Publicación:
Estudio de primeros principios de las propiedades estructurales y electrónicas de la heteroestructura grafeno-monocapa de h-AlN

dc.contributor.advisorMurillo Garcia, Jean Fred
dc.contributor.authorSeña Ávila, Luis Alberto
dc.contributor.juryAlcalá Varilla, Luis Arturo
dc.contributor.juryPeniche Blanquicett, Franklin Edwin
dc.date.accessioned2025-01-31T15:44:55Z
dc.date.available2025-01-31T15:44:55Z
dc.date.issued2025-01-30
dc.description.abstractEn este trabajo se realizó un estudios de primeros principios, en el marco de la teoría del funcional de la densidad usando el software Quantum ESPRESSO para caracterizar las propiedades estructurales y electrónicas de la hetero-estructura híbrida grafeno/h-AlN en dos configuraciones, en apilamiento vertical y en disposición horizontal. Al hacer la caracterización de las monocapas por separado se obtuvo que el parámetro de red a tiene un valor de 2.4675 Å y 3.1321 Å para el grafeno y el h-AlN respectivamente. Se pudo determinar que el grafeno es un semimetal mientras que el h-AlN un semiconductor con banda prohibida de 2.95 eV. En el apilamiento de las monocapas se utilizaron superceldas 2r3 × 2r3 grafeno y r7 × r7 h-AlN con un desajuste de un poco mas del 3 %. La energía de enlace en apilamiento tuvo un valor de -18.6840 meV/Å^2 , lo que nos muestra que esta configuración es energéticamente estable. La distancia entre las monocapas en el apilamiento se optimizó en 3.3248 Å, lo que nos indica que la heteroestructura esta caracterizada por interaccionesde Van der Waals. La caracterización electrónica se realizó mediante la construcción de los diagramas de densidad de estados proyectados (PDOS) y la estructura de bandas. Por medio de estos diagramas se pudo determinar que la interfaz grafeno/h-AlN en apilamiento vertical es un conductor no magnético y en la disposición horizontal el material es un semiconductor no magnético, donde su banda prohibida se ajusta con la concentración de h-AlN. También se encontró que al hacer sustituciones de átomos de carbono en la superficie de h-AlN de la interfaz vertical exhibe propiedades magnéticas. Para la disposición lateral de las monocapas, se encontró que las estructuras son menos estables si se aumenta la concentración de h-AlN. Además se hallaron las constantes elásticas y los módulos de elasticidad de las diferentes configuraciones para evaluar la rigidez de estos materiales.spa
dc.description.abstractIn this work, a first-principles study was carried out within the framework of density functional theory using the Quantum ESPRESSO software to characterize the structural and electronic properties of the graphene/h-AlN hybrid heterostructure in two configurations, vertical stacking and horizontal arrangement. By characterizing the monolayers separately, it was obtained that the lattice parameter a has a value of 2.4675 Å and 3.1321 Å for graphene and h-AlN respectively. It was determined that graphene is a semimetal while h-AlN is a semiconductor with a band gap of 2.95 eV. In the stacking of the monolayers, 2r3 × 2r3 graphene and r7 × r7 h-AlN supercells were used with a mismatch of a little more than 3%. The stacking binding energy had a value of -18.6840 meV/Å^2 , which shows us that this configuration is energetically stable. The distance between the monolayers in the stack was optimized at 3.3248 Å, which indicates that the heterostructure is characterized by Van der Waals interactions. The electronic characterization was carried out by constructing the projected density of states (PDOS) diagrams and the band structure. Through these diagrams it was possible to determine that the graphene/h-AlN interface in vertical stacking is a non-magnetic conductor and in the horizontal arrangement the material is a non-magnetic semiconductor, where its band gap is adjusted with the concentration of h-AlN. It was also found that by making substitutions of carbon atoms on the h-AlN surface of the vertical interface it exhibits magnetic properties. For the lateral arrangement of the monolayers, it was found that the structures are less stable if the concentration of h-AlN is increased. In addition, the elastic constants and the elastic moduli of the different configurations were found to evaluate the rigidity of these materials.eng
dc.description.degreelevelPregrado
dc.description.degreenameFísico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsÍndice de Tablasspa
dc.description.tableofcontentsÍndice de Figurasspa
dc.description.tableofcontentsDedicatoriaspa
dc.description.tableofcontentsAgradecimientosspa
dc.description.tableofcontentsResumenspa
dc.description.tableofcontentsIntroducciónspa
dc.description.tableofcontentsAntecedentes y Estado Actualspa
dc.description.tableofcontentsFundamento Teóricospa
dc.description.tableofcontentsCálculo de primeros principiosspa
dc.description.tableofcontentsEcuación de Schrödingerspa
dc.description.tableofcontentsAproximación de Bornspa
dc.description.tableofcontentsMétodo de Hartreespa
dc.description.tableofcontentsMétodo de Hartree-Fockspa
dc.description.tableofcontentsProcedimiento de auto-consistenciaspa
dc.description.tableofcontentsTeorı́a del Funcional de la Densidadspa
dc.description.tableofcontentsTeorema de Hohemberg-Kohnspa
dc.description.tableofcontentsEcuaciones de Kohn-Shamspa
dc.description.tableofcontentsMétodo de Campo Auto-Consistente (Self-Cosnsistent Field: SCF)spa
dc.description.tableofcontentsFuncional de correlación e intercambiospa
dc.description.tableofcontentsAproximación LDA (Local Density Approximation)spa
dc.description.tableofcontentsAproximación GGA (Generalized Gradient Approximation)spa
dc.description.tableofcontentsExpansión en onda planasspa
dc.description.tableofcontentsPseudopotencialesspa
dc.description.tableofcontentsEstudio de la Monocapa de h-AlNspa
dc.description.tableofcontentsMétodos y detalles computacionalesspa
dc.description.tableofcontentsResultados y discusiónspa
dc.description.tableofcontentsOptimización de la monocapa de h-AlNspa
dc.description.tableofcontentsEstructura de bandas y densidad de estados de la monocapa de h-AlNspa
dc.description.tableofcontentsPropiedades elásticas de la monnocapa de h-AlNspa
dc.description.tableofcontentsEstudio de la Monocapa de Grafenospa
dc.description.tableofcontentsMétodos y detalles computacionalesspa
dc.description.tableofcontentsResultados y discusiónspa
dc.description.tableofcontentsOptimización de la monocapa de grafenospa
dc.description.tableofcontentsEstructura de bandas y densidad de estados de la monocapa de grafenospa
dc.description.tableofcontentsPropiedades elásticas de la monocapa de grafenospa
dc.description.tableofcontentsEstudio de la Interfaz grafeno/h-AlNspa
dc.description.tableofcontentsInterfaz grafeno/h-AlNspa
dc.description.tableofcontentsMétodos y detalles computacionalesspa
dc.description.tableofcontentsResultados y discusiónspa
dc.description.tableofcontentsRelajación de la interfaz grafeno/h-AlNspa
dc.description.tableofcontentsPropiedades electrónicas de la interfaz grafeno/h-AlNspa
dc.description.tableofcontentsPropiedades elásticas de la monocapa de la interfaz grafeno/h-AlNspa
dc.description.tableofcontentsInterfaz grafeno/h-AlN con sustitución de un átomo de carbono por un nitrógeno en la monocapa de h-AlNspa
dc.description.tableofcontentsEstructura de bandas de la interfaz grafeno/h-AlN con sustitución de un carbono en la monocapa de h-AlNspa
dc.description.tableofcontentsInterfaz grafeno/h-AlN con sustitución de dos carbono en la monocapa de h-AlNspa
dc.description.tableofcontentsEstructura de bandas de la interfaz grafeno/h-AlN con sustitución de dos átomos de carbono en la monocapa de h-AlNspa
dc.description.tableofcontentsEstudio de la heteroestructura grafeno/h-AlN en disposición lateralspa
dc.description.tableofcontentsConclusionesspa
dc.description.tableofcontentsBibliografı́aspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8971
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programFísica
dc.relation.referencesAmerican Physical Society. This Month in Physics History.
dc.relation.referencesSoumyabrata Roy et al. “Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride”. En: Advanced Materials 33 (sep. de 2021).
dc.relation.referencesLingling Zhao et al. “Probing the Thermodynamic Stability and Phonon Transport in Two-Dimensional Hexagonal Aluminum Nitride Monolayer”. En: The Journal of Physical Chemistry C 120 (nov. de 2016).
dc.relation.referencesRenato B. dos Santos et al. “Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties”. En: Nanotechnology 27 (2016)
dc.relation.referencesXuefei Liu et al. “The External Electric Field-Induced Tunability of the Schottky Ba- rrier Height in Graphene/AlN Interface: A Study by First-Principles”. En: Nanomate- rials (Basel, Switzerland) 10 (sep. de 2020)
dc.relation.referencesOkikiola Olaniyan et al. “Tuning the electronic structure and thermodynamic pro- perties of hybrid graphene-hexagonal boron nitride monolayer”. En: FlatChem 24 (2020)
dc.relation.referencesXuefei Liu et al. “Tunable Electronic Properties of Graphene/g-AlN Heterostructure: The Effect of Vacancy and Strain Engineering”. En: Nanomaterials 9.12 (2019 de 2019),
dc.relation.referencesJ. S lawi ́nska, I. Zasada y Z. Klusek. “Energy gap tuning in graphene on hexagonal boron nitride bilayer system”. En: Phys. Rev. B 81 (15 abr. de 2010)
dc.relation.referencesYuki Sakai y Susumu Saito. “Electronic Properties of Graphene/h-BN Bilayer Super- lattices”. En: Journal of the Physical Society of Japan 81.10 (2012)
dc.relation.referencesWikipedia. Ab initio quantum chemistry methods. ́Ultima modificaci ́on: 1 Novem- ber 2023. 2019.
dc.relation.referencesNguyen Tuan Hung; Ahmad R. T. Nugraha; Riichiro Saito. Quantum ESPRESSO Course for Solid-State Physics. 1.a ed. Thomson Road , United Square Singapore: Jenny Stanford Publishing Pte. Ltd, 2023
dc.relation.referencesN. M. R. Peres. “Colloquium: The transport properties of graphene: An introduction”. En: Rev. Mod. Phys. 82 (3 sep. de 2010),
dc.relation.referencesD. R. Hartree. “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods”. En: Mathematical Proceedings of the Cambridge Philo- sophical Society 24.1 (1928)
dc.relation.referencesD. R. Hartree. “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion”. En: Mathematical Proceedings of the Cambridge Philosophical Society 24.1 (1928),
dc.relation.referencesD. R. Hartree. “The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra”. En: Mathematical Proceedings of the Cambridge Philosophical Society 24.3 (1928)
dc.relation.referencesJ. C. Slater. “Note on Hartree’s Method”. En: Phys. Rev. 35 (2 ene. de 1930),
dc.relation.referencesV. Fock. “N ̈aherungsmethode zur L ̈osung des quantenmechanischen Mehrk ̈orperpro- blems”. En: Zeitschrift f ̈ur Physik 61 (),
dc.relation.referencesV. Fock. “”Selfconsistent field“ mit Austausch f ̈ur Natrium”. En: Zeitschrift f ̈ur Physik 62 (1930),
dc.relation.referencesDouglas Rayner Hartree y W. Hartree. “Self-consistent field, with exchange, for bery- llium”. En: Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 150.869 (1935)
dc.relation.referencesouglas Rayner Hartree y W. Hartree. “Self-consistent field, with exchange, for bery- llium - II—The (2¡i¿s¡/i¿) (2¡i¿p¡/i¿) ¡sup¿3¡/sup¿P and ¡sup¿1¡/sup¿P excited states”. En: Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 154.883 (1936)
dc.relation.referencesP. Hohenberg y W. Kohn. “Inhomogeneous Electron Gas”. En: Phys. Rev. 136 (3B nov. de 1964),
dc.relation.referencesW. Kohn y L. J. Sham. “Self-Consistent Equations Including Exchange and Correlation Effects”. En: Phys. Rev. 140 (4A nov. de 1965),
dc.relation.referencesAxel D Becke y Erin R Johnson. “Perspective: Fifty years of density-functional theory in chemical physics”. En: The Journal of Chemical Physics 140.18 (2014),
dc.relation.referencesohn P. Perdew et al. “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”. En: Phys. Rev. B 46 (11 sep. de 1992),
dc.relation.referencesohn P. Perdew, Kieron Burke y Matthias Ernzerhof. “Generalized Gradient Appro- ximation Made Simple”. En: Phys. Rev. Lett. 77 (18 oct. de 1996)
dc.relation.referencesDavid Singh y Lars Nordstr ̈om. Planewaves, Pseudopotentials and the LAPW Method, Second Edition. Dic. de 2005.
dc.relation.referencesD. R. Hamann, M. Schl ̈uter y C. Chiang. “Norm-Conserving Pseudopotentials”. En: Phys. Rev. Lett. 43 (20 nov. de 1979),
dc.relation.referencesG. B. Bachelet, D. R. Hamann y M. Schl ̈uter. “Pseudopotentials that work: From H to Pu”. En: Phys. Rev. B 26 (8 oct. de 1982)
dc.relation.referencesDavid Vanderbilt. “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”. En: Phys. Rev. B 41 (11 abr. de 1990),
dc.relation.referencesKari Laasonen et al. “Implementation of ultrasoft pseudopotentials in ab initio molecu- lar dynamics”. En: Phys. Rev. B 43 (8 mar. de 1991)
dc.relation.referencesKari Laasonen et al. “Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials”. En: Phys. Rev. B 47 (16 abr. de 1993)
dc.relation.referencesPaolo Giannozzi et al. “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials”. En: Journal of Physics: Condensed Matter 21.39 (sep. de 2009)
dc.relation.referencesendrik J. Monkhorst y James D. Pack. “Special points for Brillouin-zone integra- tions”. En: Phys. Rev. B 13 (12 jun. de 1976)
dc.relation.referencesC. G. Broyden. “The Convergence of a Class of Double-rank Minimization Algo- rithms 1. General Considerations”. En: Ima Journal of Applied Mathematics 6 (1970)
dc.relation.referencesNicola Marzari et al. “Thermal Contraction and Disordering of the Al(110) Surfa- ce”. En: Phys. Rev. Lett. 82 (16 abr. de 1999)
dc.relation.referencesC. Bacaksiz et al. “Hexagonal AlN: Dimensional-crossover-driven band-gap transition”. En: Phys. Rev. B 91 (8 feb. de 2015)
dc.relation.referencesF Mota et al. “Defects in hexagonal-AlN sheets by first-principles calculations”. En: The European Physical Journal B (ene. de 2012)
dc.relation.referencesYelda Kadioglu et al. “Chemical and substitutional doping, anti-site and vacancy for- mation in monolayer AlN and GaN”. En: Physical Chemistry Chemical Physics 20 (mayo de 2018).
dc.relation.referencesQing Peng et al. “Mechanical stabilities and properties of graphene-like aluminum nitride predicted from first-principles calculations”. En: RSC Adv. 3 (abr. de 2013),
dc.relation.referencesC. -L. Fu y K. -M. Ho. “First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo”. En: Phys. Rev. B 28 (10 nov. de 1983),
dc.relation.referencesGabriella Graziano et al. “Improved description of soft layered materials with van der Waals density functional theory”. En: Journal of physics. Condensed matter : an Institute of Physics journal 24 (oct. de 2012),
dc.relation.referencesSobhit Singh, Camilo Espejo y Aldo H. Romero. “Structural, electronic, vibrational, and elastic properties of graphene/MoS2 bilayer heterostructures”. En: Phys. Rev. B 98 (15 oct. de 2018)
dc.relation.referencesM. Methfessel y A. T. Paxton. “High-precision sampling for Brillouin-zone integration in metals”. En: Phys. Rev. B 40 (6 ago. de 1989),
dc.relation.referencesT. Bj ̈orkman et al. “van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations”. En: Phys. Rev. Lett. 108 (23 jun. de 2012),
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsDensity functional theoryeng
dc.subject.keywordsQuantum ESPRESSOeng
dc.subject.keywordsBand structureeng
dc.subject.keywordsMonolayereng
dc.subject.keywordsConductoreng
dc.subject.keywordsHeterostructureeng
dc.subject.keywordsHybrideng
dc.subject.keywordsConcentrationeng
dc.subject.proposalTeoría del funcional de la densidadspa
dc.subject.proposalQuantum ESPRESSOspa
dc.subject.proposalDOSspa
dc.subject.proposalPDOSspa
dc.subject.proposalMonocapaspa
dc.subject.proposalConductorspa
dc.subject.proposalHeteroestructuraspa
dc.subject.proposalHı́bridospa
dc.subject.proposalConcentraciónspa
dc.subject.proposalEstructura de bandasspa
dc.titleEstudio de primeros principios de las propiedades estructurales y electrónicas de la heteroestructura grafeno-monocapa de h-AlNspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Formato de Autorización.pdf
Tamaño:
279.3 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
SeñaAvilaLuis.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: