Publicación: Análisis mecánico y térmico de un material compuesto de matriz de resina de poliéster y fibras del mesocarpio del coco elaborado a través de la técnica de moldeo por transferencia de resina asistido al vacío
dc.audience | ||
dc.contributor.advisor | Espitia Sanjuán, Luis Armando | |
dc.contributor.author | Machado Acosta, Samir Alejandro | |
dc.contributor.jury | Unfried Silgado, Jimy | |
dc.contributor.jury | Rivero Romero, Oswaldo | |
dc.date.accessioned | 2024-11-16T15:26:33Z | |
dc.date.available | 2025-11-15 | |
dc.date.available | 2024-11-16T15:26:33Z | |
dc.date.issued | 2024-11-15 | |
dc.description.abstract | En este trabajo se elaboraron materiales compuestos con matriz de resina de poliéster y adición de tejidos con 1, 2 y 3 hilos trenzados de fibras de coco sin tratar y tratadas con NaOH al 5 % mediante la técnica de moldeo por transferencia de resina asistido al vacío (VARTM); las fibras de coco fueron extraídas manualmente y secadas a 90 ºC para luego ser mercerizadas con NaOH al 5%. Las fibras de coco sin tratar y tratadas fueron caracterizadas mediante FTIR, microscopia electrónica de barrido (SEM) y análisis termogravimétrico (TGA), los materiales compuestos fueron sometidos a ensayos mecánicos y térmicos, para obtener propiedades a tensión, flexión y de conductividad térmica acorde a las normas ASTM D3039, ASTM D790 y ASTM C177. Se encontró que las fibras sin tratar están compuestas principalmente de celulosa, lignina y de hemicelulosa y otros minerales en menor cantidad, Se observó que el tratamiento químico generó un cambio superficial en las fibras y expuso microfibrillas en la superficie, las fibras | |
dc.description.abstract | In this study, composite materials were developed using a polyester resin matrix with the addition of fabrics containing 1, 2, and 3 braided strands of untreated and 5% NaOH-treated coconut fibers, using the vacuum-assisted resin transfer molding (VARTM) technique. The coconut fibers were manually extracted and dried at 90°C before being mercerized with 5% NaOH. The untreated and treated coconut fibers were characterized using FTIR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The composite materials underwent mechanical and thermal tests to determine their tensile, flexural, and thermal conductivity properties according to ASTM D3039, ASTM D790, and ASTM C177 standards. It was found that untreated fibers mainly consist of cellulose, lignin, hemicellulose, and minor quantities of other minerals. The chemical treatment induced a surface change in the fibers, exposing microfibrils on their surface. Both untreated and treated fibers were thermally stable up to 260°C and 250°C, respec | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería Mecánica | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN 8 | |
dc.description.tableofcontents | ABSTRACT 9 | |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación 10 | |
dc.description.tableofcontents | 1.1. Introducción 10 | |
dc.description.tableofcontents | 1.2. Objetivos 12 | |
dc.description.tableofcontents | 1.2.1. Objetivo general 12 | |
dc.description.tableofcontents | 1.2.2. Objetivos específicos 12 | |
dc.description.tableofcontents | 1.3. Estructura de la tesis. 13 | |
dc.description.tableofcontents | 1.4. REVISIÓN DE LITERATURA. 14 | |
dc.description.tableofcontents | 1.4.1. Fibras naturales 14 | |
dc.description.tableofcontents | 1.4.2. Fibras del mesocarpio del coco 16 | |
dc.description.tableofcontents | 1.4.3. Tratamientos químicos sobre fibras naturales 17 | |
dc.description.tableofcontents | 1.4.4. Materiales compuestos 17 | |
dc.description.tableofcontents | 1.4.5. Moldeo por transferencia de resina asistido al vacío (VARTM) 18 | |
dc.description.tableofcontents | 1.5. Trabajos derivados 22 | |
dc.description.tableofcontents | 2. Capítulo II. Diseño Experimental 24 | |
dc.description.tableofcontents | 2.1. Universo 24 | |
dc.description.tableofcontents | 2.2. Variables 24 | |
dc.description.tableofcontents | 2.3. Recolección de datos 25 | |
dc.description.tableofcontents | 2.4. Escogencia del tamaño muestral 27 | |
dc.description.tableofcontents | 3. Capítulo III. Caracterización inicial 30 | |
dc.description.tableofcontents | 3.1. Introducción 30 | |
dc.description.tableofcontents | 3.2. Materiales y métodos 30 | |
dc.description.tableofcontents | 3.3. Resultados 32 | |
dc.description.tableofcontents | 3.4. Conclusiones. 40 | |
dc.description.tableofcontents | 4. Capítulo IV: Elaboración de materiales compuestos 41 | |
dc.description.tableofcontents | 4.1. Introducción 41 | |
dc.description.tableofcontents | 4.2. Materiales y métodos. 41 | |
dc.description.tableofcontents | 4.3. Resultados. 45 | |
dc.description.tableofcontents | 4.4. Conclusiones 53 | |
dc.description.tableofcontents | 5. Capítulo V. Medición de propiedades mecánicas y térmicas. 54 | |
dc.description.tableofcontents | 5.1. Introducción. 54 | |
dc.description.tableofcontents | 5.2. Materiales y métodos. 54 | |
dc.description.tableofcontents | 5.2.1. Ensayos de tensión 54 | |
dc.description.tableofcontents | 5.2.2. Ensayos de flexión 55 | |
dc.description.tableofcontents | 5.2.3. Ensayos de conductividad térmica 55 | |
dc.description.tableofcontents | 5.3. Resultados 56 | |
dc.description.tableofcontents | 5.4. Conclusiones 71 | |
dc.description.tableofcontents | 6. Conclusiones Generales y futuros trabajos 73 | |
dc.description.tableofcontents | 6.1. Objetivo específico I: 73 | |
dc.description.tableofcontents | 6.2. Objetivo específico II: 73 | |
dc.description.tableofcontents | 6.3. Objetivo específico III: 74 | |
dc.description.tableofcontents | 6.4. Futuros trabajos. 74 | |
dc.description.tableofcontents | 7. Bibliografía. 75 | |
dc.description.tableofcontents | ANEXOS 83 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8743 | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ingeniería Mecánica | |
dc.relation.references | Abraham, E., Deepa, B., Pothen, L. A., Cintil, J., Thomas, S., John, M. J., . . . Narine, S. S. (2013). Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92(2), 1477-1483. doi:10.1016/j.carbpol.2012.10.056 | |
dc.relation.references | Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Composites. Part B, Engineering, 176, 107305. 10.1016/j.compositesb.2019.107305 Elsevier | |
dc.relation.references | Aldroubi, S., Kasal, B., Yan, L., & Bachtiar, E. V. (2023). Multi-scale investigation of morphological, physical and tensile properties of flax single fiber, yarn and unidirectional fabric. Composites Part B: Engineering, 259 doi:10.1016/j.compositesb.2023.110732 | |
dc.relation.references | Ahmed, N., Elfeky, K. E., Lu, L., & Wang, Q. W. (2020). Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications. Renewable Energy, 152, 684-697. doi:10.1016/j.renene.2020.01.073 | |
dc.relation.references | Arrakhiz, F. Z., El Achaby, M., Kakou, A. C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., . . . Qaiss, A. (2012). Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials in Engineering, 37, 379-383. doi:10.1016/j.matdes.2012.01.020 | |
dc.relation.references | Arun, A.S. & Sathyaseelan, R. & Tamilselvan, M. & Gowtham, M. & Karthikeyan, A.. (2016). Influence of weight fractions on mechanical, water absorption and corrosion resistance behaviors of untreated hybrid (Coir/banana) fiber reinforced epoxy composites. 9. 932-940. | |
dc.relation.references | Asim, M., Jawaid, M., Abdan, K., & Ishak, M. R. (2016). Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres Springer Science and Business Media LLC. doi:10.1016/s1672-6529(16)60315-3 | |
dc.relation.references | ASTM C177, Steady state Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus (2013) | |
dc.relation.references | ASTM D790, Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 1-12, (2017). | |
dc.relation.references | ASTM C518, Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. (2015) | |
dc.relation.references | Balaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J., & Purushothaman, R. (2020). Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin Elsevier BV. doi:10.1016/j.rechem.2020.100056 | |
dc.relation.references | Bisen, H. B., Hirwani, C. K., Satankar, R. K., Panda, S. K., Mehar, K., & Patel, B. (2020). Numerical study of frequency and deflection responses of natural fiber (luffa) reinforced polymer composite and experimental validation. Journal of Natural Fibers, 17(4), 505–519. doi:10.1080/15440478.2018.1503129 | |
dc.relation.references | Biswas, S., Rahaman, T., Gupta, P., Mitra, R., Dutta, S., Kharlyngdoh, E., . . . Das, M. (2022). Cellulose and lignin profiling in seven, economically important bamboo species of india by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass & Bioenergy, 158, 106362. doi:10.1016/j.biombioe.2022.106362 | |
dc.relation.references | Borré, A., Flórez, L. 2016. Investigación del coeficiente de conductividad térmica de bloques fabricados con mortero y olote de maíz (zea mays) para aplicaciones en mampostería. Trabajo de grado para optar el título de Ingeniero Mecánico, Universidad de Córdoba, Montería. | |
dc.relation.references | Buelvas, Y., Díaz, L. 2021. Caracterización de fibras del mesocarpio del coco como potencial refuerzo para la elaboración de materiales compuestos. Trabajo de grado para optar el título de Ingeniero Mecánico, Universidad de Córdoba, Montería. | |
dc.relation.references | Blanchard, J. M. F. A., Sobey, A. J., & Blake, J. I. R. (2016). Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Composites Part B: Engineering, 84, 228. doi:10.1016/j.compositesb.2015.08.086 | |
dc.relation.references | Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. doi:10.1016/j.compscitech.2010.01.022 | |
dc.relation.references | Cardona, J. 2015. Contaminación ambiental y enfermedad respiratoria. Revista colombiana de neumología [en línea]. Internet, https://encolombia.com/medicina/revistas-medicas/neumologia/vn-154/neumologia15403-contaminacion/ [9 agosto 2018]. | |
dc.relation.references | Carvajal, S. 2015. Evaluación del comportamiento a flexión e impacto de un material compuesto fabricado por el método RTM. Proyecto de grado como requisito para optar por el título de Ingeniero Mecánico, Universidad Autónoma del Caribe, Barranquilla. | |
dc.relation.references | Construinnova. 2017. De cocos y estructuras [en línea]. Internet, https://construinnova.net/2017/03/23/de-cocos-y-estructuras/ [14 junio 2021] | |
dc.relation.references | Dabiri, S., Mehrpooya, M., & Nezhad, E. G. (2018). Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics. Energy (Oxford), 159, 160-171. doi:10.1016/j.energy.2018.06.074 | |
dc.relation.references | Daniel Madyira, & Nhlanhla Dube. (Jan 01, 2017). Mechanical performance of wood glue, CNF and coir fiber composites. Paper presented at the 442. doi:10.4108/eai.20-6-2017.2270753 Retrieved from https://search.proquest.com/docview/2306508211 | |
dc.relation.references | Dattatreya, K., Sathees Kumar, S., Prasad, V. V. S. H., & Ranjan Pati, P. (2023). Mechanical properties of waste natural fibers/fillers reinforced epoxy hybrid composites for automotive applications. Materials Today : Proceedings, doi:10.1016/j.matpr.2023.02.001 | |
dc.relation.references | Donald R. Askeland, & Wendelin J. Wright. (2016). Ciencia e ingeniería de materiales septima edición. Cengage Learning. | |
dc.relation.references | Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites. Part A, Applied Science and Manufacturing, 63, 76-84. doi:10.1016/j.compositesa.2014.04.003 | |
dc.relation.references | dos Santos, J. C., Siqueira, R. L., Vieira, L. M. G., Freire, R. T. S., Mano, V., & Panzera, T. H. (2018). Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polymer Testing, 67, 533-544. doi:10.1016/j.polymertesting.2018.03.043 | |
dc.relation.references | Food and Agriculture Organization of the United Nations. 2009. ¿Por qué naturales? [En línea]. Internet, http://www.fao.org/natural-fibres-2009/about/why-natural-fibres/es/ [ 2 octubre 2022] | |
dc.relation.references | Gallegos, S. 2011. Obtención de un material compuesto de matriz elastomérica y fibra de coco. Proyecto previo a la obtención del título de Ingeniera Agroindustrial, escuela politécnica nacional, Ecuador, Quito. | |
dc.relation.references | Gbadeyan, O. J., Sarp, A., Glen, B., & Sithole, B. (2021a). Nanofiller/natural fiber filled polymer hybrid composite: A review International Hellenic University. doi:10.25103/jestr.145.08 | |
dc.relation.references | Gbadeyan, O. J., Sarp, A., Glen, B., & Sithole, B. (2021b). Nanofiller/natural fiber filled polymer hybrid composite: A review. Journal of Engineering Science and Technology Review, 14(5), 61-74. doi:10.25103/jestr.145.08 | |
dc.relation.references | Hamouda, T., Hassanin, A. H., Kilic, A., Candan, Z., & Safa Bodur, M. (2017). Hybrid composites from coir fibers reinforced with woven glass fabrics: Physical and mechanical evaluation. Polymer Composites, 38(10), 2212-2220. 10.1002/pc.23799. | |
dc.relation.references | Hasan, K. M. F., Horváth, P. G., Bak, M., & Alpár, T. (2021). A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 11(18), 1548-1571. doi:10.1039/d1ra00231g | |
dc.relation.references | Hasan, M., Hoque, M. E., Mir, S. S., Saba, N., & Sapuan, S. M. (2015). Manufacturing of coir fibre-reinforced polymer composites by hot compression technique. Manufacturing of natural fibre reinforced polymer composites (pp. 309-330). Cham: Springer International Publishing. doi:10.1007/978-3-319-07944-8_15 Retrieved from http://link.springer.com/10.1007/978-3-319-07944-8_15 | |
dc.relation.references | Hernández Vidal, N. E., López Bautista, V., Morales Morales, V., Méndez Ordóñez, W., & Calderón Osorio, E. S. (2018). Caracterización química de la fibra de coco (cocus nucifera L.) de méxico utilizando espectroscopía de infrarrojo (FTIR). Ingeniería Y Región, 20, 67-71. doi:10.25054/22161325.1914 | |
dc.relation.references | Ighalo, J. O., Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G., & Abdulkareem, S. A. (2020). An empirical review of the recent advances in treatment of natural fibers for reinforced plastic composites Informa UK Limited. doi:10.1080/09276440.2020.1826274 | |
dc.relation.references | Ilham, Z. (2022). Chapter 3 - biomass classification and characterization for conversion to biofuels. Value-chain of biofuels (pp. 69-87) Elsevier Inc. doi:10.1016/B978-0-12-824388-6.00014-2 Retrieved from https://dx.doi.org/10.1016/B978-0-12-824388-6.00014-2 | |
dc.relation.references | Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites. Part B, Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053 | |
dc.relation.references | Kannan, G., & Thangaraju, R. (2023). Evaluation of tensile, flexural and thermal characteristics on agro-waste based polymer composites reinforced with banana fiber/coconut shell filler. Journal of Natural Fibers, 20(1) doi:10.1080/15440478.2022.2154630 | |
dc.relation.references | Kar, S., Pattnaik, S., & Sutar, M. K. (2024). Assessment of mechanical and thermal properties of hybrid co-woven biofiber polymer composites. Industrial Crops and Products, 222, 119756. doi:10.1016/j.indcrop.2024.119756 | |
dc.relation.references | Kumar, S., Shamprasad, M. S., Varadarajan, Y. S., & Sangamesha, M. A. (2021). Coconut coir fiber reinforced polypropylene composites: Investigation on fracture toughness and mechanical properties. Materials Today : Proceedings, doi:10.1016/j.matpr.2021.01.402 | |
dc.relation.references | Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., . . . Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites. Part B, Engineering, 200(1), 108254. doi:10.1016/j.compositesb.2020.108254 | |
dc.relation.references | Lim, H. Y., Yusup, S., Loy, A. C. M., Samsuri, S., Ho, S. S. K., Manaf, A. S. A., . . . Rianawati, E. (2021). Review on conversion of lignin waste into value-added resources in tropical countries. Waste and Biomass Valorization, 12(10), 5285-5302. doi:10.1007/s12649-020-01307-8 | |
dc.relation.references | Luz, F. S. d., Ramos, Flávio James Humberto Tommasini Vieira, Nascimento, L. F. C., Figueiredo, André Ben-Hur da Silva, & Monteiro, S. N. (2018). Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. Journal of Materials Research and Technology, 7(4), 528-534. 10.1016/j.jmrt.2018.04.025 | |
dc.relation.references | Manjula, R., Raju, N., Chakradhar, R., & Johns, J. (2018). Effect of thermal aging and chemical treatment on tensile properties of coir fiber. Journal of Natural Fibers, 15(1), 112-121. doi:10.1080/15440478.2017.1321513 | |
dc.relation.references | Meyers, M., Chawla, K. 2009. Mechanical Behavior of Materials. Cambridge University Press, New York, p72, 541. | |
dc.relation.references | Mittal, M. (2019). Experimental investigation on the thermal behavior of untreated and alkali-treated pineapple leaf and coconut husk fibers. International Journal of Applied Science and Engineering, 7(1), 1-16. doi:10.30954/2322-0465.1.2019.1 | |
dc.relation.references | Montgomery, d., & st, c. (2022). Design and analysis of experiments, 9th edition. | |
dc.relation.references | Monteiro, S. N., Terrones, L. A. H., & D’Almeida, J. R. M. (2008). Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), 591-595. 10.1016/j.polymertesting.2008.03.003 | |
dc.relation.references | Mukesh, & Godara, S. S. (2019). Effect of chemical modification of fiber surface on natural fiber composites: A review. Materials Today: Proceedings, 18, 3428–3434. doi:10.1016/j.matpr.2019.07.270 | |
dc.relation.references | Muthu, J., Priscilla, J., Odeshi, A., & Kuppen, N. (2018). Characterisation of coir fibre hybrid composites reinforced with clay particles and glass spheres. SAGE Publications. 10.1177/0021998317712568 | |
dc.relation.references | Nam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites. Part B, Engineering, 42(6), 1648-1656. 10.1016/j.compositesb.2011.04.001 | |
dc.relation.references | Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97. doi:10.17509/ijost.v4i1.15806 | |
dc.relation.references | Obada, D. O., Kuburi, L. S., Dauda, M., Dodoo-Arhin, D., Iorpenda, M. J., Hou, Y., . . . Jimoh, A. A. (2019). Microstructural evolution and hardness properties of coir-coconut husk powder reinforced polymer composites subjected to an acidic environment. Procedia Manufacturing, 35, 737-742. doi:10.1016/j.promfg.2019.06.017 | |
dc.relation.references | Obele, C., Obele, C., & Ishidi, E. (2015). Mechanical properties of coir fiber reinforced epoxy resin composites for helmet shell mechanical properties of coir fiber reinforced epoxy resin composites for helmet shell | |
dc.relation.references | Pico González, D. (2023). Validación de una máquina para fabricación de materiales compuestos mediante la técnica de moldeo por transferencia de resina con vacío asistido. | |
dc.relation.references | Pellegrini, V. d. O. A., Sepulchro, A. G. V., & Polikarpov, I. (2020). Enzymes for lignocellulosic biomass polysaccharide valorization and production of nanomaterials. Current Opinion in Green and Sustainable Chemistry, 26, 100397. doi:10.1016/j.cogsc.2020.100397 | |
dc.relation.references | Quiñones-Bolaños, E., Gómez-Oviedo, M., Mouthon-Bello, J., Sierra-Vitola, L., Berardi, U., & Bustillo-Lecompte, C. (2021). Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. Journal of Environmental Management, 277, 111503. doi:10.1016/j.jenvman.2020.111503 | |
dc.relation.references | Quintanilla, M. 2010. industrialización de la fibra de estopa de coco. Trabajo de grado para optar al título de ingeniera industrial, Universidad de El salvador, El salvador. | |
dc.relation.references | Rajesh, M., & Pitchaimani, J. (2017). Mechanical characterization of natural fiber intra-ply fabric polymer composites: Influence of chemical modifications. Journal of Reinforced Plastics and Composites, 36(22), 1651. doi:10.1177/0731684417723084 | |
dc.relation.references | Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., . . . Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. doi:10.1016/j.jclepro.2021.127483 | |
dc.relation.references | Ramdas Tamakuwala, V. (2020a). Manufacturing of fiber reinforced polymer by using VARTM process: A review. Materials Today: Proceedings, 44, 987. doi:10.1016/j.matpr.2020.11.102 | |
dc.relation.references | Ramdas Tamakuwala, V. (2020b). Manufacturing of fiber reinforced polymer by using VARTM process: A review Elsevier BV. doi:10.1016/j.matpr.2020.11.102 | |
dc.relation.references | Salit, M. S., Jawaid, M., Yusoff, N. B., & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites (1st ed. 2015 ed.). Cham: Springer International Publishing. doi:10.1007/978-3-319-07944-8 Retrieved from https://library.biblioboard.com/viewer/6770ff41-bd90-11ea-b8f9-0a28bb48d135 | |
dc.relation.references | Santos, J. C. d., Oliveira, L. Á d., Gomes Vieira, L. M., Mano, V., Freire, R. T. S., & Panzera, T. H. (2019). Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Construction and Building Materials, 211, 427–436. doi:10.1016/j.conbuildmat.2019.03.284 | |
dc.relation.references | Siakeng, R., Jawaid, M., Ariffin, H., & Salit, M. S. (2018). Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid. Journal of Bionics Engineering, 15(6), 1035-1046. 10.1007/s42235-018-0091-z | |
dc.relation.references | Silva, R., Haraguchi, S., Muniz, E. y Rubira, A. 2009. Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Química Nova 32 (3): 661-671. | |
dc.relation.references | Sozer, E. M., Simacek, P., & Advani, S. G. (2012). 9 - Resin transfer molding (RTM) in polymer matrix composites. Manufacturing techniques for polymer matrix composites (PMCs) (pp. 245-309). Elsevier Ltd. 10.1016/B978-0-85709-067-6.50009-2. | |
dc.relation.references | Subaida, E. A., Chandrakaran, S., & Sankar, N. (2008). Experimental investigations on tensile and pullout behaviour of woven coir geotextiles. Geotextiles and Geomembranes, 26(5), 384-392. 10.1016/j.geotexmem.2008.02.005 | |
dc.relation.references | Tang, L., Zhang, J., Tang, Y., Kong, J., Liu, T., & Gu, J. (2021). Polymer matrix wave transparent composites: A review. Journal of Materials Science & Technology, 75, 225-251.10.1016/j.jmst.2020.09.017 | |
dc.relation.references | Tran, L. Q. N., Minh, T. N., Fuentes, C. A., Chi, T. T., Van Vuure, A. W., & Verpoest, I. (2015). Investigation of microstructure and tensile properties of porous natural coir fibre for use in composite materials. Industrial Crops and Products, 65, 437-445. doi:10.1016/j.indcrop.2014.10.064 | |
dc.relation.references | Trejos, J. 2014. Propiedades mecánicas de una matriz de poliéster reforzada con fibra de coco comparadas con la misma matriz reforzada con fibra de vidrio. Trabajo de grado para optar el título de Ingeniero Mecánico, Universidad Tecnológica De Pereira, Pereira. | |
dc.relation.references | Verma, D., & Gope, P. C. (2015). 10 - the use of coir/coconut fibers as reinforcements in composites. Biofiber reinforcement in composite materials (pp. 285-319) Elsevier Ltd. doi:10.1533/9781782421276.3.285 Retrieved from https://dx.doi.org/10.1533/9781782421276.3.285 | |
dc.relation.references | Wang, B., Yan, L., & Kasal, B. (2022). A review of coir fibre and coir fibre reinforced cement-based composite materials (2000–2021). Journal of Cleaner Production, 338 doi:10.1016/j.jclepro.2022.130676 | |
dc.relation.references | Wu, J., Du, X., Yin, Z., Xu, S., Xu, S., & Zhang, Y. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydrate Polymers, 211, 49-56. doi:10.1016/j.carbpol.2019.01.093 | |
dc.relation.references | Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92-100. doi:10.1016/j.jclepro.2018.02.257 | |
dc.relation.references | Yan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction & Building Materials, 112, 168-182. | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Coconout fibers | |
dc.subject.keywords | Composite material | |
dc.subject.keywords | VARTM | |
dc.subject.keywords | NaOH | |
dc.subject.keywords | Mechanical Properties | |
dc.subject.keywords | Thermal conductivity | |
dc.subject.keywords | Fabric | |
dc.subject.proposal | Fibras de coco | |
dc.subject.proposal | Material compuesto | |
dc.subject.proposal | VARTM | |
dc.subject.proposal | Propiedades mecánicas | |
dc.subject.proposal | Conductividad térmica | |
dc.subject.proposal | Tejido | |
dc.subject.proposal | NaOH | |
dc.title | Análisis mecánico y térmico de un material compuesto de matriz de resina de poliéster y fibras del mesocarpio del coco elaborado a través de la técnica de moldeo por transferencia de resina asistido al vacío | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: