Publicación:
Obtención y caracterización de ZnCo2O4 mediante síntesis asistida por microondas

dc.contributor.advisorSánchez Pacheco, Luis Carlos
dc.contributor.authorRodríguez Arango, Julio David
dc.contributor.juryJiménez Narváez, Rosbel Arsenio
dc.contributor.juryOviedo Cueter, Juan Manuel
dc.date.accessioned2025-01-17T18:56:45Z
dc.date.available2025-01-17T18:56:45Z
dc.date.issued2024-12-02
dc.description.abstractEn este trabajo se realizó la síntesis y caracterización de ZnCo2O4 (cobaltita de zinc). La síntesis se llevo a cabo mediante el método asistido por microondas, mientras que, se caracterizo mediante tres técnicas: Espectroscopia Infrarroja por Transformada de Fourier con Reflexión Total Atenuada (FTIR-ATR), Difracción de Rayos X (DRX) y Microscopia Electrónica de Barrido por Emisión de Campo con Espectroscopia de Dispersión de Energía (FE-SEM-EDS)spa
dc.description.degreelevelPregrado
dc.description.degreenameFísico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsIntroducciónspa
dc.description.tableofcontentsMarco Teóricospa
dc.description.tableofcontentsProcedimiento Experimentalspa
dc.description.tableofcontentsAnálisis de Resultadosspa
dc.description.tableofcontentsConclusionesspa
dc.description.tableofcontentsReferenciasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/home
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8882
dc.language.isospa
dc.publisherUniversidad de Cordóba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programFísica
dc.relation.references[1]. T.V.M. Sreekanth et al. Microwave synthesis: ZnCo2O4 NPs as an efficient electrocatalyst in the methanol oxidation reaction. Materials Letters 253 (2019), 450-453
dc.relation.references[2]. Tholkappiyan Ramachandran et al. Electrochemical performance of plate-like zinc cobaltite electrode material for supercapacitor applications. J. Phy. Chem. Solds 121 (2018), 93-101
dc.relation.references[3]. Liting Wang et al. ZnCo2O4 nanoflakes loaded on a Cu-supported Fe2O3-C network as an integrated lithium-ion battery anode. Journal of Alloys and Compounds 792 (2019), 750-758
dc.relation.references[4]. Jeong-Hyun Eum et al. A novel synthesis of 2D porous ZnCo2O4 nanoflakes using deep eutectic solvent for high-performance asymmetric supercapacitors. Journal of Electroanalytical Chemistry 892 (2021), 115299
dc.relation.references[5]. Nipa Roy et al. Solvent-dependent structural and electrochemical properties of zinc cobaltite via a self-assembled mechanism for battery-type supercapacitors. Chemical Engineering Science 277 (2023), 118834
dc.relation.references[6]. Nguyen Ngoc Huyen et al. ZnCo2O4 porous nanosheets-based sensing platform for ultra-sensitive detection of Pb(II) ion at sub-parts-per-trillion level in juice and beverage samples by using differential pulse anodic stripping voltammetry. Journal of Food Composition and Analysis 134 (2024), 106493
dc.relation.references[7]. Isaac Nebot Diaz et al. Estudio y caracterización de compuestos tipo espinela MIIAl2O4, mediante ruta de síntesis no convencionales. Aplicación a la industria cerámica. 15 de diciembre (2000)
dc.relation.references[8]. https://next-gen.materialsproject.org/
dc.relation.references[9]. Laurel Simon Lobo et al. Structural and electrical properties of ZnCo2O4 spinel synthesized by sol-gel combustion method. J. Non-Crystalline S. 505 (2019), 301-309
dc.relation.references[10]. Zein K. Heiba et al. Enhancement the linear/nonlinear optical and magnetic properties of ZnCo2O4 nanostructures through Ni/Fe dual doping. Optical Materials 152 (2024), 115472
dc.relation.references[11]. B.C.S. Stock. «Elements of X-Ray Diffraction». Ed: PEARSON 3 (2014), 31-91
dc.relation.references[12]. https://rtilab.com/techniques/sem-eds-analysis
dc.relation.references[13]. Xinhui Xie et al. Assessing the effect of oriented structure characteristics of laminated shale on its mechanical behaviour with the aid of nano-indentation and FE-SEM techniques. International Journal of Rock Mechanics & Mining Sciences 173 (2024), 105625
dc.relation.references[14]. Goldstein, J. I., Newbury, D. E., Echlin, P., et al. (2003). Scanning Electron Microscopy and X-ray Microanalysis. Springer
dc.relation.references[15]. Reimer, L., & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Springer
dc.relation.references[16]. Jiao, Z., & Yang, Y. (2016). "The application of FE-SEM in material characterization." Journal of Materials Science and Technology, 32(3), 263-272
dc.relation.references[17]. Qinghong Wang et al. Facile fabrication and supercapacitive properties on mesoporous zinc cobaltites microspheres. Journal of Power Sources 284 (2015), 138-145
dc.relation.references[18]. John Anthuvan Rajesh et al. Cubic Spinel AB2O4 Type Porous ZnCo2O4 Microspheres: Facile Hydrothermal Synthesis and Their Electrochemical Performances in Pseudocapacitor. J. Electrochem. Soc. 163 (10) (2016), A2418-A2427
dc.relation.references[19]. Reem Al-Tuwirqi et al. Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices and Microstructures 49 (2011). 416–421
dc.relation.references[20]. N. Varalakshmi1 et al. Sodium dedecyl sulphate assisted hydrothermally synthesized hexagonal prismatic nanocrystalline zinc cobaltite for high performance supercapacitors. Ionics 25 (2019). 3897–3905
dc.relation.references[21]. [MAUD] Luca Lutterotti. Maud: A Rietveld Analysis Program Designed for the Internet and Experiment Integration, 2000Acta Crystallographica Section A: Foundations and Advances 56(s1)
dc.relation.references[22]. Wenqi Wang et al. Facile hydrothermal synthesis of ZnCo2O4 nanostructures: controlled morphology and magnetic properties. J Mater Sci: Mater Electron 32, 16662–16668 (2021)
dc.relation.references[23]. Jiaojiao Deng et al. A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6 (2017), 61-69
dc.relation.references[24]. Shuangming Wang et al. Alkalization treatment engineering gas sensing selectivity improvement of ZnCo2O4 microspheres toward xylene. Sensors & Actuators: B. Chemical 396 (2023), 134576
dc.relation.references[25]. Baskaran Palanivel et al. Chemical oxidants (H2O2 and persulfate) activated Photo-Fenton like degradation reaction using sol-gel derived g-C3N4/ ZnCo2O4 nanocomposite. Diamond & Related Materials 130 (2022), 109413
dc.relation.references[26]. Amir Reza Khoshhal et al. Evaluation of experimental and simulated gamma ray shielding ability of ZnCo2O4 and ZnCo2O4/graphene nanoparticles. Optical Materials 156 (2024), 115953
dc.relation.references[27]. Bithika Mandal et al. Fabrication of different rare earth incorporated ZnCo2O4 matrix via chemical-mechanical hybrid mechanism and study their charge carrier dynamics by Motts VRH model. Journal of Alloys and Compounds 879 (2021), 160432
dc.relation.references[28]. Tholkappiyan Ramachandran et al. Fabrication of dual-1D/2D shaped ZnCo2O4 -ZnO electrode material for highly efficient electrochemical supercapacitors. Journal of Physics and Chemistry of Solids 188 (2024), 111915
dc.relation.references[29]. Eneyew Tilahun Bekele et al. Green synthesis of ternary ZnO/ ZnCo2O4 nanocomposites using Ricinus communis leaf extract for the electrochemical sensing of sulfamethoxazole. Inorganic Chemistry Communications 160 (2024), 111964
dc.relation.references[30]. Mona Ebrahimifar et al. In situ hydrothermal synthesis of ZnCo2O4/ZnO nanocomposite: Structural, optical, electrochemical properties and photocatalytic performance under visible light. Optik - International Journal for Light and Electron Optics 312 (2024), 171976
dc.relation.references[31]. Serife Tokalıoglu et al. NiCo2O4@ ZnCo2O4 nanomaterial for selective and fast dispersive solid phase micro-extraction of manganese and lead in water, tea and cinnamon samples followed by FAAS determination. Microchemical Journal 195 (2023), 109515
dc.relation.references[32]. Sherzod Shukhratovich Abdullaev et al. ZnO@ ZnCo2O4 core-shell: A novel high electrocatalytic nanostructure to replace platinum as the counter electrode in dye-sensitized solar cells. Materials Science in Semiconductor Processing 165 (2023), 107709
dc.relation.references[33]. G. Vignesh et al. Nitrogen doped reduced graphene oxide/ ZnCo2O4 nanocomposite electrode for hybrid supercapacitor application. Materials Science and Engineering B 290 (2023), 116328
dc.relation.references[34]. Raed H. Althomali et al. Novel ZnCo2O4/WO3 nanocomposite as the counter electrode for dye-sensitized solar cells (DSSCs): study of electrocatalytic activity and charge transfer properties. Optical Materials 143 (2023), 114248
dc.relation.references[35]. Jingrui Ye. Reduced spinel oxide ZnCo2O4 with tetrahedral Co2+ sites for electrochemical nitrate reduction to ammonia and energy conversión. Chemical Engineering Journal 498 (2024), 155354
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsCobaltiteseng
dc.subject.keywordsZinc cobaltiteseng
dc.subject.proposalCobaltitasspa
dc.subject.proposalCobaltitas de sincspa
dc.titleObtención y caracterización de ZnCo2O4 mediante síntesis asistida por microondas
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
RodríguezArangoJulioDavid.pdf
Tamaño:
2.97 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
641.71 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: