Publicación:
Análisis mecánico y térmico de un material compuesto de matriz de resina de poliéster y fibras del mesocarpio del coco elaborado a través de la técnica de moldeo por transferencia de resina asistido al vacío

dc.audience
dc.contributor.advisorEspitia Sanjuán, Luis Armando
dc.contributor.authorMachado Acosta, Samir Alejandro
dc.contributor.juryUnfried Silgado, Jimy
dc.contributor.juryRivero Romero, Oswaldo
dc.date.accessioned2024-11-16T15:26:33Z
dc.date.available2025-11-15
dc.date.available2024-11-16T15:26:33Z
dc.date.issued2024-11-15
dc.description.abstractEn este trabajo se elaboraron materiales compuestos con matriz de resina de poliéster y adición de tejidos con 1, 2 y 3 hilos trenzados de fibras de coco sin tratar y tratadas con NaOH al 5 % mediante la técnica de moldeo por transferencia de resina asistido al vacío (VARTM); las fibras de coco fueron extraídas manualmente y secadas a 90 ºC para luego ser mercerizadas con NaOH al 5%. Las fibras de coco sin tratar y tratadas fueron caracterizadas mediante FTIR, microscopia electrónica de barrido (SEM) y análisis termogravimétrico (TGA), los materiales compuestos fueron sometidos a ensayos mecánicos y térmicos, para obtener propiedades a tensión, flexión y de conductividad térmica acorde a las normas ASTM D3039, ASTM D790 y ASTM C177. Se encontró que las fibras sin tratar están compuestas principalmente de celulosa, lignina y de hemicelulosa y otros minerales en menor cantidad, Se observó que el tratamiento químico generó un cambio superficial en las fibras y expuso microfibrillas en la superficie, las fibras
dc.description.abstractIn this study, composite materials were developed using a polyester resin matrix with the addition of fabrics containing 1, 2, and 3 braided strands of untreated and 5% NaOH-treated coconut fibers, using the vacuum-assisted resin transfer molding (VARTM) technique. The coconut fibers were manually extracted and dried at 90°C before being mercerized with 5% NaOH. The untreated and treated coconut fibers were characterized using FTIR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The composite materials underwent mechanical and thermal tests to determine their tensile, flexural, and thermal conductivity properties according to ASTM D3039, ASTM D790, and ASTM C177 standards. It was found that untreated fibers mainly consist of cellulose, lignin, hemicellulose, and minor quantities of other minerals. The chemical treatment induced a surface change in the fibers, exposing microfibrils on their surface. Both untreated and treated fibers were thermally stable up to 260°C and 250°C, respeceng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN 8
dc.description.tableofcontentsABSTRACT 9
dc.description.tableofcontents1. Capítulo I. Descripción del trabajo de investigación 10
dc.description.tableofcontents1.1. Introducción 10
dc.description.tableofcontents1.2. Objetivos 12
dc.description.tableofcontents1.2.1. Objetivo general 12
dc.description.tableofcontents1.2.2. Objetivos específicos 12
dc.description.tableofcontents1.3. Estructura de la tesis. 13
dc.description.tableofcontents1.4. REVISIÓN DE LITERATURA. 14
dc.description.tableofcontents1.4.1. Fibras naturales 14
dc.description.tableofcontents1.4.2. Fibras del mesocarpio del coco 16
dc.description.tableofcontents1.4.3. Tratamientos químicos sobre fibras naturales 17
dc.description.tableofcontents1.4.4. Materiales compuestos 17
dc.description.tableofcontents1.4.5. Moldeo por transferencia de resina asistido al vacío (VARTM) 18
dc.description.tableofcontents1.5. Trabajos derivados 22
dc.description.tableofcontents2. Capítulo II. Diseño Experimental 24
dc.description.tableofcontents2.1. Universo 24
dc.description.tableofcontents2.2. Variables 24
dc.description.tableofcontents2.3. Recolección de datos 25
dc.description.tableofcontents2.4. Escogencia del tamaño muestral 27
dc.description.tableofcontents3. Capítulo III. Caracterización inicial 30
dc.description.tableofcontents3.1. Introducción 30
dc.description.tableofcontents3.2. Materiales y métodos 30
dc.description.tableofcontents3.3. Resultados 32
dc.description.tableofcontents3.4. Conclusiones. 40
dc.description.tableofcontents4. Capítulo IV: Elaboración de materiales compuestos 41
dc.description.tableofcontents4.1. Introducción 41
dc.description.tableofcontents4.2. Materiales y métodos. 41
dc.description.tableofcontents4.3. Resultados. 45
dc.description.tableofcontents4.4. Conclusiones 53
dc.description.tableofcontents5. Capítulo V. Medición de propiedades mecánicas y térmicas. 54
dc.description.tableofcontents5.1. Introducción. 54
dc.description.tableofcontents5.2. Materiales y métodos. 54
dc.description.tableofcontents5.2.1. Ensayos de tensión 54
dc.description.tableofcontents5.2.2. Ensayos de flexión 55
dc.description.tableofcontents5.2.3. Ensayos de conductividad térmica 55
dc.description.tableofcontents5.3. Resultados 56
dc.description.tableofcontents5.4. Conclusiones 71
dc.description.tableofcontents6. Conclusiones Generales y futuros trabajos 73
dc.description.tableofcontents6.1. Objetivo específico I: 73
dc.description.tableofcontents6.2. Objetivo específico II: 73
dc.description.tableofcontents6.3. Objetivo específico III: 74
dc.description.tableofcontents6.4. Futuros trabajos. 74
dc.description.tableofcontents7. Bibliografía. 75
dc.description.tableofcontentsANEXOS 83
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8743
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ingeniería Mecánica
dc.relation.referencesAbraham, E., Deepa, B., Pothen, L. A., Cintil, J., Thomas, S., John, M. J., . . . Narine, S. S. (2013). Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92(2), 1477-1483. doi:10.1016/j.carbpol.2012.10.056
dc.relation.referencesAdeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Composites. Part B, Engineering, 176, 107305. 10.1016/j.compositesb.2019.107305 Elsevier
dc.relation.referencesAldroubi, S., Kasal, B., Yan, L., & Bachtiar, E. V. (2023). Multi-scale investigation of morphological, physical and tensile properties of flax single fiber, yarn and unidirectional fabric. Composites Part B: Engineering, 259 doi:10.1016/j.compositesb.2023.110732
dc.relation.referencesAhmed, N., Elfeky, K. E., Lu, L., & Wang, Q. W. (2020). Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications. Renewable Energy, 152, 684-697. doi:10.1016/j.renene.2020.01.073
dc.relation.referencesArrakhiz, F. Z., El Achaby, M., Kakou, A. C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., . . . Qaiss, A. (2012). Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials in Engineering, 37, 379-383. doi:10.1016/j.matdes.2012.01.020
dc.relation.referencesArun, A.S. & Sathyaseelan, R. & Tamilselvan, M. & Gowtham, M. & Karthikeyan, A.. (2016). Influence of weight fractions on mechanical, water absorption and corrosion resistance behaviors of untreated hybrid (Coir/banana) fiber reinforced epoxy composites. 9. 932-940.
dc.relation.referencesAsim, M., Jawaid, M., Abdan, K., & Ishak, M. R. (2016). Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres Springer Science and Business Media LLC. doi:10.1016/s1672-6529(16)60315-3
dc.relation.referencesASTM C177, Steady state Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus (2013)
dc.relation.referencesASTM D790, Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 1-12, (2017).
dc.relation.referencesASTM C518, Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. (2015)
dc.relation.referencesBalaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J., & Purushothaman, R. (2020). Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin Elsevier BV. doi:10.1016/j.rechem.2020.100056
dc.relation.referencesBisen, H. B., Hirwani, C. K., Satankar, R. K., Panda, S. K., Mehar, K., & Patel, B. (2020). Numerical study of frequency and deflection responses of natural fiber (luffa) reinforced polymer composite and experimental validation. Journal of Natural Fibers, 17(4), 505–519. doi:10.1080/15440478.2018.1503129
dc.relation.referencesBiswas, S., Rahaman, T., Gupta, P., Mitra, R., Dutta, S., Kharlyngdoh, E., . . . Das, M. (2022). Cellulose and lignin profiling in seven, economically important bamboo species of india by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass & Bioenergy, 158, 106362. doi:10.1016/j.biombioe.2022.106362
dc.relation.referencesBorré, A., Flórez, L. 2016. Investigación del coeficiente de conductividad térmica de bloques fabricados con mortero y olote de maíz (zea mays) para aplicaciones en mampostería. Trabajo de grado para optar el título de Ingeniero Mecánico, Universidad de Córdoba, Montería.
dc.relation.referencesBuelvas, Y., Díaz, L. 2021. Caracterización de fibras del mesocarpio del coco como potencial refuerzo para la elaboración de materiales compuestos. Trabajo de grado para optar el título de Ingeniero Mecánico, Universidad de Córdoba, Montería.
dc.relation.referencesBlanchard, J. M. F. A., Sobey, A. J., & Blake, J. I. R. (2016). Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Composites Part B: Engineering, 84, 228. doi:10.1016/j.compositesb.2015.08.086
dc.relation.referencesBledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. doi:10.1016/j.compscitech.2010.01.022
dc.relation.referencesCardona, J. 2015. Contaminación ambiental y enfermedad respiratoria. Revista colombiana de neumología [en línea]. Internet, https://encolombia.com/medicina/revistas-medicas/neumologia/vn-154/neumologia15403-contaminacion/ [9 agosto 2018].
dc.relation.referencesCarvajal, S. 2015. Evaluación del comportamiento a flexión e impacto de un material compuesto fabricado por el método RTM. Proyecto de grado como requisito para optar por el título de Ingeniero Mecánico, Universidad Autónoma del Caribe, Barranquilla.
dc.relation.referencesConstruinnova. 2017. De cocos y estructuras [en línea]. Internet, https://construinnova.net/2017/03/23/de-cocos-y-estructuras/ [14 junio 2021]
dc.relation.referencesDabiri, S., Mehrpooya, M., & Nezhad, E. G. (2018). Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics. Energy (Oxford), 159, 160-171. doi:10.1016/j.energy.2018.06.074
dc.relation.referencesDaniel Madyira, & Nhlanhla Dube. (Jan 01, 2017). Mechanical performance of wood glue, CNF and coir fiber composites. Paper presented at the 442. doi:10.4108/eai.20-6-2017.2270753 Retrieved from https://search.proquest.com/docview/2306508211
dc.relation.referencesDattatreya, K., Sathees Kumar, S., Prasad, V. V. S. H., & Ranjan Pati, P. (2023). Mechanical properties of waste natural fibers/fillers reinforced epoxy hybrid composites for automotive applications. Materials Today : Proceedings, doi:10.1016/j.matpr.2023.02.001
dc.relation.referencesDonald R. Askeland, & Wendelin J. Wright. (2016). Ciencia e ingeniería de materiales septima edición. Cengage Learning.
dc.relation.referencesDong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites. Part A, Applied Science and Manufacturing, 63, 76-84. doi:10.1016/j.compositesa.2014.04.003
dc.relation.referencesdos Santos, J. C., Siqueira, R. L., Vieira, L. M. G., Freire, R. T. S., Mano, V., & Panzera, T. H. (2018). Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polymer Testing, 67, 533-544. doi:10.1016/j.polymertesting.2018.03.043
dc.relation.referencesFood and Agriculture Organization of the United Nations. 2009. ¿Por qué naturales? [En línea]. Internet, http://www.fao.org/natural-fibres-2009/about/why-natural-fibres/es/ [ 2 octubre 2022]
dc.relation.referencesGallegos, S. 2011. Obtención de un material compuesto de matriz elastomérica y fibra de coco. Proyecto previo a la obtención del título de Ingeniera Agroindustrial, escuela politécnica nacional, Ecuador, Quito.
dc.relation.referencesGbadeyan, O. J., Sarp, A., Glen, B., & Sithole, B. (2021a). Nanofiller/natural fiber filled polymer hybrid composite: A review International Hellenic University. doi:10.25103/jestr.145.08
dc.relation.referencesGbadeyan, O. J., Sarp, A., Glen, B., & Sithole, B. (2021b). Nanofiller/natural fiber filled polymer hybrid composite: A review. Journal of Engineering Science and Technology Review, 14(5), 61-74. doi:10.25103/jestr.145.08
dc.relation.referencesHamouda, T., Hassanin, A. H., Kilic, A., Candan, Z., & Safa Bodur, M. (2017). Hybrid composites from coir fibers reinforced with woven glass fabrics: Physical and mechanical evaluation. Polymer Composites, 38(10), 2212-2220. 10.1002/pc.23799.
dc.relation.referencesHasan, K. M. F., Horváth, P. G., Bak, M., & Alpár, T. (2021). A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 11(18), 1548-1571. doi:10.1039/d1ra00231g
dc.relation.referencesHasan, M., Hoque, M. E., Mir, S. S., Saba, N., & Sapuan, S. M. (2015). Manufacturing of coir fibre-reinforced polymer composites by hot compression technique. Manufacturing of natural fibre reinforced polymer composites (pp. 309-330). Cham: Springer International Publishing. doi:10.1007/978-3-319-07944-8_15 Retrieved from http://link.springer.com/10.1007/978-3-319-07944-8_15
dc.relation.referencesHernández Vidal, N. E., López Bautista, V., Morales Morales, V., Méndez Ordóñez, W., & Calderón Osorio, E. S. (2018). Caracterización química de la fibra de coco (cocus nucifera L.) de méxico utilizando espectroscopía de infrarrojo (FTIR). Ingeniería Y Región, 20, 67-71. doi:10.25054/22161325.1914
dc.relation.referencesIghalo, J. O., Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G., & Abdulkareem, S. A. (2020). An empirical review of the recent advances in treatment of natural fibers for reinforced plastic composites Informa UK Limited. doi:10.1080/09276440.2020.1826274
dc.relation.referencesIlham, Z. (2022). Chapter 3 - biomass classification and characterization for conversion to biofuels. Value-chain of biofuels (pp. 69-87) Elsevier Inc. doi:10.1016/B978-0-12-824388-6.00014-2 Retrieved from https://dx.doi.org/10.1016/B978-0-12-824388-6.00014-2
dc.relation.referencesKabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites. Part B, Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053
dc.relation.referencesKannan, G., & Thangaraju, R. (2023). Evaluation of tensile, flexural and thermal characteristics on agro-waste based polymer composites reinforced with banana fiber/coconut shell filler. Journal of Natural Fibers, 20(1) doi:10.1080/15440478.2022.2154630
dc.relation.referencesKar, S., Pattnaik, S., & Sutar, M. K. (2024). Assessment of mechanical and thermal properties of hybrid co-woven biofiber polymer composites. Industrial Crops and Products, 222, 119756. doi:10.1016/j.indcrop.2024.119756
dc.relation.referencesKumar, S., Shamprasad, M. S., Varadarajan, Y. S., & Sangamesha, M. A. (2021). Coconut coir fiber reinforced polypropylene composites: Investigation on fracture toughness and mechanical properties. Materials Today : Proceedings, doi:10.1016/j.matpr.2021.01.402
dc.relation.referencesLi, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., . . . Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites. Part B, Engineering, 200(1), 108254. doi:10.1016/j.compositesb.2020.108254
dc.relation.referencesLim, H. Y., Yusup, S., Loy, A. C. M., Samsuri, S., Ho, S. S. K., Manaf, A. S. A., . . . Rianawati, E. (2021). Review on conversion of lignin waste into value-added resources in tropical countries. Waste and Biomass Valorization, 12(10), 5285-5302. doi:10.1007/s12649-020-01307-8
dc.relation.referencesLuz, F. S. d., Ramos, Flávio James Humberto Tommasini Vieira, Nascimento, L. F. C., Figueiredo, André Ben-Hur da Silva, & Monteiro, S. N. (2018). Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. Journal of Materials Research and Technology, 7(4), 528-534. 10.1016/j.jmrt.2018.04.025
dc.relation.referencesManjula, R., Raju, N., Chakradhar, R., & Johns, J. (2018). Effect of thermal aging and chemical treatment on tensile properties of coir fiber. Journal of Natural Fibers, 15(1), 112-121. doi:10.1080/15440478.2017.1321513
dc.relation.referencesMeyers, M., Chawla, K. 2009. Mechanical Behavior of Materials. Cambridge University Press, New York, p72, 541.
dc.relation.referencesMittal, M. (2019). Experimental investigation on the thermal behavior of untreated and alkali-treated pineapple leaf and coconut husk fibers. International Journal of Applied Science and Engineering, 7(1), 1-16. doi:10.30954/2322-0465.1.2019.1
dc.relation.referencesMontgomery, d., & st, c. (2022). Design and analysis of experiments, 9th edition.
dc.relation.referencesMonteiro, S. N., Terrones, L. A. H., & D’Almeida, J. R. M. (2008). Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), 591-595. 10.1016/j.polymertesting.2008.03.003
dc.relation.referencesMukesh, & Godara, S. S. (2019). Effect of chemical modification of fiber surface on natural fiber composites: A review. Materials Today: Proceedings, 18, 3428–3434. doi:10.1016/j.matpr.2019.07.270
dc.relation.referencesMuthu, J., Priscilla, J., Odeshi, A., & Kuppen, N. (2018). Characterisation of coir fibre hybrid composites reinforced with clay particles and glass spheres. SAGE Publications. 10.1177/0021998317712568
dc.relation.referencesNam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites. Part B, Engineering, 42(6), 1648-1656. 10.1016/j.compositesb.2011.04.001
dc.relation.referencesNandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97. doi:10.17509/ijost.v4i1.15806
dc.relation.referencesObada, D. O., Kuburi, L. S., Dauda, M., Dodoo-Arhin, D., Iorpenda, M. J., Hou, Y., . . . Jimoh, A. A. (2019). Microstructural evolution and hardness properties of coir-coconut husk powder reinforced polymer composites subjected to an acidic environment. Procedia Manufacturing, 35, 737-742. doi:10.1016/j.promfg.2019.06.017
dc.relation.referencesObele, C., Obele, C., & Ishidi, E. (2015). Mechanical properties of coir fiber reinforced epoxy resin composites for helmet shell mechanical properties of coir fiber reinforced epoxy resin composites for helmet shell
dc.relation.referencesPico González, D. (2023). Validación de una máquina para fabricación de materiales compuestos mediante la técnica de moldeo por transferencia de resina con vacío asistido.
dc.relation.referencesPellegrini, V. d. O. A., Sepulchro, A. G. V., & Polikarpov, I. (2020). Enzymes for lignocellulosic biomass polysaccharide valorization and production of nanomaterials. Current Opinion in Green and Sustainable Chemistry, 26, 100397. doi:10.1016/j.cogsc.2020.100397
dc.relation.referencesQuiñones-Bolaños, E., Gómez-Oviedo, M., Mouthon-Bello, J., Sierra-Vitola, L., Berardi, U., & Bustillo-Lecompte, C. (2021). Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. Journal of Environmental Management, 277, 111503. doi:10.1016/j.jenvman.2020.111503
dc.relation.referencesQuintanilla, M. 2010. industrialización de la fibra de estopa de coco. Trabajo de grado para optar al título de ingeniera industrial, Universidad de El salvador, El salvador.
dc.relation.referencesRajesh, M., & Pitchaimani, J. (2017). Mechanical characterization of natural fiber intra-ply fabric polymer composites: Influence of chemical modifications. Journal of Reinforced Plastics and Composites, 36(22), 1651. doi:10.1177/0731684417723084
dc.relation.referencesRajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., . . . Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. doi:10.1016/j.jclepro.2021.127483
dc.relation.referencesRamdas Tamakuwala, V. (2020a). Manufacturing of fiber reinforced polymer by using VARTM process: A review. Materials Today: Proceedings, 44, 987. doi:10.1016/j.matpr.2020.11.102
dc.relation.referencesRamdas Tamakuwala, V. (2020b). Manufacturing of fiber reinforced polymer by using VARTM process: A review Elsevier BV. doi:10.1016/j.matpr.2020.11.102
dc.relation.referencesSalit, M. S., Jawaid, M., Yusoff, N. B., & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites (1st ed. 2015 ed.). Cham: Springer International Publishing. doi:10.1007/978-3-319-07944-8 Retrieved from https://library.biblioboard.com/viewer/6770ff41-bd90-11ea-b8f9-0a28bb48d135
dc.relation.referencesSantos, J. C. d., Oliveira, L. Á d., Gomes Vieira, L. M., Mano, V., Freire, R. T. S., & Panzera, T. H. (2019). Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Construction and Building Materials, 211, 427–436. doi:10.1016/j.conbuildmat.2019.03.284
dc.relation.referencesSiakeng, R., Jawaid, M., Ariffin, H., & Salit, M. S. (2018). Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid. Journal of Bionics Engineering, 15(6), 1035-1046. 10.1007/s42235-018-0091-z
dc.relation.referencesSilva, R., Haraguchi, S., Muniz, E. y Rubira, A. 2009. Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Química Nova 32 (3): 661-671.
dc.relation.referencesSozer, E. M., Simacek, P., & Advani, S. G. (2012). 9 - Resin transfer molding (RTM) in polymer matrix composites. Manufacturing techniques for polymer matrix composites (PMCs) (pp. 245-309). Elsevier Ltd. 10.1016/B978-0-85709-067-6.50009-2.
dc.relation.referencesSubaida, E. A., Chandrakaran, S., & Sankar, N. (2008). Experimental investigations on tensile and pullout behaviour of woven coir geotextiles. Geotextiles and Geomembranes, 26(5), 384-392. 10.1016/j.geotexmem.2008.02.005
dc.relation.referencesTang, L., Zhang, J., Tang, Y., Kong, J., Liu, T., & Gu, J. (2021). Polymer matrix wave transparent composites: A review. Journal of Materials Science & Technology, 75, 225-251.10.1016/j.jmst.2020.09.017
dc.relation.referencesTran, L. Q. N., Minh, T. N., Fuentes, C. A., Chi, T. T., Van Vuure, A. W., & Verpoest, I. (2015). Investigation of microstructure and tensile properties of porous natural coir fibre for use in composite materials. Industrial Crops and Products, 65, 437-445. doi:10.1016/j.indcrop.2014.10.064
dc.relation.referencesTrejos, J. 2014. Propiedades mecánicas de una matriz de poliéster reforzada con fibra de coco comparadas con la misma matriz reforzada con fibra de vidrio. Trabajo de grado para optar el título de Ingeniero Mecánico, Universidad Tecnológica De Pereira, Pereira.
dc.relation.referencesVerma, D., & Gope, P. C. (2015). 10 - the use of coir/coconut fibers as reinforcements in composites. Biofiber reinforcement in composite materials (pp. 285-319) Elsevier Ltd. doi:10.1533/9781782421276.3.285 Retrieved from https://dx.doi.org/10.1533/9781782421276.3.285
dc.relation.referencesWang, B., Yan, L., & Kasal, B. (2022). A review of coir fibre and coir fibre reinforced cement-based composite materials (2000–2021). Journal of Cleaner Production, 338 doi:10.1016/j.jclepro.2022.130676
dc.relation.referencesWu, J., Du, X., Yin, Z., Xu, S., Xu, S., & Zhang, Y. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydrate Polymers, 211, 49-56. doi:10.1016/j.carbpol.2019.01.093
dc.relation.referencesWu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92-100. doi:10.1016/j.jclepro.2018.02.257
dc.relation.referencesYan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction & Building Materials, 112, 168-182.
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsCoconout fibers
dc.subject.keywordsComposite material
dc.subject.keywordsVARTM
dc.subject.keywordsNaOH
dc.subject.keywordsMechanical Properties
dc.subject.keywordsThermal conductivity
dc.subject.keywordsFabric
dc.subject.proposalFibras de coco
dc.subject.proposalMaterial compuesto
dc.subject.proposalVARTM
dc.subject.proposalPropiedades mecánicas
dc.subject.proposalConductividad térmica
dc.subject.proposalTejido
dc.subject.proposalNaOH
dc.titleAnálisis mecánico y térmico de un material compuesto de matriz de resina de poliéster y fibras del mesocarpio del coco elaborado a través de la técnica de moldeo por transferencia de resina asistido al vacío
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
MachadoSamir.pdf
Tamaño:
3.91 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Solicitud repositorio.pdf
Tamaño:
341.07 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones