Publicación: Síntesis y caracterización de Óxido de Cobalto (〖Co〗_3 O_4) obtenido a partir de un método asistido por microondas
dc.contributor.advisor | Sanchez Pacheco, Luis Carlos | |
dc.contributor.author | Ballesta Bello, Darlis Margarita | |
dc.contributor.jury | Oviedo Cueter, Juan Manuel | |
dc.contributor.jury | Cogollo Pitalua, Rafael Ricardo | |
dc.contributor.subjectmatterexpert | Beltran Jimenez, Jailes Joaquin | |
dc.date.accessioned | 2025-07-21T16:27:16Z | |
dc.date.available | 2025-07-21T16:27:16Z | |
dc.date.issued | 2025-07-19 | |
dc.description.abstract | Nanopartículas de óxido de cobalto (Co3O4) se sintetizaron a partir de un método solvotermal asistido por microondas. Se utilizó una mezcla de Co3O4, y urea ((NH2)2CO) como combustible para potenciar la reacción; un sistema de disolvente binario de agua y etilenglicol (EG), como medio de calentamiento solvotérmica se usó un horno microondas convencional (SAMSUNG AMW831K/XAP). Los cristales de Co3O4 se caracterizaron mediante Difracción de rayos X (DRX), con análisis Rietveld, Espectroscopía infrarroja con transformada de Fourier con reflectancia total atenuada (FTIR-ATR) y Microscopia electronica de barrido de Emisión de Campo (FE-SEM), Espectroscopia de Rayos X Dispersiva (EDX). Se encontró que tanto la temperatura, selección del solvente, tiempo e irradiación de estos sistemas (microondas) suelen ser de mucha importancia en las reacciones, ya que pueden afectar la cristalinidad, propiedades vibracionales y morfología de las muestras. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Resumen | spa |
dc.description.tableofcontents | Introduccion | spa |
dc.description.tableofcontents | Marco teorico | spa |
dc.description.tableofcontents | Microondas | spa |
dc.description.tableofcontents | Técnicas asistidas por microondas | spa |
dc.description.tableofcontents | Método sol-gel | spa |
dc.description.tableofcontents | El método hidrotermal | spa |
dc.description.tableofcontents | Método de coprecipitación | spa |
dc.description.tableofcontents | Óxido de cobalto (Co3O4) | spa |
dc.description.tableofcontents | Técnicas de caracterización de los óxidos | spa |
dc.description.tableofcontents | Difracción de rayos X (DRX) | spa |
dc.description.tableofcontents | Espectroscopia infrarroja por transformada de Fourier– FTIR-ATR | spa |
dc.description.tableofcontents | Microscopía electrónica de barrido de emisión de campo-espectroscopia de rayos X de dispersión de energía (FE-SEM-EDS) | spa |
dc.description.tableofcontents | Parte experimental | spa |
dc.description.tableofcontents | Resultados y discusión | spa |
dc.description.tableofcontents | Difracción de rayos X | spa |
dc.description.tableofcontents | Refinamiento Rietveld | spa |
dc.description.tableofcontents | Espectroscopía infrarroja con transformada de Fourier de reflectancia total atenuada (FTIR-ATR). | spa |
dc.description.tableofcontents | Microscopía electrónica de barrido con emisión de campo y energía de dispersión de rayos X (FE-SEM-EDX) | spa |
dc.description.tableofcontents | Conclusión | spa |
dc.description.tableofcontents | Referencias | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9440 | |
dc.language.iso | spa | |
dc.publisher | Universidad De Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | ]S. Noguchi, M. Mizuhashi, Thin Solid Films 77 (1981) 99 | |
dc.relation.references | Y. Ding, L. Xu, C. Chen, X. Shen, S.L. Suib, J. Phys. Chem. C 112 (2008) 8177 | |
dc.relation.references | Clark, D. E.; Folz, D. C.; Folgar, C.; Mahmoud, M. Microwave Solutions for Ceramic Engineers, The American Ceramics Society, Inc.: Westerville, O. H., 2005; 5-30 | |
dc.relation.references | Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, 2002 | |
dc.relation.references | Clark JH, Macquarrie DJ. Handbook of Green Chemistry and Technology, first Edition, Wiley, 2002; 10-25 6. Ravichandran S, Karthikeyan E | |
dc.relation.references | Microwave SynthesisA Potential Tool for Green Chemistry. Int J ChemTech Res, 2011; 3(1): | |
dc.relation.references | Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250. | |
dc.relation.references | Robinson, J.; Kingman, S.; Irvine, D.; Licence, P.; Smith, A.; Dimitrakis, G.; Obermayer, D.; Kappe, C. O. Phys. Chem. Chem. Phys. 2010, 12, 4750 | |
dc.relation.references | Baghbanzadeh, M.; Carbone, L.; Cozzoli, P. D.; Kappe, C. O. Angew. Chem., Int. Ed. 2011, 50, 11312 | |
dc.relation.references | Q. U. E. Para, O. El, and R. M. Serna, “Preparación de matrices de liberación modificada de AINES fabricadas por el método sol-gel.” [42] I. Cotúa, | |
dc.relation.references | “Síntesis y caracterización preliminar del sistema Zn1-xCuxO (x=0,03) por método sol-gel (ruta citrato),” 2014 | |
dc.relation.references | S. Feng and G. Li, Hydrothermal and Solvothermal Syntheses. 2017. | |
dc.relation.references | J. Valencia, “Síntesis y caracterización de cristales de oxicloruro de bismuto por métodos hidrotermal y solvotermal. en presencia de diferentes agentes estabilizantes,” p. 130, 2013. | |
dc.relation.references | W. S. Peternele et al., “Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties,” J. Nanomater., vol. 2014, no. 1, pp. 1–10, 2014. | |
dc.relation.references | Chih W. Tang, Chen B. Wang, and Shu H. Chien. “Characterization of Cobalt Oxides Studied by FT‐IR, Raman, TPR and TG‐MS.” | |
dc.relation.references | G. A. El‐Shobaky, T. El‐Nabarawy, and T. M. Ghazy. “The Effect of Chemisorbed Ooxygen and the Textural Characteristics of Co3O4 Catalysts on Their Catalytic Activity.” Surface Technology 15 (1982): 153–59. | |
dc.relation.references | Nam, K. M.; Shim, J. H.; Han, D.-W.; Kwon, H. S.; Kang, Y.-M.; Li, Y.; Song, H.; Seo, W. S.; Park, J. T. Syntheses and Characterization of Wurtzite CoO, Rocksalt CoO, and Spinel Co3O4Nanocrystals: Their Interconversion and Tuning of Phase and Morphology. Chem. Mater. 2010, 22, 4446−4454 | |
dc.relation.references | Gupta, R. K.; Sinha, A. K.; Raja Sekhar, B. N.; Srivastava, A. K.; Singh, G.; Deb, S. K. Synthesis and Characterization of Various Phases of Cobalt Oxide Nanoparticles Using Inorganic Precursor. Appl. Phys. A 2011, 103, 13−19. | |
dc.relation.references | Hagelin-Weaver HA, Hoflund GB, Minahan DM, Salaita GN. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar + bombardment. Applied Surface Science. 2004 Aug 31;235(4):420–48 | |
dc.relation.references | Zhang, H., & Banfield, J. F. (2000). Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO₂. The Journal of Physical Chemistry B, 104(15), 3481–3487 | |
dc.relation.references | Liu, Y., Wang, X., Ma, J., & Chen, C. (2011). Morphology-controlled synthesis of Co₃O₄ nanostructures and their application as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 21(15), 5660–5668. | |
dc.relation.references | Goldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., ... & Michael, J. R. (2018). Scanning Electron Microscopy and X-ray Microanalysis (4.ª ed.). Springer. | |
dc.relation.references | Ramesh, S., Basha, K. S., Kumar, K. R., & Prabhu, R. (2013). Synthesis and characterization of cobalt oxide nanoparticles via aqueous precipitation method. Materials Letters, 93, 123–126. | |
dc.relation.references | Diallo, A., Beye, A.C., Doyle, T.B., Park, E., Maaza, M.: Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chem. Lett. Rev. 8,30–36 (2015) | |
dc.relation.references | Jiao, Z., & Yang, Y. (2016). "The application of FE-SEM in material characterization." Journal of Materials Science and Technology, 32(3), 263-272 | |
dc.relation.references | Chenavas, J.; Joubert, J. C.; Marezio, M. Low-spin → high-spin state transition in high pressure cobalt sesquioxide. Solid State Commun. 1971, 9, 1057−1060 | |
dc.relation.references | Smith, W.L. et al. (1973) Acta Cryst. B, 29, 362 | |
dc.relation.references | Tombs, N.C.et al. (1950) Nature (London), 165, 442 | |
dc.relation.references | Roth, W.L. (1964) J. Phys. Chem. Solids, 25, 1 | |
dc.relation.references | Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles – a review on plant parts involved, characterization and their recent applications. J Chem Rev. 2020 Apr 23;2:157–68 | |
dc.relation.references | Adekunle AS, Oyekunle JA, Durosinmi LM, Oluwafemi OS, Olayanju DS, Akinola AS, et al. Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater. Nano-Struct Nano-Objects. 2020 Feb 1;21:100405 | |
dc.relation.references | Andersson, P.O.; Viberg, P.; Forsberg, P.; Nikolajeff, F.; Österlund, L.; Karlsson, M. Nanocrystalline diamond sensor targeted for selective CRP detection: An ATR-FTIR spectroscopy study. Anal. Bioanal. Chem. 2016, 408, 3675–3680. | |
dc.relation.references | UNAM. Grupo Cristal., “Medición de distancias interplanares mediante difracción de ondas sonoras,” p. 14, 2015. | |
dc.relation.references | Ossonon, B.D.; Bélanger, D. Synthesis and characterization of sulfophenylfunctionalized reduced graphene oxide sheets. RSCAdv. 2017,7, 27224–27234. [CrossRef] | |
dc.relation.references | https://www.eag.com/wp-content/uploads/2024/02/M-075523-Dual-BeamFIB_w.pdf | |
dc.relation.references | [MAUD] Luca Lutterotti. Maud: A Rietveld Analysis Program Designed for the Internet and Experiment Integration, 2000Acta Crystallographica Section A: Foundations and Advances 56(s1) | |
dc.relation.references | Reem Al-Tuwirqi et al. Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices and Microstructures 49 (2011). 416–421. Speed of Light; CEM P | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Synthesis | eng |
dc.subject.keywords | Microwave | eng |
dc.subject.keywords | Oxide | eng |
dc.subject.keywords | Assisted | eng |
dc.subject.proposal | Sintesis | spa |
dc.subject.proposal | Microondas | spa |
dc.subject.proposal | Óxido | spa |
dc.subject.proposal | Asistido | spa |
dc.title | Síntesis y caracterización de Óxido de Cobalto (〖Co〗_3 O_4) obtenido a partir de un método asistido por microondas | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: