Publicación: Obtención y caracterización de ZnCo2O4 mediante síntesis asistida por microondas
dc.contributor.advisor | Sánchez Pacheco, Luis Carlos | |
dc.contributor.author | Rodríguez Arango, Julio David | |
dc.contributor.jury | Jiménez Narváez, Rosbel Arsenio | |
dc.contributor.jury | Oviedo Cueter, Juan Manuel | |
dc.date.accessioned | 2025-01-17T18:56:45Z | |
dc.date.available | 2025-01-17T18:56:45Z | |
dc.date.issued | 2024-12-02 | |
dc.description.abstract | En este trabajo se realizó la síntesis y caracterización de ZnCo2O4 (cobaltita de zinc). La síntesis se llevo a cabo mediante el método asistido por microondas, mientras que, se caracterizo mediante tres técnicas: Espectroscopia Infrarroja por Transformada de Fourier con Reflexión Total Atenuada (FTIR-ATR), Difracción de Rayos X (DRX) y Microscopia Electrónica de Barrido por Emisión de Campo con Espectroscopia de Dispersión de Energía (FE-SEM-EDS) | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introducción | spa |
dc.description.tableofcontents | Marco Teórico | spa |
dc.description.tableofcontents | Procedimiento Experimental | spa |
dc.description.tableofcontents | Análisis de Resultados | spa |
dc.description.tableofcontents | Conclusiones | spa |
dc.description.tableofcontents | Referencias | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/home | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8882 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Cordóba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | [1]. T.V.M. Sreekanth et al. Microwave synthesis: ZnCo2O4 NPs as an efficient electrocatalyst in the methanol oxidation reaction. Materials Letters 253 (2019), 450-453 | |
dc.relation.references | [2]. Tholkappiyan Ramachandran et al. Electrochemical performance of plate-like zinc cobaltite electrode material for supercapacitor applications. J. Phy. Chem. Solds 121 (2018), 93-101 | |
dc.relation.references | [3]. Liting Wang et al. ZnCo2O4 nanoflakes loaded on a Cu-supported Fe2O3-C network as an integrated lithium-ion battery anode. Journal of Alloys and Compounds 792 (2019), 750-758 | |
dc.relation.references | [4]. Jeong-Hyun Eum et al. A novel synthesis of 2D porous ZnCo2O4 nanoflakes using deep eutectic solvent for high-performance asymmetric supercapacitors. Journal of Electroanalytical Chemistry 892 (2021), 115299 | |
dc.relation.references | [5]. Nipa Roy et al. Solvent-dependent structural and electrochemical properties of zinc cobaltite via a self-assembled mechanism for battery-type supercapacitors. Chemical Engineering Science 277 (2023), 118834 | |
dc.relation.references | [6]. Nguyen Ngoc Huyen et al. ZnCo2O4 porous nanosheets-based sensing platform for ultra-sensitive detection of Pb(II) ion at sub-parts-per-trillion level in juice and beverage samples by using differential pulse anodic stripping voltammetry. Journal of Food Composition and Analysis 134 (2024), 106493 | |
dc.relation.references | [7]. Isaac Nebot Diaz et al. Estudio y caracterización de compuestos tipo espinela MIIAl2O4, mediante ruta de síntesis no convencionales. Aplicación a la industria cerámica. 15 de diciembre (2000) | |
dc.relation.references | [8]. https://next-gen.materialsproject.org/ | |
dc.relation.references | [9]. Laurel Simon Lobo et al. Structural and electrical properties of ZnCo2O4 spinel synthesized by sol-gel combustion method. J. Non-Crystalline S. 505 (2019), 301-309 | |
dc.relation.references | [10]. Zein K. Heiba et al. Enhancement the linear/nonlinear optical and magnetic properties of ZnCo2O4 nanostructures through Ni/Fe dual doping. Optical Materials 152 (2024), 115472 | |
dc.relation.references | [11]. B.C.S. Stock. «Elements of X-Ray Diffraction». Ed: PEARSON 3 (2014), 31-91 | |
dc.relation.references | [12]. https://rtilab.com/techniques/sem-eds-analysis | |
dc.relation.references | [13]. Xinhui Xie et al. Assessing the effect of oriented structure characteristics of laminated shale on its mechanical behaviour with the aid of nano-indentation and FE-SEM techniques. International Journal of Rock Mechanics & Mining Sciences 173 (2024), 105625 | |
dc.relation.references | [14]. Goldstein, J. I., Newbury, D. E., Echlin, P., et al. (2003). Scanning Electron Microscopy and X-ray Microanalysis. Springer | |
dc.relation.references | [15]. Reimer, L., & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Springer | |
dc.relation.references | [16]. Jiao, Z., & Yang, Y. (2016). "The application of FE-SEM in material characterization." Journal of Materials Science and Technology, 32(3), 263-272 | |
dc.relation.references | [17]. Qinghong Wang et al. Facile fabrication and supercapacitive properties on mesoporous zinc cobaltites microspheres. Journal of Power Sources 284 (2015), 138-145 | |
dc.relation.references | [18]. John Anthuvan Rajesh et al. Cubic Spinel AB2O4 Type Porous ZnCo2O4 Microspheres: Facile Hydrothermal Synthesis and Their Electrochemical Performances in Pseudocapacitor. J. Electrochem. Soc. 163 (10) (2016), A2418-A2427 | |
dc.relation.references | [19]. Reem Al-Tuwirqi et al. Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices and Microstructures 49 (2011). 416–421 | |
dc.relation.references | [20]. N. Varalakshmi1 et al. Sodium dedecyl sulphate assisted hydrothermally synthesized hexagonal prismatic nanocrystalline zinc cobaltite for high performance supercapacitors. Ionics 25 (2019). 3897–3905 | |
dc.relation.references | [21]. [MAUD] Luca Lutterotti. Maud: A Rietveld Analysis Program Designed for the Internet and Experiment Integration, 2000Acta Crystallographica Section A: Foundations and Advances 56(s1) | |
dc.relation.references | [22]. Wenqi Wang et al. Facile hydrothermal synthesis of ZnCo2O4 nanostructures: controlled morphology and magnetic properties. J Mater Sci: Mater Electron 32, 16662–16668 (2021) | |
dc.relation.references | [23]. Jiaojiao Deng et al. A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6 (2017), 61-69 | |
dc.relation.references | [24]. Shuangming Wang et al. Alkalization treatment engineering gas sensing selectivity improvement of ZnCo2O4 microspheres toward xylene. Sensors & Actuators: B. Chemical 396 (2023), 134576 | |
dc.relation.references | [25]. Baskaran Palanivel et al. Chemical oxidants (H2O2 and persulfate) activated Photo-Fenton like degradation reaction using sol-gel derived g-C3N4/ ZnCo2O4 nanocomposite. Diamond & Related Materials 130 (2022), 109413 | |
dc.relation.references | [26]. Amir Reza Khoshhal et al. Evaluation of experimental and simulated gamma ray shielding ability of ZnCo2O4 and ZnCo2O4/graphene nanoparticles. Optical Materials 156 (2024), 115953 | |
dc.relation.references | [27]. Bithika Mandal et al. Fabrication of different rare earth incorporated ZnCo2O4 matrix via chemical-mechanical hybrid mechanism and study their charge carrier dynamics by Motts VRH model. Journal of Alloys and Compounds 879 (2021), 160432 | |
dc.relation.references | [28]. Tholkappiyan Ramachandran et al. Fabrication of dual-1D/2D shaped ZnCo2O4 -ZnO electrode material for highly efficient electrochemical supercapacitors. Journal of Physics and Chemistry of Solids 188 (2024), 111915 | |
dc.relation.references | [29]. Eneyew Tilahun Bekele et al. Green synthesis of ternary ZnO/ ZnCo2O4 nanocomposites using Ricinus communis leaf extract for the electrochemical sensing of sulfamethoxazole. Inorganic Chemistry Communications 160 (2024), 111964 | |
dc.relation.references | [30]. Mona Ebrahimifar et al. In situ hydrothermal synthesis of ZnCo2O4/ZnO nanocomposite: Structural, optical, electrochemical properties and photocatalytic performance under visible light. Optik - International Journal for Light and Electron Optics 312 (2024), 171976 | |
dc.relation.references | [31]. Serife Tokalıoglu et al. NiCo2O4@ ZnCo2O4 nanomaterial for selective and fast dispersive solid phase micro-extraction of manganese and lead in water, tea and cinnamon samples followed by FAAS determination. Microchemical Journal 195 (2023), 109515 | |
dc.relation.references | [32]. Sherzod Shukhratovich Abdullaev et al. ZnO@ ZnCo2O4 core-shell: A novel high electrocatalytic nanostructure to replace platinum as the counter electrode in dye-sensitized solar cells. Materials Science in Semiconductor Processing 165 (2023), 107709 | |
dc.relation.references | [33]. G. Vignesh et al. Nitrogen doped reduced graphene oxide/ ZnCo2O4 nanocomposite electrode for hybrid supercapacitor application. Materials Science and Engineering B 290 (2023), 116328 | |
dc.relation.references | [34]. Raed H. Althomali et al. Novel ZnCo2O4/WO3 nanocomposite as the counter electrode for dye-sensitized solar cells (DSSCs): study of electrocatalytic activity and charge transfer properties. Optical Materials 143 (2023), 114248 | |
dc.relation.references | [35]. Jingrui Ye. Reduced spinel oxide ZnCo2O4 with tetrahedral Co2+ sites for electrochemical nitrate reduction to ammonia and energy conversión. Chemical Engineering Journal 498 (2024), 155354 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Cobaltites | eng |
dc.subject.keywords | Zinc cobaltites | eng |
dc.subject.proposal | Cobaltitas | spa |
dc.subject.proposal | Cobaltitas de sinc | spa |
dc.title | Obtención y caracterización de ZnCo2O4 mediante síntesis asistida por microondas | |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: