Publicación: Evaluación experimental de la torrefacción parcialmente oxidativa de cáscara de coco con fines energéticos
dc.audience | ||
dc.contributor.advisor | Rhenals Julio, Jesús David | |
dc.contributor.author | Yanez Quiroz, Rafael Anyel | |
dc.contributor.author | Doria Genes, Maria Eugenia | |
dc.date.accessioned | 2024-10-25T10:55:48Z | |
dc.date.available | 2024-10-25T10:55:48Z | |
dc.date.issued | 2024-10-20 | |
dc.description.abstract | Este trabajo se enfoca en evaluar experimentalmente la torrefacción de mesocarpio y epicarpio de coco como una estrategia de caracterización energética. Se realizaron ensayos de torrefacción a escala de laboratorio, para las muestras utilizadas se definió una geometría estándar (20mm x 20 mm x 20 mm) aproximadamente, en un set de seis experimentos se modificaron variables como la temperatura de trabajo, tiempo de precalentamiento, profundidad de la muestra y tiempo de torrefacción. Los resultados obtenidos fueron comparados entre sí para determinar combinación de variables que brinde el material torrefacto de mejores propiedades energéticas, también se comparan los resultados con investigaciones recientes sobre el procesamiento de biomasas para definir la calidad del material obtenido y en función de un análisis cuantitativo de las propiedades energéticas definir la calidad del material torrefacto obtenido de la materia prima disponible en la región de Córdoba. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Ingeniero(a) Mecánico(a) | |
dc.description.modality | Artículo | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8681 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Ingeniería Mecánica | |
dc.relation.references | Aguiar, S., Enríquez Estrella, M., & Uvidia Cabadiana, H. (2022). Residuos agroindustriales: su impacto, manejo y aprovechamiento. In Axioma (Vol. 1, Issue 27, pp. 5–11). https://doi.org/10.26621/ra.v1i27.803 | |
dc.relation.references | Alfonso, A., Padilla, F., Javier, L., Martínez, F., Mendoza, J. M., David, J., & Julio, R. (n.d.). DISEÑO DE LA CÁMARA DE COMBUSTIÓN DE UNA COCINA ECOEFICIENTE A BIOMASA TIPO ROCKET CON MESOCARPIO DE COCO Alex. 77. | |
dc.relation.references | Arteaga Ramos, J. P., Rhenals Julio, J. D., Ferreira Rodrigues, C. H., Arce Ferrufino, G. L. A., & Romero Luna, C. M. (2022). Experimental Study of Oxidative Torrefaction of Eucalyptus Wood Chip Using a Mineral Layer of Silica Sand. https://doi.org/10.26678/abcm.encit2022.cit22-0620 | |
dc.relation.references | Charles Perrie, Chase K. Glenn, Gregory Reed, Tret C. Burdette, Khairallah Atwi, Omar El Hajj, Zezhen Cheng, Kruthika V. Kumar, Amanda A. Frossard, Sudhagar Mani, and R. S. (2022). Effect of Torrefaction on Aerosol Emissions at Combustion Temperatures Relevant for Domestic Burning and Power Generation. ACS Earth and Space Chemistry, 6(11), 2722–2731. https://doi.org/10.1021/acsearthspacechem.2c00251 | |
dc.relation.references | Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. In Renewable and Sustainable Energy Reviews (Vol. 44, pp. 847– 866). Elsevier. https://doi.org/10.1016/j.rser.2014.12.039 | |
dc.relation.references | Conag, A. T., Villahermosa, J. E. R., Cabatingan, L. K., & Go, A. W. (2018). Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy for Sustainable Development, 42, 160–169. https://doi.org/10.1016/j.esd.2017.11.004 | |
dc.relation.references | Dorde Medic, Matthew Darr, Benjamin Potter, A. S. (2010). Effect of Torrefaction Process Parameters on Biomass Feedstock Upgrading. Merican Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.29898 | |
dc.relation.references | Gautam, C. Anupam, S. Aditya, S. Pawan, S. S. (2024). Experimental Investigation and Thermodynamic Analysis of Coconut-Shell-Derived Activated Carbon for CO2-Based Advanced Adsorption Cooling Systems. Industrial & Engineering Chemistry Research, 63(5), 2395. https://doi.org/10.1021/acs.iecr.3c03789 | |
dc.relation.references | Herrera Yatacué, G. V., Cuartas Quintero, J. C., Alzate Mejía, S., & saraalzate19@gmail.com. (2023). Residuos agroindustriales como sustratos para la producción de biomasa fúngica: enfoque en bagazo de caña. https://hdl.handle.net/10901/28094 | |
dc.relation.references | Howari, H., Parvez, M., Khan, O., Alhodaib, A., Mallah, A., & Yahya, Z. (2023). Multi-Objective Optimization for Ranking Waste Biomass Materials Based on Performance and Emission Parameters in a Pyrolysis Process—An AHP–TOPSIS Approach. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15043690 | |
dc.relation.references | International Energy Agency. (2023). World Energy Outlook 2023 | Enhanced Reader. 23–28. https://www.iea.org/news/the-energy-world-is-set-to-change-significantly-by-2030-based-ontoday-s-policy-settings-alone | |
dc.relation.references | Mendoza, J. M., Bula, A. J., Gómez, R. D., & Corredor, L. A. (2012). Análisis exergético de la gasificación de biomasa. Informacion Tecnologica, 23(5), 85–96. https://doi.org/10.4067/S0718- 07642012000500009 | |
dc.relation.references | Nhuchhen, D., Basu, P., & Acharya, B. (2014). A Comprehensive Review on Biomass Torrefaction. International Journal of Renewable Energy & Biofuels, 2014, 1–56. https://doi.org/10.5171/2014.506376 | |
dc.relation.references | Park, S. Y., Kim, S. J., Oh, K. C., Cho, L. H., Jeon, Y. K., & Kim, D. H. (2023). Evaluation of the Optimal Conditions for Oxygen-Rich and Oxygen-Lean Torrefaction of Forestry Byproduct as a Fuel. Energies, 16(12). https://doi.org/10.3390/en16124763 | |
dc.relation.references | Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028 | |
dc.relation.references | Puente-Urbina, A. (2022). Caracterización de biomasas lignocelulósicas y su procesamiento térmico: Estado y oportunidades en el Instituto Tecnológico de Costa Rica. Revista Tecnología En Marcha, 35, 119–128. https://doi.org/10.18845/tm.v35i7.6343 | |
dc.relation.references | Rago, Y. P., Collard, F. X., Görgens, J. F., Surroop, D., & Mohee, R. (2020). Torrefaction of biomass and plastic from municipal solid waste streams and their blends: Evaluation of interactive effects. Fuel, 277(May), 118089. https://doi.org/10.1016/j.fuel.2020.118089 | |
dc.relation.references | Riaz, S., Al-Abdeli, Y. M., & Oluwoye, I. (2023). Partially Oxidative Torrefaction of Woody Biomass Pellets: Burning Behaviour and Emission Analysis. Bioenergy Research, 16(4), 2331–2341. https://doi.org/10.1007/s12155-023-10572-z | |
dc.relation.references | Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy and Environmental Science, 9(10), 2939–2977. https://doi.org/10.1039/c6ee00935b | |
dc.relation.references | Simonic, M., Goricanec, D., & Urbancl, D. (2020). Impact of torrefaction on biomass properties depending on temperature and operation time. Science of the Total Environment, 740, 140086. https://doi.org/10.1016/j.scitotenv.2020.140086 | |
dc.relation.references | Soria-Verdugo, A., Cano-Pleite, E., Panahi, A., & Ghoniem, A. F. (2022). Kinetics mechanism of inert and oxidative torrefaction of biomass. Energy Conversion and Management, 267(April), 115892. https://doi.org/10.1016/j.enconman.2022.115892 | |
dc.relation.references | Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122 | |
dc.relation.references | Uddin Monir, M., Muntasir Shovon, S., Ahamed Akash, F., Habib, M. A., Techato, K., Abd Aziz, A., Chowdhury, S., & Eka Prasetya, T. A. (2024). Comprehensive characterization and kinetic analysis of coconut shell thermal degradation: Energy potential evaluated via the Coats-Redfern method. Case Studies in Thermal Engineering, 55(January), 104186. https://doi.org/10.1016/j.csite.2024.104186 | |
dc.relation.references | Zhang, L., Wang, Z., Ma, J., Kong, W., Yuan, P., Sun, R., & Shen, B. (2022). Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing nonoxidative and oxidative torrefaction. Fuel, 310(PC), 122477. https://doi.org/10.1016/j.fuel.2021.122477 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Torrefaction | |
dc.subject.keywords | Biomass | |
dc.subject.keywords | Temperature | |
dc.subject.keywords | Coconut shell | |
dc.subject.keywords | Energy potential | |
dc.subject.proposal | Torrefacción | |
dc.subject.proposal | Biomasa | |
dc.subject.proposal | Temperatura | |
dc.subject.proposal | Cascara de coco | |
dc.subject.proposal | Potencial energético | |
dc.title | Evaluación experimental de la torrefacción parcialmente oxidativa de cáscara de coco con fines energéticos | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: