Publicación:
Estimación del índice de capacidad de procesos Cpm usando un enfoque prescriptivo

dc.audience
dc.contributor.advisorCogollo Flórez, Myladis Rocío
dc.contributor.authorJiménez Peña, Elis Loana
dc.contributor.juryMorales Ospina, Victor
dc.contributor.juryArteaga Sierra, Mónica
dc.date.accessioned2024-06-28T14:05:35Z
dc.date.available2025-06-28
dc.date.available2024-06-28T14:05:35Z
dc.date.issued2024-06-26
dc.description.abstractLos procedimientos industriales requieren de acciones y decisiones efectivas para monitorear y mejorar la calidad de cualquier tipo de producto, manteniendo la competitividad y el cumplimiento de las especificaciones preestablecidas. Los índices de capacidad de procesos son una herramienta empleada para ello, sin embargo, generalmente requieren que se satisfaga el supuesto de normalidad de los datos del proceso, y no se ha abordado un análisis de sensibilidad del efecto que pueden tener cambios en los parámetros claves del proceso sobre el valor del índice. En este estudio se propone un análisis prescriptivo para la estimación del índice de capacidad Cpm cuando los datos del proceso no se distribuyen normalmente. Se consideran métodos de optimización tradicional y heurísticos, junto con optimización no lineal. Con la metodología propuesta se logra identificar, a partir de datos históricos, los valores óptimos de los percentiles que conllevan a obtener un valor del índice Cpm de un proceso capaz. En particular para el conjunto de datos experimental analizado, el cual se puede ajustar a una distribución Gamma, se encuentra que los valores del índice que denotan procesos capaces aumentan a medida que aumenta el parámetro de escala, mientras que el parámetro de forma se mantiene cercano a cero.spa
dc.description.abstractIndustrial procedures require effective actions and decisions to monitor and improve the quality of any type of product, maintaining competitiveness and compliance with pre-established specifications. Process capability indices are a tool used for this purpose, however, they generally require that the assumption of normality of the process data be satisfied, and a sensitivity analysis of the effect that changes in key parameters may have has not been addressed. of the process on the value of the index. In this study, a prescriptive analysis is proposed for the estimation of the capacity index Cpm when the process data is not normally distributed. Traditional and heuristic optimization methods are considered, along with nonlinear optimization. With the proposed methodology, it is possible to identify, from historical data, the optimal values of the percentiles that lead to obtaining a value of the Cpm index of a capable process. In particular, for the experimental data set analyzed, which can be fitted to a Gamma distribution, it is found that the index values denoting capable processes increase as the scale parameter increases, while the shape parameter remains close steel.eng
dc.description.degreelevelPregrado
dc.description.degreenameEstadístico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. Introducción.....................................................................................................6spa
dc.description.tableofcontents2. Objetivos............................................................................................................8spa
dc.description.tableofcontents2.1 Objetivo general.............................................................................................8spa
dc.description.tableofcontents2.2 Objetivos específicos.....................................................................................8spa
dc.description.tableofcontents3. Marco teórico..................................................................................................9spa
dc.description.tableofcontents3.1 Índice de capacidad de procesos................................................................9spa
dc.description.tableofcontents3.2 Índice de capacidad de procesos no normales........................................9spa
dc.description.tableofcontents3.2.1 Índice Cpm (índice de Taguchi)..................................................................9spa
dc.description.tableofcontents3.3 Elementos de datos de Big Data..................................................................10spa
dc.description.tableofcontents3.4 Modelo de optimización...............................................................................12spa
dc.description.tableofcontents3.5 Métodos de optimización..............................................................................12spa
dc.description.tableofcontents3.5.1 Método del gradiente reducido generalizado (GRG)............................12spa
dc.description.tableofcontents3.5.2 Particle Swarm Optimization (PSO)...........................................................14spa
dc.description.tableofcontents3.6. Métricas de evaluación..................................................................................15spa
dc.description.tableofcontents4. Formulación matemática del modelo de optimización..............................15spa
dc.description.tableofcontents4.1 Etapa 1: Ajuste de distribución a los datos del proceso............................16spa
dc.description.tableofcontents4.2 Etapa 2: Adaptación del modelo de optimización.....................................18spa
dc.description.tableofcontents4.3 Etapa 3: Optimización de parámetros.........................................................18spa
dc.description.tableofcontents4.4 Etapa 4: Cálculo de los percentiles y estimación del índice......................19spa
dc.description.tableofcontents4.5 Etapa 5: Análisis prescriptivo.........................................................................19spa
dc.description.tableofcontents5. Aplicación real..................................................................................................19spa
dc.description.tableofcontents5.1 Etapa 1: Ajuste de distribución a los datos del proceso.............................20spa
dc.description.tableofcontents5.2 Etapa 2: Adaptación distribucional al modelo de optimización................21spa
dc.description.tableofcontents5.3 Etapas 3 y 4: Optimización de parámetros, Cálculo de los percentiles y estimación del índice.............................................................................................21spa
dc.description.tableofcontents5.4 Etapa 5: análisis prescriptivo........................................................................22spa
dc.description.tableofcontents6. Conclusiones.....................................................................................................24spa
dc.description.tableofcontentsReferencias............................................................................................................25spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8321
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programEstadística
dc.relation.referencesAhmad, S., Abdollahian, M., & Zeephongsekul, P. (2008). Process capability estimation for non-normal quality charactersitics: A comparison of Clements, Burr and Box-Cox Methods. FANZIAM Journal, 49, C642-C665.
dc.relation.referencesAmaro, D., Espíritu, R., Hernández, V., & Kido, J. (2020). Implementación de un Estudio de Capacidad de Proceso en una Maquiladora. Foro de estudios sobre guerrero, 193-205.
dc.relation.referencesAmiri, A., Bashiri, M., Mogouie, H., & Doroudyan, H. (2012). Non-normal multi-response optimization by multivariate process capability index. Scientia Iranica, 19(6),1894-1905.
dc.relation.referencesAwad, M., & Kovach, J. (2011). Multiresponse optimization using multivariate process capability index. Quality and Reliability Engineering International, 27(4), 465-477.
dc.relation.referencesBendtsen, C. (2022). pso: Particle Swarm Optimization. R package version 1.0.4, https://CRAN.R-project.org/package=pso.
dc.relation.referencesChacón, E., Romero, V., Quispe, L., & Camero, J. (2014). Methodology for the estimation of capability indices in processes with non normal data.
dc.relation.referencesChang, C., Quah, S., & Low, H. (2004). Index C*pm in multiple response optimization. Quality Engineering, 17(1),165--171.
dc.relation.referencesChen, K., Huang, C., & Chang, T. (2017). A mathematical programming model for constructing the confidence interval of process capability index C pm in evaluating process performance: An example of five-way pipe. Journal of the Chinese Institute of Engineers, 40(2), 126-133.
dc.relation.referencesEvans, J. (2015). Modern analytics and the future of quality and performance excellence. Quality Management Journal, 22(4), 6-17.
dc.relation.referencesFlaig, J. (2002). Process capability optimization. Quality Engineering, 15(2), 233-242.
dc.relation.referencesGalli, L., Levato, T., Schoen, F., & Tigli, L. (2021). Prescriptive analytics for inventory management in health care. Journal of the Operational Research Society, 72(10), 2211-2224.
dc.relation.referencesGroger, C., Schwarz, H., & Mitschang, B. (2014). Prescriptive analytics for recommendation-based business process optimization. Business Information Systems: 17th International Conference, BIS 2014, Larnaca, Cyprus, May 22-23, 2014. Proceedings 17, 25--37.
dc.relation.referencesGutiérrez, H., & De la Vara, R. (2013). Control estadístico de calidad y seis sigma. MCGraw-Hill.
dc.relation.referencesHernández, A., De la Paz Guillon, M., & García, L. (2015). La metodología de Taguchi en el control estadístico de la calidad. Revista de La Escuela de Perfeccionamiento en Investigación Operativa.
dc.relation.referencesJeong, I., & Lee, D. (2020). A pairwise comparison-based interactive procedure for the process capability approach to multiple-response surface optimization. Engineering Optimization, 52(10), 1743--1760.
dc.relation.referencesLepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management-Elsevier, 50, 57-70.
dc.relation.referencesMartin, D., Del Toro, R., Haber, R., & Dorronsoro, J. (2009). Optimal tuning of a networked linear controller using a multi-objective genetic algorithm.and ist Application to a complex electromechanical process. Innovative Computing, Information and Control, International Conferenceon, 91-91.
dc.relation.referencesMontgomery, D. (2019). Introduction to statistical quality control. John wiley \& sons.
dc.relation.referencesPal, S. (2004). Evaluation of nonnormal process capability indices using generalized lambda. Quality Engineering, 17(1), 77-85.
dc.relation.referencesPearn, W., & Chen, K. (1997). Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectronics Reliability, 37(12), 1853--1858.
dc.relation.referencesPedersen, E. (2010). Good parameters for particle swarm optimization. Hvass Lab., Copenhagen, Denmark, Tech. Rep. HL1001, 1551--3203.
dc.relation.referencesPoornima, S., & Pushpalatha, M. (2020). A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1, 76--84.
dc.relation.referencesSaha, A., & Majumder, H. (2018). Performance analysis and optimization in turning of ASTM A36 through process capability index. Journal of King Saud University-Engineering Sciences, 30(4), 377--383.
dc.relation.referencesSalazar, E. (2020). A Process Capability Index for Multivariate Normal and Non-Normal Distributions of Correlated and Uncorrelated Variables. . Ingeniería Industrial, 67-92.
dc.relation.referencesTaguchi, G. (1986). Introduction to quality engineering, Asian productivity organization. Dearborn, Michigan: American Supplier Institute Inc.
dc.relation.referencesTian, D., & Shi, Z. (2018). MPSO: Modified particle swarm optimization and its applications. Swarm and evolutionary computation, 41, 49--68.
dc.relation.referencesWu, C., Pearn, W., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International journal of production economics, 117(2), 338--359.
dc.relation.referencesWu, C.-W., & Pearn, W. (2008). A variables sampling plan based on Cpmk for product acceptance determination. European Journal of Operational Research, 184(2), 549-560
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://repositorio.unicordoba.edu.co
dc.subject.keywordsProcess capability indices
dc.subject.keywordsPrescriptive analytics
dc.subject.keywordsEvolutionary algorithms
dc.subject.keywordsParameter optimization
dc.subject.proposalÍndices de capacidad de procesos
dc.subject.proposalAnalítica prescriptiva
dc.subject.proposalAlgoritmos evolutivos
dc.subject.proposalOptimización de parámetros
dc.titleEstimación del índice de capacidad de procesos Cpm usando un enfoque prescriptivospa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
JimenezElis.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FORMATO DE AUTORIZACION..pdf
Tamaño:
282.83 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: