Publicación:
Efecto de un biofertilizante a base de bacterias promotoras de crecimiento vegetal sobre el desarrollo de plantas de frijol caupí (Vigna unguiculata L.)

dc.audience
dc.contributor.advisorPardo Plaza, Yuri Janio
dc.contributor.advisorCantero Guevara, Miriam Elena
dc.contributor.authorBohorquez Salgado, Sofia Elena
dc.contributor.authorParra Vargas, Daniela
dc.contributor.juryAlvis Ramos, Erasmo Manuel
dc.contributor.juryGastelbondo Pastrana, Bertha Irina
dc.date.accessioned2025-07-25T10:47:45Z
dc.date.available2026-07-24
dc.date.available2025-07-25T10:47:45Z
dc.date.issued2025-07-24
dc.description.abstractObjetivo. Evaluar el efecto de un biofertilizante a base de bacterias promotoras de crecimiento vegetal sobre el desarrollo de plantas de frijol caupí (Vigna unguiculata L.) en condiciones semicontroladas. Materiales y Métodos. Se aislaron bacterias solubilizadoras de fósforo, potasio y productoras de Ácido Indol Acético mediante dilución seriada a partir de suelo rizosférico. Se evaluó su capacidad funcional in vitro y se cuantificó la actividad mediante espectrofotometría. Las cepas más prometedoras se caracterizaron morfológica, microscópica y molecularmente mediante secuenciación del gen 16S rRNA. Tres cepas se seleccionaron para preparar un biofertilizante, aplicado en un ensayo con frijol caupí. Finalmente, se implementó un programa de transferencia rural a agricultores de CAMPORED mediante talleres y capacitaciones para fomentar el uso de biofertilizantes en sistemas agrícolas sostenibles. Resultados. En condiciones in vitro, se encontró que los aislados produjeron ácido indol acético, solubilizaron fósforo y Potasio. La secuenciación del gen 16S rRNA reveló la confirmación de aislamientos de Enterobacter cloacae (cepa M1L1 y M2L2) y Agrobacterium radiobacter (M3L3). Se encontró que la inoculación bacteriana resultó en un incremento significativo en la altura de la planta y el número de hojas de las plantas de frijol. Conclusión. Los resultados sugieren que dichas cepas poseen múltiples características funcionales propias de bacterias promotoras del crecimiento vegetal, lo cual las podría posicionar como bioinoculantes potenciales para mejorar la productividad del frijol caupí en sistemas agrícolas sostenibles.
dc.description.degreelevelPregrado
dc.description.degreenameBacteriólogo(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsIntroducción
dc.description.tableofcontentsObjetivos
dc.description.tableofcontentsMateriales y métodos
dc.description.tableofcontentsResultados
dc.description.tableofcontentsDiscusión
dc.description.tableofcontentsConclusiones
dc.description.tableofcontentsRecomendaciones
dc.description.tableofcontentsAgradecimientos
dc.description.tableofcontentsBibliografía
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9480
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias de la Salud
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBacteriología
dc.relation.referencesPuca M, Gonzales EY, Jayos EE, Llanos KN. Estudio comparativo de los parámetros de crecimiento de plantas de frijol caupí inoculados con Azotobacter sp y urea. Afinidad. 2023 Jan 20;79(597):500–8.
dc.relation.referencesSánchez González AA, Arévalo Cuadra CA, Munguía Sequeira RJ, López Blandino JY. Evaluar 11 genotipos de fríjol (Phaseolus vulgaris L.) biofortificados adaptados al cambio climático, Santa Teresa, Carazo, primera 2023. Torreon. 2024 Nov 14;33–46.
dc.relation.referencesAraméndiz-Tatis H, Cardona-Ayala CE, Combatt-Caballero EM. Contenido Nutricional de Líneas de Fríjol Caupí (Vigna unguiculata L. Walp.) Seleccionadas de una Población Criolla. Inf tecnol. 2016;27(2):53–60.
dc.relation.referencesVergara Carvajal AD, Mercado Fernande T, Aramendiz Tatis H, López-Lambraño AA. Efficient use of water in four genotypes of cowpea (Vigna unguiculata L. walp) aiming to face water deficit. J Agric Eng [Internet]. 2025 Jun 3 [cited 2025 Jul 17]; Available from: https://www.agroengineering.org/jae/article/view/1801
dc.relation.referencesMosquera Espinosa AT, Taborda Gálvez D, Suárez Rendón G, Rivera J, Rodas PP, Cárdenas Varón R, et al. Biodisponibilidad del fósforo en la rizosfera de café y cultivos alimentarios por actividad bacteriana. Temas Agrarios. 2024 Jul 2;29(1):22–39.
dc.relation.referencesUniyal N, Sharma A, Petwal H, Verma S, Dhami B. Role of beneficial soil microorganisms (BSMS) as an alternative for agrochemicals in agriculture. Int J Agric Food Sci. 2025 Jan 1;7(3):43–54.
dc.relation.referencesMartínez-García N, Troya-Toloza AA. Caracterización de bacterias rizosféricas secretoras de auxinas y su impacto en Panicum Maximum cv. Tanzania. Rev politec. 2025 Jun 5;21(41):24–46.
dc.relation.referencesPompelli MF, Mendes KR, Ramos MV, Santos JNB, Youssef DTA, Pereira JD, et al. Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. J Arid Land. 2019 Dec;11(6):795–810.
dc.relation.referencesCezar E, Alberton TA, Lemos EF, De Oliveira KM, Sun L, Crusiol LGT, et al. Estimating Soil Organic Matter (SOM) Using Proximal Remote Sensing: Performance Evaluation of Prediction Models Adjusted at Local Scale in the Brazilian Cerrado. Remote Sensing. 2023 Sep 7;15(18):4397
dc.relation.referencesHii YS, Yen San C, Lau SW, Danquah MK. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatalysis and Agricultural Biotechnology. 2020 Jul;26:101643.
dc.relation.referencesLiu Z, Li YC, Zhang S, Fu Y, Fan X, Patel JS, et al. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology. 2015 Nov;96:217–24.
dc.relation.referencesNautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters. 1999 Jan;170(1):265–70.
dc.relation.referencesDey G, Maity JP, Banerjee P, Sharma RK, Etesami H, Bastia TK, et al. Characterization of halotolerant phosphate-solubilizing rhizospheric bacteria from mangrove (Avicennia sp.) with biotechnological potential in agriculture and pollution mitigation. Biocatalysis and Agricultural Biotechnology. 2024 Jan;55:102960.
dc.relation.referencesPark M, Kim C, Yang J, Lee H, Shin W, Kim S, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research. 2005 Apr;160(2):127–33.
dc.relation.referencesParmar P, Sindhu SS. Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of M icrobiology Research. 2013;
dc.relation.referencesSetiawati TC, Mutmainnah L. Solubilization of Potassium Containing Mineral by Microorganisms From Sugarcane Rhizosphere. Agriculture and Agricultural Science Procedia. 2016;9:108–17.
dc.relation.referencesCisneros R. CA, Sánchez de Prager M. Solubilización de fosfatos por hongos asociados a un Andisol de tres agroecosistemas cafeteros de la región andina colombiana. Ingenium. 2015;9(25):37.
dc.relation.referencesGao Z, Li P, Li C, Tang R, Wang M, Chen J, et al. Identification, functional annotation, and isolation of phosphorus-solubilizing bacteria in the rhizosphere soil of Swida wilsoniana (Wanger) Sojak. Applied Soil Ecology. 2024 Feb;194:105207.
dc.relation.referencesPérez FLP, Oviedo ZLE. CARACTERIZACIÓN DE BACTERIAS NATIVAS CON POTENCIAL BIOFERTILIZANTE AISLADAS DE SUELOS DEL DEPARTAMENTO DE SUCRE. In: Biotecnología aplicada al sector agropecuario en el departamento de Sucre. 2019.
dc.relation.referencesHusseiny S, Dishisha T, Soliman HA, Adeleke R, Raslan M. Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L. South African Journal of Botany. 2021 Dec;143:238–47.
dc.relation.referencesAbo Elsoud MM, Hasan SF, Elhateir MM. Optimization of Indole-3-acetic acid production by Bacillus velezensis isolated from Pyrus rhizosphere and its effect on plant growth. Biocatalysis and Agricultural Biotechnology. 2023 Jul;50:102714
dc.relation.referencesRahman A, Sitepu IR, Tang SY, Hashidoko Y. Salkowski’s Reagent Test as a Primary Screening Index for Functionalities of Rhizobacteria Isolated from Wild Dipterocarp Saplings Growing Naturally on Medium-Strongly Acidic Tropical Peat Soil. Bioscience, Biotechnology, and Biochemistry. 2010 Nov 23;74(11):2202–8.
dc.relation.referencesGoswami D, Dhandhukia P, Patel P, Thakker JN. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research. 2014 Jan;169(1):66–75.
dc.relation.referencesKumar V. Laboratory Manual of Microbiology. Scientific Publishers; 2012. 229 p. 25. Sano H, Wakui A, Kawachi M, Washio J, Abiko Y, Mayanagi G, et al. Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. Journal of Oral Biosciences. 2021 Sep;63(3):292–7.
dc.relation.referencesSanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology. 1975 May;94(3):441–8.
dc.relation.referencesSaitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987 Jul 1;4(4):406–25.
dc.relation.referencesFelsenstein J. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution. 1985 Jul;39(4):783–91.
dc.relation.referencesTamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004 Jul 27;101(30):11030–5.
dc.relation.referencesTamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Battistuzzi FU, editor. Molecular Biology and Evolution. 2021 Jun 25;38(7):3022–7.
dc.relation.referencesDin I, Khan H, Ahmad Khan N, Khil A. Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. Journal of the Saudi Society of Agricultural Sciences. 2021 Oct 1;20(7):459–66. Din I, Khan H, Ahmad Khan N, Khil A. Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. Journal of the Saudi Society of Agricultural Sciences. 2021 Oct 1;20(7):459–66.
dc.relation.referencesSunarpi H, Nikmatullah A, Sunarwidhi AL, Sapitri I, Ilhami BTK, Widyastuti S, et al. Growth and yield of rice plants (Oryza sativa) grown in soil media containing several doses of inorganic fertilizers and sprayed with lombok brown algae extracts. IOP Conf Ser: Earth Environ Sci. 2020 Dec;594(1):012032.
dc.relation.referencesTimmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC. Perspectives and Challenges of Microbial Application for Crop Improvement. Front Plant Sci [Internet]. 2017 Feb 9 [cited 2024 Apr 15];8. Available from: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.00049/full
dc.relation.referencesKUMAR S, SUYAL DC, Dhauni N, Bhoriyal M, Reeta G. Relative plant growth promoting potential of Himalayan Psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.)Gaertn. MICROBIOLOGY RESEARCH [Internet]. 2014 Dec 10 [cited 2024 Apr 15]; Available from: http://go7publish.com/id/eprint/2770/
dc.relation.referencesZhu J, Qu B, Li M. Phosphorus mobilization in the Yeyahu Wetland: Phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils. International Biodeterioration & Biodegradation. 2017 Oct;124:304–13.
dc.relation.referencesLiu M, Liu X, Cheng BS, Ma XL, Lyu XT, Zhao XF, et al. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Spanish Journal of Agricultural Research. 2016 Dec 30;14(4):e1106–e1106.
dc.relation.referencesAndan Sengupta, DD Ch. Screening and Identification of Best Three Phosphate Solubilizing and IAA Producing PGPR Inhabiting The Rhizosphere Of Sesbania bispinosa. IJIRSET. 2015 Jun 25;04(06):3968–79.
dc.relation.referencesFerreira SDC, Nakasone AK, Do Nascimento SMC, De Oliveira DA, Siqueira AS, Cunha EFM, et al. Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium sp. Physiological and Molecular Plant Pathology. 2021 Dec;116:101709.
dc.relation.referencesPatrick OR, Abimbola OA, Adeniyi AO. Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. Afr J Microbiol Res. 2018 Sep 14;12(34):829–34.
dc.relation.referencesShameem M R, Sonali J MI, Kumar PS, Rangasamy G, Gayathri KV, Parthasarathy V. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environmental Research. 2023 Mar;220:115200.
dc.relation.referencesGoyal T, Mukherjee A, Chouhan GK, Gaurav AK, Kumar D, Abeysinghe S, et al. Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling. Heliyon. 2024 Apr;10(8):e29692.
dc.relation.referencesBose A, Kher MM, Nataraj M, Keharia H. Phytostimulatory effect of indole-3-acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatalysis and Agricultural Biotechnology. 2016 Apr;6:128–37.
dc.relation.referencesJi C, Liu Z, Hao L, Song X, Wang C, Liu Y, et al. Effects of Enterobacter cloacae HG-1 on the Nitrogen-Fixing Community Structure of Wheat Rhizosphere Soil and on Salt Tolerance. Front Plant Sci [Internet]. 2020 Jul 17 [cited 2024 May 11];11. Available from: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.01094/full
dc.relation.referencesSingh RP, Pandey DM, Jha PN, Ma Y. ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant. Gururani M, editor. PLoS ONE. 2022 May 6;17(5):e0267127.
dc.relation.referencesPanigrahi S, Mohanty S, Rath CC. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South African Journal of Botany. 2020 Nov;134:17–26.
dc.relation.referencesAntenozio ML, Giannelli G, Fragni R, Baragaño D, Brunetti P, Visioli G, et al. Enhanced Growth and Contrasting Effects on Arsenic Phytoextraction in Pteris vittata through Rhizosphere Bacterial Inoculations. Plants. 2024 Jul 24;13(15):2030.
dc.relation.referencesWang S, Walker R, Schicklberger M, Nico PS, Fox PM, Karaoz U, et al. Microbial Phosphorus Mobilization Strategies Across a Natural Nutrient Limitation Gradient and Evidence for Linkage With Iron Solubilization Traits. Front Microbiol [Internet]. 2021 Jun 23 [cited 2025 Jul 21];12. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.572212/full
dc.relation.referencesWei Y, Zhao Y, Shi M, Cao Z, Lu Q, Yang T, et al. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology. 2018 Jan;247:190–9.
dc.relation.referencesZhan Y, Zhang Z, Ma T, Zhang X, Wang R, Liu Y, et al. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresource Technology. 2021 Oct;337:125433.
dc.relation.referencesKhan MdS, Zaidi A, Ahmad E. Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. In: Khan MS, Zaidi A, Musarrat J, editors. Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology [Internet]. Cham: Springer International Publishing; 2014 [cited 2025 Jul 21]. p. 31–62. Available from: https://doi.org/10.1007/978-3-319-08216-5_2
dc.relation.referencesPalma-Velásquez AA, Zambrano-Gavilanes F. Bacterias promotoras de crecimiento en el fréjol caupí (Vigna unguiculata L. Walp.). Biotempo. 2023 Sep 4;20(2):271–84.
dc.relation.referencesSwarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. Plants. 2020 Nov 17;9(11):1596.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBioinoculant
dc.subject.keywordsPotassium solubilization
dc.subject.keywordsPhosphorus solubilization
dc.subject.keywordsIndole acetic acid.
dc.subject.proposalBioinoculante
dc.subject.proposalSolubilización de potasio
dc.subject.proposalSolubilización de fósforo
dc.subject.proposalÁcido indol acético.
dc.titleEfecto de un biofertilizante a base de bacterias promotoras de crecimiento vegetal sobre el desarrollo de plantas de frijol caupí (Vigna unguiculata L.)
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
INFORME FINAL SOFIA Y DANIELA 2025-1 (3).pdf
Tamaño:
1.69 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
491.38 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: