained flow reactor. International Journal of Exergy, 23, 244. https://doi.org/10.1504/IJEX.2017.085772 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Tesis Stiven Javier Sofan German.pdf
- Tamaño:
- 1.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de Grado de maestría
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación..pdf
- Tamaño:
- 329.84 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización Publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: